256 research outputs found

    Relativistic particle motion of a charge including the radiation reaction

    Get PDF
    The problem of the electromagnetic radiation of an accelerated charged particle is one of the most controversial issues in Physics since the beginning of the last century representing one of the most popular unsolved problems of the Modern Physics. Different equations of motion for a point charge including the electromagnetic radiation emitted have been proposed throughout history, but all these expressions show some limitations. An equation based on the principle of conservation of energy is proposed for the ultra-relativistic motion. Different examples are analyzed showing that the energy lost by the charge agrees with the relativistic generalization of the Larmor formula. This proposed equation has been compared with the Landau-Lifshitz equation obtaining a good agreement in the range of application of the Landau-Lifshitz formula. Finally, it is discussed a possible variation of the typical relativistic particle integrators (e.g. Boris, Vay or Higuera-Cary methods) in order to include the radiation reaction

    Numerical study of dark current dynamics in a high-gradient backward travelling wave accelerating cavity using the electromagnetic simulation software CST studio.

    Get PDF
    High-Gradient accelerating cavities are one of the main research lines in the development of compact linear colliders. However, the operation of such cavities is currently limited by nonlinear effects that are intensified at high electric fields, such as dark currents and radiation emission or RF breakdowns. A new normal-conducting High-Gradient S-band Backward Travelling Wave accelerating cavity for medical application (v=0.38c) designed and constructed at Conseil Européen pour la Recherche Nucléaire (CERN) is being tested at Instituto de Física Corpuscular (IFIC) High Power RF Laboratory. The objective consists of studying its viability in the development of compact linear accelerators for hadrontherapy treatments in hospitals. Due to the high surface electric field in the cavity, electrons are emitted following Fowler- Nordheim equation, also known as dark currents. The emission and dynamic of these electrons are of fundamental importance on different phenomena such as RF Breakdowns or radiation dose emission. In this work, 3D electromagnetic numerical simulations have been performed using the computer simulation technology software CST Studio Suite. Then, the resulting EM field maps are used to study the emission and electron dynamics inside the cavity. The simulation results are compared with experimental data and first conclusions discussed

    Novel reaction force for ultra-relativistic dynamics of a classical point charge

    Full text link
    The problem of the electromagnetic radiation of an accelerated charged particle is one of the most controversial issues in Physics since the beginning of the last century, representing one of the most popular unsolved problems of the Modern Physics. Different equations of motion have been proposed throughout history for a point charge including the electromagnetic radiation emitted, but all these expressions show some limitations. An equation based on the principle of conservation of energy is proposed in this work for the ultra-relativistic motion. Different examples are analyzed showing that the energy lost by the charge agrees with the Li\'enard formula. This proposed equation has been compared with the Landau-Lifshitz equation obtaining a good agreement in the range of application of the Landau-Lifshitz formula.Comment: 9 pages, 10 figure

    Study of the RF pulse heating phenomenon in high gradient accelerating devices by means of analytical approximations

    Get PDF
    The main objective of this work is to present a simple method, based on analytical expressions, for obtaining a quick approximation of the temperature rise due to the Joule effect inside the metallic walls of an RF accelerating device. This proposal relies on solving the 1D heat-transfer equation for a thick wall, where the heat sources inside the wall are the ohmic losses produced by the RF electromagnetic fields penetrating the metal with finite electrical conductivity. Furthermore, it is discussed how the theoretical expressions of this method can be applied to obtain an approximation to the temperature increase in realistic 3D RF accelerating structures, taking as an example the cavity of an RF electron gun. These theoretical results have been benchmarked with numerical simulations carried out with commercial finite-element method codes, finding good agreement among them

    Lipoma parostal de fémur: Aportación de un caso

    Get PDF
    Describimos un caso de lipoma parostal de fémur, un tumor benigno poco frecuente formado por tejido adiposo maduro en relación con el periostio. Nuestro objetivo es documentar el caso, comentando los hallazgos radiológicos, histológicos y el tratamiento y realizar una revisión bibliogråfica.We describe a case of parosteal lipoma of the femur. It is an infrequent benign neoplasm composed of mature fat, intermately connected with the periosteum. Our aim is to document the case, and comment the radiological, histological findings, and treatment, and review the literature

    Two-dimensional simulation of the electron transport in a photomultiplier tube

    Get PDF
    Photomultiplier tubes are widely used in experimental physics because they convert small light signals into a measurable electric current. Although their working principle is well known, it is very difficult to find simulations of the electron transport in these devices. For this reason, the electron transport in the Hamamatsu R13408-100 photomultiplier tube has been simulated in 2D. The software SUPERFISH is used for calculating the electrostatic fields and the Boris method for the effective electron dynamics. The secondary electron emission in the dynodes is implemented using an effective electron model and the modified Vaughan’s model. Some figures of merit for photomultiplier tubes (e.g. the gain, the electron transit time or the transit time spread) in function of the supply voltage and an external magnetic field have been studied obtaining a good qualitative accordance with the Hamamatsu datasheet. In further studies, we are going to compare our simulations with experimental measurements

    First Experimental Evidence of a Beam-Beam Long-Range Compensation Using Wires in the Large Hadron Collider

    Full text link
    In high intensity and high energy colliders such as the CERN Large Hadron Collider and its future High Luminosity upgrade, interactions between the two beams around the different Interaction Points impose machine performance limitations. In fact, their effect reduces the beam lifetime and therefore the collider's luminosity reach. Those interactions are called Beam-Beam Long-Range interactions and a possible mitigation of their effect using DC wires was proposed for the first time in the early 2000's. This solution is currently being studied as an option for enhancing the HL-LHC performance. In 2017 and 2018, four demonstrators of wire compensators have been installed in the LHC. A two-year long experimental campaign followed in order to validate the possibility to mitigate the BBLR interactions in the LHC. During this campaign, a proof-of-concept was completed and motivated an additional set of experiments, successfully demonstrating the mitigation of BBLR interactions effects in beam conditions compatible with the operational configuration. This paper reports in detail the preparation of the experimental campaign, the obtained results and draws some perspectives for the future.Comment: Draft for a later PRAB submissio

    Simplifying the detection of MUTYH mutations by high resolution melting analysis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p><it>MUTYH</it>-associated polyposis (MAP) is a disorder caused by bi-allelic germline <it>MUTYH </it>mutation, characterized by multiple colorectal adenomas. In order to identify mutations in <it>MUTYH </it>gene we applied High Resolution Melting (HRM) genotyping. HRM analysis is extensively employed as a scanning method for the detection of heterozygous mutations. Therefore, we applied HRM to show effectiveness in detecting homozygous mutations for these clinically important and frequent patients.</p> <p>Methods</p> <p>In this study, we analyzed phenotype and genotype data from 82 patients, with multiple (>= 10) synchronous (19/82) or metachronous (63/82) adenomas and negative <it>APC </it>study (except one case). Analysis was performed by HRM-PCR and direct sequencing, in order to identify mutations in <it>MUTYH </it>exons 7, 12 and 13, where the most prevalent mutations are located. In monoallelic mutation carriers, we evaluated entire <it>MUTYH </it>gene in search of another possible alteration. HRM-PCR was performed with strict conditions in several rounds: the first one to discriminate the heteroduplex patterns and homoduplex patterns and the next ones, in order to refine and confirm parameters. The genotypes obtained were correlated to phenotypic features (number of adenomas (synchronous or metachronous), colorectal cancer (CRC) and family history).</p> <p>Results</p> <p><it>MUTYH </it>germline mutations were found in 15.8% (13/82) of patients. The hot spots, Y179C (exon 7) and G396D (exon 13), were readily identified and other mutations were also detected. Each mutation had a reproducible melting profile by HRM, both heterozygous mutations and homozygous mutations. In our study of 82 patients, biallelic mutation is associated with being a carrier of ≄10 synchronous polyps (p = 0.05) and there is no association between biallelic mutation and CRC (p = 0.39) nor family history (p = 0.63). G338H non-pathogenic polymorphism (exon 12) was found in 23.1% (19/82) of patients. In all cases there was concordance between HRM (first and subsequent rounds) and sequencing data.</p> <p>Conclusions</p> <p>Here, we describe a screening method, HRM, for the detection of both heterozygous and homozygous mutations in the gene encoding <it>MUTYH </it>in selected samples of patients with phenotype of MAP. We refine the capabilities of HRM-PCR and apply it to a gene not yet analyzed by this tool. As clinical decisions will increasingly rely on molecular medicine, the power of identifying germline mutations must be continuously evaluated and improved.</p

    Study of Leading Hadrons in Gluon and Quark Fragmentation

    Get PDF
    The study of quark jets in e+e- reactions at LEP has demonstrated that the hadronisation process is reproduced well by the Lund string model. However, our understanding of gluon fragmentation is less complete. In this study enriched quark and gluon jet samples of different purities are selected in three-jet events from hadronic decays of the Z collected by the DELPHI experiment in the LEP runs during 1994 and 1995. The leading systems of the two kinds of jets are defined by requiring a rapidity gap and their sum of charges is studied. An excess of leading systems with total charge zero is found for gluon jets in all cases, when compared to Monte Carlo Simulations with JETSET (with and without Bose-Einstein correlations included) and ARIADNE. The corresponding leading systems of quark jets do not exhibit such an excess. The influence of the gap size and of the gluon purity on the effect is studied and a concentration of the excess of neutral leading systems at low invariant masses (<~ 2 GeV/c^2) is observed, indicating that gluon jets might have an additional hitherto undetected fragmentation mode via a two-gluon system. This could be an indication of a possible production of gluonic states as predicted by QCD.Comment: 19 pages, 6 figures, Accepted by Phys. Lett.

    Azimuthal asymmetry in the risetime of the surface detector signals of the Pierre Auger Observatory

    Get PDF
    The azimuthal asymmetry in the risetime of signals in Auger surface detector stations is a source of information on shower development. The azimuthal asymmetry is due to a combination of the longitudinal evolution of the shower and geometrical effects related to the angles of incidence of the particles into the detectors. The magnitude of the effect depends upon the zenith angle and state of development of the shower and thus provides a novel observable, (sec⁡ξ)max(\sec \theta)_\mathrm{max}, sensitive to the mass composition of cosmic rays above 3×10183 \times 10^{18} eV. By comparing measurements with predictions from shower simulations, we find for both of our adopted models of hadronic physics (QGSJETII-04 and EPOS-LHC) an indication that the mean cosmic-ray mass increases slowly with energy, as has been inferred from other studies. However, the mass estimates are dependent on the shower model and on the range of distance from the shower core selected. Thus the method has uncovered further deficiencies in our understanding of shower modelling that must be resolved before the mass composition can be inferred from (sec⁡ξ)max(\sec \theta)_\mathrm{max}.Comment: Replaced with published version. Added journal reference and DO
    • 

    corecore