59 research outputs found

    Sealed operation, and circulation and purification of gas in the HARPO TPC

    Full text link
    HARPO is a time projection chamber (TPC) demonstrator of a gamma-ray telescope and polarimeter in the MeV-GeV range, for a future space mission. We present the evolution of the TPC performance over a five month sealed-mode operation, by the analysis of cosmic-ray data, followed by the fast and complete recovery of the initial gas properties using a lightweight gas circulation and purification system.Comment: Proceedings_MPGD2015, EPJ Web of Conference

    Measurement of 1.7 to 74 MeV polarised gamma rays with the HARPO TPC

    Full text link
    Current {\gamma}-ray telescopes based on photon conversions to electron-positron pairs, such as Fermi, use tungsten converters. They suffer of limited angular resolution at low energies, and their sensitivity drops below 1 GeV. The low multiple scattering in a gaseous detector gives access to higher angular resolution in the MeV-GeV range, and to the linear polarisation of the photons through the azimuthal angle of the electron-positron pair. HARPO is an R&D program to characterise the operation of a TPC (Time Projection Chamber) as a high angular-resolution and sensitivity telescope and polarimeter for {\gamma} rays from cosmic sources. It represents a first step towards a future space instrument. A 30 cm cubic TPC demonstrator was built, and filled with 2 bar argon-based gas. It was put in a polarised {\gamma}-ray beam at the NewSUBARU accelerator in Japan in November 2014. Data were taken at different photon energies from 1.7 MeV to 74 MeV, and with different polarisation configurations. The electronics setup is described, with an emphasis on the trigger system. The event reconstruction algorithm is quickly described, and preliminary measurements of the polarisation of 11 MeVphotons are shown.Comment: Proceedings VCI201

    Shower development of particles with momenta from 15 GeV to 150 GeV in the CALICE scintillator-tungsten hadronic calorimeter

    Full text link
    We present a study of showers initiated by electrons, pions, kaons, and protons with momenta from 15 GeV to 150 GeV in the highly granular CALICE scintillator-tungsten analogue hadronic calorimeter. The data were recorded at the CERN Super Proton Synchrotron in 2011. The analysis includes measurements of the calorimeter response to each particle type as well as measurements of the energy resolution and studies of the longitudinal and radial shower development for selected particles. The results are compared to Geant4 simulations (version 9.6.p02). In the study of the energy resolution we include previously published data with beam momenta from 1 GeV to 10 GeV recorded at the CERN Proton Synchrotron in 2010.Comment: 35 pages, 21 figures, 8 table

    Infrastructure for Detector Research and Development towards the International Linear Collider

    Full text link
    The EUDET-project was launched to create an infrastructure for developing and testing new and advanced detector technologies to be used at a future linear collider. The aim was to make possible experimentation and analysis of data for institutes, which otherwise could not be realized due to lack of resources. The infrastructure comprised an analysis and software network, and instrumentation infrastructures for tracking detectors as well as for calorimetry.Comment: 54 pages, 48 picture

    Pion and proton showers in the CALICE scintillator-steel analogue hadron calorimeter

    Full text link
    Showers produced by positive hadrons in the highly granular CALICE scintillator-steel analogue hadron calorimeter were studied. The experimental data were collected at CERN and FNAL for single particles with initial momenta from 10 to 80 GeV/c. The calorimeter response and resolution and spatial characteristics of shower development for proton- and pion-induced showers for test beam data and simulations using Geant4 version 9.6 are compared.Comment: 26 pages, 16 figures, JINST style, changes in the author list, typos corrected, new section added, figures regrouped. Accepted for publication in JINS

    Hadron shower decomposition in the highly granular CALICE analogue hadron calorimeter

    Get PDF
    The spatial development of hadronic showers in the CALICE scintillator-steel analogue hadron calorimeter is studied using test beam data collected at CERN and FNAL for single positive pions and protons with initial momenta in the range from 10 to 80 GeV/c. Both longitudinal and radial development of hadron showers are parametrised with two-component functions. The parametrisation is fit to test beam data and simulations using the QGSP_BERT and FTFP_BERT physics lists from Geant4 version 9.6. The parameters extracted from data and simulated samples are compared for the two types of hadrons. The response to pions and the ratio of the non-electromagnetic to the electromagnetic calorimeter response, h/e, are estimated using the extrapolation and decomposition of the longitudinal profiles.Comment: 38 pages, 19 figures, 5 tables; author list changed; submitted to JINS

    Performance of the first prototype of the CALICE scintillator strip electromagnetic calorimeter

    Get PDF
    A first prototype of a scintillator strip-based electromagnetic calorimeter was built, consisting of 26 layers of tungsten absorber plates interleaved with planes of 45x10x3 mm3 plastic scintillator strips. Data were collected using a positron test beam at DESY with momenta between 1 and 6 GeV/c. The prototype's performance is presented in terms of the linearity and resolution of the energy measurement. These results represent an important milestone in the development of highly granular calorimeters using scintillator strip technology. This technology is being developed for a future linear collider experiment, aiming at the precise measurement of jet energies using particle flow techniques

    The Time Structure of Hadronic Showers in highly granular Calorimeters with Tungsten and Steel Absorbers

    Get PDF
    The intrinsic time structure of hadronic showers influences the timing capability and the required integration time of hadronic calorimeters in particle physics experiments, and depends on the active medium and on the absorber of the calorimeter. With the CALICE T3B experiment, a setup of 15 small plastic scintillator tiles read out with Silicon Photomultipliers, the time structure of showers is measured on a statistical basis with high spatial and temporal resolution in sampling calorimeters with tungsten and steel absorbers. The results are compared to GEANT4 (version 9.4 patch 03) simulations with different hadronic physics models. These comparisons demonstrate the importance of using high precision treatment of low-energy neutrons for tungsten absorbers, while an overall good agreement between data and simulations for all considered models is observed for steel.Comment: 24 pages including author list, 9 figures, published in JINS

    Testing Hadronic Interaction Models using a Highly Granular Silicon-Tungsten Calorimeter

    Get PDF
    A detailed study of hadronic interactions is presented using data recorded with the highly granular CALICE silicon-tungsten electromagnetic calorimeter. Approximately 350,000 selected negatively charged pion events at energies between 2 and 10 GeV have been studied. The predictions of several physics models available within the Geant4 simulation tool kit are compared to this data. A reasonable overall description of the data is observed; the Monte Carlo predictions are within 20% of the data, and for many observables much closer. The largest quantitative discrepancies are found in the longitudinal and transverse distributions of reconstructed energy.Comment: 28 pages, 24 figures, accepted for publication in NIM
    • …
    corecore