172 research outputs found

    Analysis of intracellular tyrosine phosphorylation in circulating neutrophils as a rapid assay for the in vivo effect of oral tyrosine kinase inhibitors

    Get PDF
    Tyrosine kinases are crucial signaling components of diverse biological processes and are major therapeutic targets in various malignancies and immune-mediated disorders. A critical step of development of novel tyrosine kinase inhibitors is the transition from the confirmation of the in vitro effects of drug candidates to the analysis of their in vivo efficacy. To facilitate this transition, we have developed a rapid in vivo assay for the analysis of the effect of oral tyrosine kinase inhibitors on basal tyrosine phosphorylation of circulating mouse neutrophils. The assay uses a single drop of peripheral blood without sacrificing the mice. Flow cytometry using intracellular staining by fluorescently labeled anti-phosphotyrosine antibodies revealed robust basal tyrosine phosphorylation in resting circulating neutrophils. This signal was abrogated by the use of isotype control antibodies or by pre-saturation of the anti-phosphotyrosine antibodies with soluble phosphotyrosine amino acids or tyrosine-phosphorylated peptides. Basal tyrosine phosphorylation was dramatically reduced in neutrophils of triple knockout mice lacking the Src-family tyrosine kinases Hck, Fgr, and Lyn. Neutrophil tyrosine phosphorylation was also abrogated by oral administration of the Abl/Src-family inhibitor dasatinib, a clinically used anti-leukemic agent. Detailed dose-response and kinetic studies revealed half-maximal reduction of neutrophil tyrosine phosphorylation by 2.9 mg/kg dasatinib, with maximal reduction observed 2 h after inhibitor administration. Taken together, our assay allows highly efficient analysis of the in vivo effect of orally administered tyrosine kinase inhibitors, and may be used as a suitable alternative to other existing approaches

    The Syk tyrosine kinase is required for skin inflammation in an in vivo mouse model of epidermolysis bullosa acquisita.

    Get PDF
    The inflammatory form of epidermolysis bullosa acquisita is caused by autoantibodies against type VII collagen (C7), a component of the dermal-epidermal junction. We have previously shown that myeloid Src-family kinases mediate skin inflammation triggered by anti-C7 antibodies. Here we identify the Syk tyrosine kinase as a critical component of autoantibody-induced skin inflammation downstream of Src-family kinases. Immobilized C7-anti-C7 immune complexes triggered neutrophil activation and Syk phosphorylation in a Src-family kinase-dependent manner. Bone marrow chimeric mice lacking Syk in their hematopoietic compartment were completely protected from skin inflammation triggered by anti-C7 antibodies despite normal circulating anti-C7 levels. Syk deficiency abrogated the accumulation of CXCL2, IL-1beta and LTB4 at the site of inflammation and resulted in defective in vivo neutrophil recruitment. Syk-/- neutrophils had a normal intrinsic migratory capacity but failed to release CXCL2 or LTB4 upon activation by immobilized C7-anti-C7 immune complexes, indicating a role for Syk in the amplification of the inflammation process. These results identify Syk as a critical component of skin inflammation in a mouse model of epidermolysis bullosa acquisita and as a potential therapeutic target in epidermolysis bullosa acquisita and other mechanistically related inflammatory skin diseases such as bullous pemphigoid

    Importance of Fc Receptor Îł-Chain ITAM Tyrosines in Neutrophil Activation and in vivo Autoimmune Arthritis

    Get PDF
    Activating FcÎł receptors associated with Fc receptor Îł-chain (FcRÎł) are critical for mediating neutrophil effector functions in immune complex-mediated autoimmune diseases. FcRÎł contains ITAM tyrosines and the in vivo role of these tyrosines has not been defined in neutrophils and arthritis. In this study, the in vivo functions of FcRÎł ITAM tyrosines were characterized using wild type and ITAM tyrosine mutant (Y65F/Y76F) transgenic mice crossed to an FcRÎł-deficient genetic background. FcRÎł-deficient neutrophils showed undetectable cell surface expression of the activating FcÎł receptor IV, defective immune complex-induced superoxide production, degranulation and spreading. Although the re-expression of both the wild type and the ITAM tyrosine mutant (Y65F/Y76F) FcRÎł could restore activating FcÎł receptor expression of FcRÎł-deficient neutrophils, only the wild type transgenic form could mediate FcÎł receptor-dependent effector functions. In contrast, neutrophils carrying ITAM tyrosine mutant FcRÎł were unable to produce superoxide, mediate degranulation and perform active spreading. In addition, our results confirmed the protection of FcRÎł-deficient mice from autoimmune arthritis. Importantly, the presence of the wild type FcRÎł transgene, in contrast to the ITAM tyrosine mutant transgene, partially reversed autoimmune arthritis development. The reversing effect of the wild type transgene was even more robust when animals carried the wild type transgene in a homozygous form. Collectively, FcRÎł ITAM tyrosines play a critical role in the induction of neutrophil effector responses, the initiation and progression of an autoantibody-induced experimental arthritis in vivo, indicating a signaling, rather than just a receptor stabilizing function of the molecule

    The Yin and Yang of Tyrosine Kinase inhibition During experimental Polymicrobial sepsis

    Get PDF
    Neutrophils are the first cells of our immune system to arrive at the site of inflammation. They release cytokines, e.g., chemokines, to attract further immune cells, but also actively start to phagocytose and kill pathogens. In the case of sepsis, this tightly regulated host defense mechanism can become uncontrolled and hyperactive resulting in severe organ damage. Currently, no effective therapy is available to fight sepsis; therefore, novel treatment targets that could prevent excessive inflammatory responses are warranted. Src Family tyrosine Kinases (SFK), a group of tyrosine kinases, have been shown to play a major role in regulating immune cell recruitment and host defense. Leukocytes with SFK depletion display severe spreading and migration defects along with reduced cytokine production. Thus, we investigated the effects of dasatinib, a tyrosine kinase inhibitor, with a strong inhibitory capacity on SFKs during sterile inflammation and polymicrobial sepsis in mice. We found that dasatinib-treated mice displayed diminished leukocyte adhesion and extravasation in tumor necrosis factor-alpha-stimulated cremaster muscle venules in vivo. In polymicrobial sepsis, sepsis severity, organ damage, and clinical outcome improved in a dose-dependent fashion pointing toward an optimal therapeutic window for dasatinib dosage during polymicrobial sepsis. Dasatinib treatment may, therefore, provide a balanced immune response by preventing an overshooting inflammatory reaction on the one side and bacterial overgrowth on the other side

    MASP-1 Induces a Unique Cytokine Pattern in Endothelial Cells: A Novel Link between Complement System and Neutrophil Granulocytes

    Get PDF
    Microbial infection urges prompt intervention by the immune system. The complement cascade and neutrophil granulocytes are the predominant contributors to this immediate anti-microbial action. We have previously shown that mannan-binding lectin-associated serine protease-1 (MASP-1), the most abundant enzyme of the complement lectin pathway, can induce p38-MAPK activation, NFkappaB signaling, and Ca(2+)-mobilization in endothelial cells. Since neutrophil chemotaxis and transmigration depends on endothelial cell activation, we aimed to explore whether recombinant MASP-1 (rMASP-1) is able to induce cytokine production and subsequent neutrophil chemotaxis in human umbilical vein endothelial cells (HUVEC). We found that HUVECs activated by rMASP-1 secreted IL-6 and IL-8, but not IL-1alpha, IL-1ra, TNFalpha and MCP-1. rMASP-1 induced dose-dependent IL-6 and IL-8 production with different kinetics. rMASP-1 triggered IL-6 and IL-8 production was regulated predominantly by the p38-MAPK pathway. Moreover, the supernatant of rMASP-1-stimulated HUVECs activated the chemotaxis of neutrophil granulocytes as an integrated effect of cytokine production. Our results implicate that besides initializing the complement lectin pathway, MASP-1 may activate neutrophils indirectly, via the endothelial cells, which link these effective antimicrobial host defense mechanisms

    Neutrophils are required for both the sensitization and elicitation phase of contact hypersensitivity

    Get PDF
    Allergic contact dermatitis and its animal model, contact hypersensitivity (CHS), are T cell-mediated inflammatory skin diseases induced by contact allergens. Though numerous cellular and molecular players are known, the mechanism of chemical-induced sensitization remains poorly understood. Here, we identify neutrophils as crucial players in the sensitization phase of CHS. Genetic deficiency of neutrophils caused by myeloid-specific deletion of Mcl-1 or antibody-mediated depletion of neutrophils before sensitization abrogated the CHS response. Neutrophil deficiency reduced contact allergen-induced cytokine production, gelatinase release, and reactive oxygen species production in naive mice. Mast cell deficiency inhibited neutrophil accumulation at the site of sensitization. In turn, neutrophils were required for contact allergen-induced release of further neutrophil-attracting chemokines, migration of DCs to the draining lymph nodes, and priming of allergen-specific T cells. Lymph node cells from mice sensitized in the absence of neutrophils failed to transfer sensitization to naive recipients. Furthermore, no CHS response could be induced when neutrophils were depleted before elicitation or when normally sensitized lymph node cells were transferred to neutrophil-deficient recipients, indicating an additional role for neutrophils in the elicitation phase. Collectively, our data identify neutrophils to be critically involved in both the sensitization and elicitation phase of CHS
    • …
    corecore