118 research outputs found
IMPACT OF WATER RADIOLYSIS ON URANIUM DIOXIDE CORROSION
International audienc
Alpha localized radiolysis and corrosion mechanisms at the iron/water interface: Role of molecular species
This paper is devoted to the iron corrosion phenomena induced by the α (4He2+) water radiolysis species studied in conjunction with the production/consumption of H2 at the solid/solution interface. On one hand, the solid surface is characterized during the 4He2+ ions irradiation by in situ Raman spectroscopy; on another hand, the H2 gas produced by the water radiolysis is monitored by ex situ gas measurements. The 4He2+ ions irradiation experiments are provided either by the CEMHTI (E = 5.0 MeV) either by the ARRONAX (E = 64.7 MeV) cyclotron facilities. The iron corrosion occurs only under irradiation and can be slowed down by H2 reductive atmosphere. Pure iron and carbon steel solids are studied in order to show two distinct behaviors of these surfaces vs. the 4He2+ ions water irradiation: the corrosion products identified are the magnetite phase (Fe(II)Fe(III)2O4) correlated to an H2 consumption for pure iron and the lepidocrocite phase (γ-Fe(III)OOH) correlated to an H2 production for carbon steel sample. This paper underlined the correlation between the iron corrosion products formation onto the solid surface and the H2 production/consumption mechanisms. H2O2 species is considered as the single water radiolytic species involved into the corrosion reaction at the solid surface with an essential role in the oxidation reaction of the iron surface. We propose to bring some light to these mechanisms, in particular the H2 and H2O2 roles, by the in situ Raman spectroscopy during and after the 4He2+ ions beam irradiation. This in situ experiment avoids the evolution of the solid surface, in particular phases which are reactive to the oxidation processing
GalNAc/Gal-Binding Rhizoctonia solani Agglutinin Has Antiproliferative Activity in Drosophila melanogaster S2 Cells via MAPK and JAK/STAT Signaling
Rhizoctonia solani agglutinin, further referred to as RSA, is a lectin isolated from the plant pathogenic fungus Rhizoctonia solani. Previously, we reported a high entomotoxic activity of RSA towards the cotton leafworm Spodoptera littoralis. To better understand the mechanism of action of RSA, Drosophila melanogaster Schneider S2 cells were treated with different concentrations of the lectin and FITC-labeled RSA binding was examined using confocal fluorescence microscopy. RSA has antiproliferative activity with a median effect concentration (EC50) of 0.35 µM. In addition, the lectin was typically bound to the cell surface but not internalized. In contrast, the N-acetylglucosamine-binding lectin WGA and the galactose-binding lectin PNA, which were both also inhibitory for S2 cell proliferation, were internalized whereas the mannose-binding lectin GNA did not show any activity on these cells, although it was internalized. Extracted DNA and nuclei from S2 cells treated with RSA were not different from untreated cells, confirming inhibition of proliferation without apoptosis. Pre-incubation of RSA with N-acetylgalactosamine clearly inhibited the antiproliferative activity by RSA in S2 cells, demonstrating the importance of carbohydrate binding. Similarly, the use of MEK and JAK inhibitors reduced the activity of RSA. Finally, RSA affinity chromatography of membrane proteins from S2 cells allowed the identification of several cell surface receptors involved in both signaling transduction pathways
Recommended from our members
Constraint-induced Aphasia Therapy versus Intensive Semantic Treatment in Fluent Aphasia
Objective: To compare the effectiveness of two intensive therapy methods: Constraint- 4 Induced Aphasia Therapy (CIAT) and semantic therapy (BOX).
Method: Nine patients with chronic fluent aphasia participated in a therapy programme 6 to establish behavioral treatment outcomes. Participants were randomly assigned to one of two groups (CIAT or BOX).
Results: Intensive therapy significantly improved verbal communication. However, BOX 9 treatment showed a more pronounced improvement on two communication measures, namely on a standardized assessment for verbal communication, the Amsterdam Nijmegen Everyday Language Test (Blomert, Koster, & Kean, 1995) and on a subjective rating scale, the Communicative Effectiveness Index (Lomas et al., 1989). All 13 participants significantly improved on one (or more) subtests of the Aachen Aphasia Test (Graetz et al., 1992), an impairment-focused assessment. There was a treatment-specific effect. Therapy with BOX had a significant effect on language comprehension and on semantics, while of CIAT affected language production and phonology.
Conclusion: The findings indicate that in patients with fluent aphasia (1) intensive treatment has a significant effect on language and verbal communication, (2) intensive therapy results in selective treatment effects and (3) an intensive semantic treatment shows a more striking mean improvement on verbal communication in comparison to communication-based CIAT-treatment
Diversity in Protein Glycosylation among Insect Species
status: publishe
Determination of gas-phase acidities of dimethylphenols: Combined experimental and theoretical study
Proteome-Wide Analysis of Single-Nucleotide Variations in the N-Glycosylation Sequon of Human Genes
N-linked glycosylation is one of the most frequent post-translational modifications of proteins with a profound impact on their biological function. Besides other functions, N-linked glycosylation assists in protein folding, determines protein orientation at the cell surface, or protects proteins from proteases. The N-linked glycans attach to asparagines in the sequence context Asn-X-Ser/Thr, where X is any amino acid except proline. Any variation (e.g. non-synonymous single nucleotide polymorphism or mutation) that abolishes the N-glycosylation sequence motif will lead to the loss of a glycosylation site. On the other hand, variations causing a substitution that creates a new N-glycosylation sequence motif can result in the gain of glycosylation. Although the general importance of glycosylation is well known and acknowledged, the effect of variation on the actual glycoproteome of an organism is still mostly unknown. In this study, we focus on a comprehensive analysis of non-synonymous single nucleotide variations (nsSNV) that lead to either loss or gain of the N-glycosylation motif. We find that 1091 proteins have modified N-glycosylation sequons due to nsSNVs in the genome. Based on analysis of proteins that have a solved 3D structure at the site of variation, we find that 48% of the variations that lead to changes in glycosylation sites occur at the loop and bend regions of the proteins. Pathway and function enrichment analysis show that a significant number of proteins that gained or lost the glycosylation motif are involved in kinase activity, immune response, and blood coagulation. A structure-function analysis of a blood coagulation protein, antithrombin III and a protease, cathepsin D, showcases how a comprehensive study followed by structural analysis can help better understand the functional impact of the nsSNVs
Potential toxic elements in stream sediments, soils and waters in an abandoned radium mine (central Portugal)
The Alto da Várzea radium mine (AV) exploited ore and U-bearing minerals, such as autunite and torbernite. The mine was exploited underground from 1911 to 1922, closed in 1946 without restoration, and actually a commercial area is deployed. Stream sediments, soils and water samples were collected between 2008 and 2009. Stream sediments are mainly contaminated in As, Th, U and W, which is related to the AV radium mine. The PTEs, As, Co, Cr, Sr, Th, U, W, Zn, and electrical conductivity reached the highest values in soils collected inside the mine influence. Soils are contaminated with As and U and must not be used for any purpose. Most waters have pH values ranging from 4.3 to 6.8 and are poorly mineralized (EC = 41-186 µS/cm; TDS = 33-172 mg/L). Groundwater contains the highest Cu, Cr and Pb contents. Arsenic occurs predominantly as H2(AsO4)- and H(AsO4)2-. Waters are saturated in goethite, haematite and some of them also in lepidocrocite and ferrihydrite, which adsorbs As (V). Lead is divalent in waters collected during the warm season, being mobile in these waters. Thorium occurs mainly as Th(OH)3(CO3)-, Th(OH)2(CO3) and Th(OH)2(CO3) 22- , which increase water Th contents. Uranium occurs predominantly as UO2CO3, but CaUO2(CO3) 32- and CaUO2(CO3)3 also occur, decreasing its mobility in water. The waters are contaminated in NO2-, Mn, Cu, As, Pb and U and must not be used for human consumption and in agricultural activities. The water contamination is mainly associated with the old radium mine and human activities. A restoration of the mining area with PTE monitoring is necessary to avoid a public hazard.Thanks are due to Prof. Joao Coutinho for the determination of organic matter and cation exchange capacity in samples of stream sediments and soils and A. Rodrigues for the water analyses, EDM for some information on the Alto da Varzea mine area. This study had the support of Portuguese Fundacao para a Ciencia e Tecnologia (FCT), through the strategic projects UID/GEO/04035/2013 and UID/MAR/04292/2013 (MARE).info:eu-repo/semantics/publishedVersio
Plasticity of the β-Trefoil Protein Fold in the Recognition and Control of Invertebrate Predators and Parasites by a Fungal Defence System
Discrimination between self and non-self is a prerequisite for any defence mechanism; in innate defence, this discrimination is often mediated by lectins recognizing non-self carbohydrate structures and so relies on an arsenal of host lectins with different specificities towards target organism carbohydrate structures. Recently, cytoplasmic lectins isolated from fungal fruiting bodies have been shown to play a role in the defence of multicellular fungi against predators and parasites. Here, we present a novel fruiting body lectin, CCL2, from the ink cap mushroom Coprinopsis cinerea. We demonstrate the toxicity of the lectin towards Caenorhabditis elegans and Drosophila melanogaster and present its NMR solution structure in complex with the trisaccharide, GlcNAcβ1,4[Fucα1,3]GlcNAc, to which it binds with high specificity and affinity in vitro. The structure reveals that the monomeric CCL2 adopts a β-trefoil fold and recognizes the trisaccharide by a single, topologically novel carbohydrate-binding site. Site-directed mutagenesis of CCL2 and identification of C. elegans mutants resistant to this lectin show that its nematotoxicity is mediated by binding to α1,3-fucosylated N-glycan core structures of nematode glycoproteins; feeding with fluorescently labeled CCL2 demonstrates that these target glycoproteins localize to the C. elegans intestine. Since the identified glycoepitope is characteristic for invertebrates but absent from fungi, our data show that the defence function of fruiting body lectins is based on the specific recognition of non-self carbohydrate structures. The trisaccharide specifically recognized by CCL2 is a key carbohydrate determinant of pollen and insect venom allergens implying this particular glycoepitope is targeted by both fungal defence and mammalian immune systems. In summary, our results demonstrate how the plasticity of a common protein fold can contribute to the recognition and control of antagonists by an innate defence mechanism, whereby the monovalency of the lectin for its ligand implies a novel mechanism of lectin-mediated toxicity
- …