40 research outputs found
Recommended from our members
Timing is everything: Drivers of interannual variability in blue whale migration.
Blue whales need to time their migration from their breeding grounds to their feeding grounds to avoid missing peak prey abundances, but the cues they use for this are unknown. We examine migration timing (inferred from the local onset and cessation of blue whale calls recorded on seafloor-mounted hydrophones), environmental conditions (e.g., sea surface temperature anomalies and chlorophyll a), and prey (spring krill biomass from annual net tow surveys) during a 10 year period (2008-2017) in waters of the Southern California Region where blue whales feed in the summer. Colder sea surface temperature anomalies the previous season were correlated with greater krill biomass the following year, and earlier arrival by blue whales. Our results demonstrate a plastic response of blue whales to interannual variability and the importance of krill as a driving force behind migration timing. A decadal-scale increase in temperature due to climate change has led to blue whales extending their overall time in Southern California. By the end of our 10-year study, whales were arriving at the feeding grounds more than one month earlier, while their departure date did not change. Conservation strategies will need to account for increased anthropogenic threats resulting from longer times at the feeding grounds
Recommended from our members
Consistent phenological shifts in the making of a biodiversity hotspot: the Cape flora
Background
The best documented survival responses of organisms to past climate change on short (glacial-interglacial) timescales are distributional shifts. Despite ample evidence on such timescales for local adaptations of populations at specific sites, the long-term impacts of such changes on evolutionary significant units in response to past climatic change have been little documented. Here we use phylogenies to reconstruct changes in distribution and flowering ecology of the Cape flora - South Africa's biodiversity hotspot - through a period of past (Neogene and Quaternary) changes in the seasonality of rainfall over a timescale of several million years.
Results
Forty-three distributional and phenological shifts consistent with past climatic change occur across the flora, and a comparable number of clades underwent adaptive changes in their flowering phenology (9 clades; half of the clades investigated) as underwent distributional shifts (12 clades; two thirds of the clades investigated). Of extant Cape angiosperm species, 14-41% have been contributed by lineages that show distributional shifts consistent with past climate change, yet a similar proportion (14-55%) arose from lineages that shifted flowering phenology.
Conclusions
Adaptive changes in ecology at the scale we uncover in the Cape and consistent with past climatic change have not been documented for other floras. Shifts in climate tolerance appear to have been more important in this flora than is currently appreciated, and lineages that underwent such shifts went on to contribute a high proportion of the flora's extant species diversity. That shifts in phenology, on an evolutionary timescale and on such a scale, have not yet been detected for other floras is likely a result of the method used; shifts in flowering phenology cannot be detected in the fossil record
Cholesterol treatment with statins: Who is left out and who makes it to goal?
<p>Abstract</p> <p>Background</p> <p>Whether patient socio-demographic characteristics (age, sex, race/ethnicity, income, and education) are independently associated with failure to receive indicated statin therapy and/or to achieve low density lipoprotein cholesterol (LDL-C) therapy goals are not known. We examined socio-demographic factors associated with a) eligibility for statin therapy among those not on statins, and b) achievement of statin therapy goals.</p> <p>Methods</p> <p>Adults (21-79 years) participating in the United States (US) National Health and Nutrition Examination Surveys, 1999-2006 were studied. Statin eligibility and achievement of target LDL-C was assessed using the US Third Adult Treatment Panel (ATP III) on Treatment of High Cholesterol guidelines.</p> <p>Results</p> <p>Among 6,043 participants not taking statins, 10.4% were eligible. Adjusted predictors of statin eligibility among statin non-users were being older, male, poorer, and less educated. Hispanics were less likely to be eligible but not using statins, an effect that became non-significant with adjustment for language usually spoken at home. Among 537 persons taking statins, 81% were at LDL-C goal. Adjusted predictors of goal failure among statin users were being male and poorer. These risks were not attenuated by adjustment for healthcare access or utilization.</p> <p>Conclusion</p> <p>Among person's not taking statins, the socio-economically disadvantaged are more likely to be eligible and among those on statins, the socio-economically disadvantaged are less likely to achieve statin treatment goals. Further study is needed to identify specific amenable patient and/or physician factors that contribute to these disparities.</p
Chemical Defense by the Native Winter Ant (Prenolepis imparis) against the Invasive Argentine Ant (Linepithema humile)
The invasive Argentine ant (Linepithema humile) is established worldwide and displaces native ant species. In northern California, however, the native winter ant (Prenolepis imparis) persists in invaded areas. We found that in aggressive interactions between the two species, P. imparis employs a potent defensive secretion. Field observations were conducted at P. imparis nest sites both in the presence and absence of L. humile. These observations suggested and laboratory assays confirmed that P. imparis workers are more likely to secrete when outnumbered by L. humile. Workers of P. imparis were also more likely to secrete near their nest entrances than when foraging on trees. One-on-one laboratory trials showed that the P. imparis secretion is highly lethal to L. humile, causing 79% mortality. The nonpolar fraction of the secretion was chemically analyzed with gas chromatography/mass spectrometry, and found to be composed of long-chain and cyclic hydrocarbons. Chemical analysis of dissected P. imparis workers showed that the nonpolar fraction is derived from the Dufour's gland. Based on these conclusions, we hypothesize that this chemical defense may help P. imparis to resist displacement by L. humile
Genetic fine mapping and genomic annotation defines causal mechanisms at type 2 diabetes susceptibility loci.
We performed fine mapping of 39 established type 2 diabetes (T2D) loci in 27,206 cases and 57,574 controls of European ancestry. We identified 49 distinct association signals at these loci, including five mapping in or near KCNQ1. 'Credible sets' of the variants most likely to drive each distinct signal mapped predominantly to noncoding sequence, implying that association with T2D is mediated through gene regulation. Credible set variants were enriched for overlap with FOXA2 chromatin immunoprecipitation binding sites in human islet and liver cells, including at MTNR1B, where fine mapping implicated rs10830963 as driving T2D association. We confirmed that the T2D risk allele for this SNP increases FOXA2-bound enhancer activity in islet- and liver-derived cells. We observed allele-specific differences in NEUROD1 binding in islet-derived cells, consistent with evidence that the T2D risk allele increases islet MTNR1B expression. Our study demonstrates how integration of genetic and genomic information can define molecular mechanisms through which variants underlying association signals exert their effects on disease
Low-frequency and rare exome chip variants associate with fasting glucose and type 2 diabetes susceptibility.
Fasting glucose and insulin are intermediate traits for type 2 diabetes. Here we explore the role of coding variation on these traits by analysis of variants on the HumanExome BeadChip in 60,564 non-diabetic individuals and in 16,491 T2D cases and 81,877 controls. We identify a novel association of a low-frequency nonsynonymous SNV in GLP1R (A316T; rs10305492; MAF=1.4%) with lower FG (β=-0.09±0.01 mmol l(-1), P=3.4 × 10(-12)), T2D risk (OR[95%CI]=0.86[0.76-0.96], P=0.010), early insulin secretion (β=-0.07±0.035 pmolinsulin mmolglucose(-1), P=0.048), but higher 2-h glucose (β=0.16±0.05 mmol l(-1), P=4.3 × 10(-4)). We identify a gene-based association with FG at G6PC2 (pSKAT=6.8 × 10(-6)) driven by four rare protein-coding SNVs (H177Y, Y207S, R283X and S324P). We identify rs651007 (MAF=20%) in the first intron of ABO at the putative promoter of an antisense lncRNA, associating with higher FG (β=0.02±0.004 mmol l(-1), P=1.3 × 10(-8)). Our approach identifies novel coding variant associations and extends the allelic spectrum of variation underlying diabetes-related quantitative traits and T2D susceptibility.CHARGE: Funding support for ‘Building on GWAS for NHLBI-diseases: the U.S. CHARGE consortium’ was provided by the NIH through the American Recovery and Reinvestment Act of 2009 (ARRA) (5RC2HL102419). Sequence data for ‘Building on GWAS for NHLBI-diseases: the U.S. CHARGE consortium’ was provided by Eric Boerwinkle on behalf of the Atherosclerosis Risk in Communities (ARIC) Study, L. Adrienne Cupples, principal investigator for the Framingham Heart Study, and Bruce Psaty, principal investigator for the Cardiovascular Health Study. Sequencing was carried out at the Baylor Genome Center (U54 HG003273). Further support came from HL120393, ‘Rare variants and NHLBI traits in deeply phenotyped cohorts’ (Bruce Psaty, principal investigator). Supporting funding was also provided by NHLBI with the CHARGE infrastructure grant HL105756. In addition, M.J.P. was supported through the 2014 CHARGE Visiting Fellow grant—HL105756, Dr Bruce Psaty, PI.
ENCODE: ENCODE collaborators Ben Brown and Marcus Stoiber were supported by the LDRD# 14-200 (B.B. and M.S.) and 4R00HG006698-03 (B.B.) grants.
AGES: This study has been funded by NIA contract N01-AG-12100 with contributions from NEI, NIDCD and NHLBI, the NIA Intramural Research Program, Hjartavernd (the Icelandic Heart Association) and the Althingi (the Icelandic Parliament).
ARIC: The Atherosclerosis Risk in Communities (ARIC) Study is carried out as a collaborative study supported by National Heart, Lung, and Blood Institute (NHLBI) contracts (HHSN268201100005C, HHSN268201100006C, HHSN268201100007C, HHSN268201100008C, HHSN268201100009C, HHSN268201100010C, HHSN268201100011C and HHSN268201100012C), R01HL087641, R01HL59367 and R01HL086694; National Human Genome Research Institute contract U01HG004402; and National Institutes of Health contract HHSN268200625226C. We thank the staff and participants of the ARIC study for their important contributions. Infrastructure was partly supported by Grant Number UL1RR025005, a component of the National Institutes of Health and NIH Roadmap for Medical Research.
CARDIA: The CARDIA Study is conducted and supported by the National Heart, Lung, and Blood Institute in collaboration with the University of Alabama at Birmingham (HHSN268201300025C & HHSN268201300026C), Northwestern University (HHSN268201300027C), University of Minnesota (HHSN268201300028C), Kaiser Foundation Research Institute (HHSN268201300029C), and Johns Hopkins University School of Medicine (HHSN268200900041C). CARDIA is also partially supported by the Intramural Research Program of the National Institute on Aging. Exome chip genotyping and data analyses were funded in part by grants U01-HG004729, R01-HL093029 and R01-HL084099 from the National Institutes of Health to Dr Myriam Fornage. This manuscript has been reviewed by CARDIA for scientific content.
CHES: This work was supported in part by The Chinese-American Eye Study (CHES) grant EY017337, an unrestricted departmental grant from Research to Prevent Blindness, and the Genetics of Latinos Diabetic Retinopathy (GOLDR) Study grant EY14684.
CHS: This CHS research was supported by NHLBI contracts HHSN268201200036C, HHSN268200800007C, N01HC55222, N01HC85079, N01HC85080, N01HC85081, N01HC85082, N01HC85083, N01HC85086; and NHLBI grants HL080295, HL087652, HL103612, HL068986 with additional contribution from the National Institute of Neurological Disorders and Stroke (NINDS). Additional support was provided through AG023629 from the National Institute on Aging (NIA). A full list of CHS investigators and institutions can be found at http://www.chs-nhlbi.org/pi.htm. The provision of genotyping data was supported in part by the National Center for Advancing Translational Sciences, CTSI grant UL1TR000124, and the National Institute of Diabetes and Digestive and Kidney Disease Diabetes Research Center (DRC) grant DK063491 to the Southern California Diabetes Endocrinology Research Center. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.
The CoLaus Study: We thank the co-primary investigators of the CoLaus study, Gerard Waeber and Peter Vollenweider, and the PI of the PsyColaus Study Martin Preisig. We gratefully acknowledge Yolande Barreau, Anne-Lise Bastian, Binasa Ramic, Martine Moranville, Martine Baumer, Marcy Sagette, Jeanne Ecoffey and Sylvie Mermoud for their role in the CoLaus data collection. The CoLaus study was supported by research grants from GlaxoSmithKline and from the Faculty of Biology and Medicine of Lausanne, Switzerland. The PsyCoLaus study was supported by grants from the Swiss National Science Foundation (#3200B0–105993) and from GlaxoSmithKline (Drug Discovery—Verona, R&D).
CROATIA-Korcula: The CROATIA-Korcula study would like to acknowledge the invaluable contributions of the recruitment team in Korcula, the administrative teams in Croatia and Edinburgh and the people of Korcula. Exome array genotyping was performed at the Wellcome Trust Clinical Research Facility Genetics Core at Western General Hospital, Edinburgh, UK. The CROATIA-Korcula study on the Croatian island of Korucla was supported through grants from the Medical Research Council UK and the Ministry of Science, Education and Sport in the Republic of Croatia (number 108-1080315-0302).
EFSOCH: We are extremely grateful to the EFSOCH study participants and the EFSOCH study team. The opinions given in this paper do not necessarily represent those of NIHR, the NHS or the Department of Health. The EFSOCH study was supported by South West NHS Research and Development, Exeter NHS Research and Development, the Darlington Trust, and the Peninsula NIHR Clinical Research Facility at the University of Exeter. Timothy Frayling, PI, is supported by the European Research Council grant: SZ-245 50371-GLUCOSEGENES-FP7-IDEAS-ERC.
EPIC-Potsdam: We thank all EPIC-Potsdam participants for their invaluable contribution to the study. The study was supported in part by a grant from the German Federal Ministry of Education and Research (BMBF) to the German Center for Diabetes Research (DZD e.V.). The recruitment phase of the EPIC-Potsdam study was supported by the Federal Ministry of Science, Germany (01 EA 9401) and the European Union (SOC 95201408 05 F02). The follow-up of the EPIC-Potsdam study was supported by German Cancer Aid (70-2488-Ha I) and the European Community (SOC 98200769 05 F02). Furthermore, we thank Ellen Kohlsdorf for data management as well as the follow-up team headed by Dr Manuala Bergmann for case ascertainment.
ERF: The ERF study was supported by grants from the Netherlands Organization for Scientific Research (NWO) and a joint grant from NWO and the Russian Foundation for Basic research (Pionier, 047.016.009, 047.017.043), Erasmus MC, and the Centre for Medical Systems Biology (CMSB; National Genomics Initiative). Exome sequencing analysis in ERF was supported by the ZonMw grant (91111025).
For the ERF Study, we are grateful to all participants and their relatives, to general practitioners and neurologists for their contributions, to P. Veraart for her help in genealogy and to P. Snijders for his help in data collection.
FamHS: The Family Heart Study (FamHS) was supported by NIH grants R01-HL-087700 and R01-HL-088215 (Michael A. Province, PI) from NHLBI; and R01-DK-8925601 and R01-DK-075681 (Ingrid B. Borecki, PI) from NIDDK.
FENLAND: The Fenland Study is funded by the Medical Research Council (MC_U106179471) and Wellcome Trust. We are grateful to all the volunteers for their time and help, and to the General Practitioners and practice staff for assistance with recruitment. We thank the Fenland Study Investigators, Fenland Study Co-ordination team and the Epidemiology Field, Data and Laboratory teams. The Fenland Study is funded by the Medical Research Council (MC_U106179471) and Wellcome Trust.
FHS: Genotyping, quality control and calling of the Illumina HumanExome BeadChip in the Framingham Heart Study was supported by funding from the National Heart, Lung and Blood Institute Division of Intramural Research (Daniel Levy and Christopher J. O’Donnell, Principle Investigators). A portion of this research was conducted using the Linux Clusters for Genetic Analysis (LinGA) computing resources at Boston University Medical Campus. Also supported by National Institute for Diabetes and Digestive and Kidney Diseases (NIDDK) R01 DK078616, NIDDK K24 DK080140 and American
Diabetes Association Mentor-Based Postdoctoral Fellowship Award #7-09-MN-32, all to Dr Meigs, a Canadian Diabetes Association Research Fellowship Award to Dr Leong, a research grant from the University of Verona, Italy to Dr Dauriz, and NIDDK Research Career Award K23 DK65978, a Massachusetts General Hospital Physician Scientist Development Award and a Doris Duke Charitable Foundation Clinical Scientist Development Award to Dr Florez.
FIA3: We are indebted to the study participants who dedicated their time and samples to these studies. We thank Åsa Ågren (Umeå Medical Biobank) for data organization and Kerstin Enquist and Thore Johansson (Västerbottens County Council) for technical assistance with DNA extraction. This particular project was supported by project grants from the Swedish Heart-Lung Foundation, Umeå Medical Research Foundation and Västerbotten County Council.
The Genetics Epidemiology of Metabolic Syndrome (GEMS) Study: We thank Metabolic Syndrome GEMs investigators: Scott Grundy, Jonathan Cohen, Ruth McPherson, Antero Kesaniemi, Robert Mahley, Tom Bersot, Philip Barter and Gerard Waeber. We gratefully acknowledge the contributions of the study personnel at each of the collaborating sites: John Farrell, Nicholas Nikolopoulos and Maureen Sutton (Boston); Judy Walshe, Monica Prentice, Anne Whitehouse, Julie Butters and Tori Nicholls (Australia); Heather Doelle, Lynn Lewis and Anna Toma (Canada); Kari Kervinen, Seppo Poykko, Liisa Mannermaa and Sari Paavola (Finland); Claire Hurrel, Diane Morin, Alice Mermod, Myriam Genoud and Roger Darioli (Switzerland); Guy Pepin, Sibel Tanir, Erhan Palaoglu, Kerem Ozer, Linda Mahley and Aysen Agacdiken (Turkey); and Deborah A. Widmer, Rhonda Harris and Selena Dixon (United States). Funding for the GEMS study was provided by GlaxoSmithKline.
GeneSTAR: The Johns Hopkins Genetic Study of Atherosclerosis Risk (GeneSTAR) Study was supported by NIH grants through the National Heart, Lung, and Blood Institute (HL58625-01A1, HL59684, HL071025-01A1, U01HL72518, HL112064, and HL087698) and the National Institute of Nursing Research (NR0224103) and by M01-RR000052 to the Johns Hopkins General Clinical Research Center. Genotyping services were provided through the RS&G Service by the Northwest Genomics Center at the University of Washington, Department of Genome Sciences, under U.S. Federal Government contract number HHSN268201100037C from the National Heart, Lung, and Blood Institute.
GLACIER: We are indebted to the study participants who dedicated their time, data and samples to the GLACIER Study as part of the Västerbottens hälsoundersökningar (Västerbottens Health Survey). We thank John Hutiainen and Åsa Ågren (Northern Sweden Biobank) for data organization and Kerstin Enquist and Thore Johansson (Västerbottens County Council) for extracting DNA. We also thank M. Sterner, M. Juhas and P. Storm (Lund University Diabetes Center) for their expert technical assistance with genotyping and genotype data preparation. The GLACIER Study was supported by grants from Novo Nordisk, the Swedish Research Council, Påhlssons Foundation, The Heart Foundation of Northern Sweden, the Swedish Heart Lung Foundation, the Skåne Regional Health Authority, Umeå Medical Research Foundation and the Wellcome Trust. This particular project was supported by project grants from the Swedish Heart-Lung Foundation, the Swedish Research Council, the Swedish Diabetes Association, Påhlssons Foundation and Novo nordisk (all grants to P. W. Franks).
GOMAP (Genetic Overlap between Metabolic and Psychiatric Disease): This work was funded by the Wellcome Trust (098051). We thank all participants for their important contribution. We are grateful to Georgia Markou, Laiko General Hospital Diabetes Centre, Maria Emetsidou and Panagiota Fotinopoulou, Hippokratio General Hospital Diabetes Centre, Athina Karabela, Dafni Psychiatric Hospital, Eirini Glezou and Marios Matzioros, Dromokaiteio Psychiatric Hospital, Angela Rentari, Harokopio University of Athens, and Danielle Walker, Wellcome Trust Sanger Institute.
Generation Scotland: Scottish Family Health Study (GS:SFHS): GS:SFHS is funded by the Chief Scientist Office of the Scottish Government Health Directorates, grant number CZD/16/6 and the Scottish Funding Council. Exome array genotyping for GS:SFHS was funded by the Medical Research Council UK and performed at the Wellcome Trust Clinical Research Facility Genetics Core at Western General Hospital, Edinburgh, UK. We also acknowledge the invaluable contributions of the families who took part in the Generation Scotland: Scottish Family Health Study, the general practitioners and Scottish School of Primary Care for their help in recruiting them, and the whole Generation Scotland team, which includes academic researchers, IT staff, laboratory technicians, statisticians and research managers. The chief investigators of Generation Scotland are David J. Porteous (University of Edinburgh), Lynne Hocking (University of Aberdeen), Blair Smith (University of Dundee), and Sandosh Padmanabhan (University of Glasgow).
GSK (CoLaus, GEMS, Lolipop): We thank the GEMS Study Investigators: Philip Barter, PhD; Y. Antero Kesäniemi, PhD; Robert W. Mahley, PhD; Ruth McPherson, FRCP; and Scott M. Grundy, PhD. Dr Waeber MD, the CoLaus PI’s Peter Vollenweider MD and Gerard Waeber MD, the LOLIPOP PI’s, Jaspal Kooner MD and John Chambers MD, as well as the participants in all the studies. The GEMS study was sponsored in part by GlaxoSmithKline. The CoLaus study was supported by grants from GlaxoSmithKline, the Swiss National Science Foundation (Grant 33CSCO-122661) and the Faculty of Biology and Medicine of Lausanne.
Health ABC: The Health, Aging and Body Composition (HABC) Study is supported by NIA contracts N01AG62101, N01AG62103 and N01AG62106. The exome-wide association study was funded by NIA grant 1R01AG032098-01A1 to Wake Forest University Health Sciences and was supported in part by the Intramural Research Program of the NIH, National Institute on Aging (Z01 AG000949-02 and Z01 AG007390-07, Human subjects protocol UCSF IRB is H5254-12688-11). Portions of this study utilized the high-performance computational capabilities of the Biowulf Linux cluster at the National Institutes of Health, Bethesda, MD. (http:/biowulf.nih.gov).
Health2008: The Health2008 cohort was supported by the Timber Merchant Vilhelm Bang’s Foundation, the Danish Heart Foundation (Grant number 07-10-R61-A1754-B838-22392F), and the Health Insurance Foundation (Helsefonden) (Grant number 2012B233).
HELIC: This work was funded by the Wellcome Trust (098051) and the European Research Council (ERC-2011-StG 280559-SEPI). The MANOLIS cohort is named in honour of Manolis Giannakakis, 1978–2010. We thank the residents of Anogia and surrounding Mylopotamos villages, and of the Pomak villages, for taking part. The HELIC study has been supported by many individuals who have contributed to sample collection (including Antonis Athanasiadis, Olina Balafouti, Christina Batzaki, Georgios Daskalakis, Eleni Emmanouil, Chrisoula Giannakaki, Margarita Giannakopoulou, Anastasia Kaparou, Vasiliki Kariakli, Stella Koinaki, Dimitra Kokori, Maria Konidari, Hara Koundouraki, Dimitris Koutoukidis, Vasiliki Mamakou, Eirini Mamalaki, Eirini Mpamiaki, Maria Tsoukana, Dimitra Tzakou, Katerina Vosdogianni, Niovi Xenaki, Eleni Zengini), data entry (Thanos Antonos, Dimitra Papagrigoriou, Betty Spiliopoulou), sample logistics (Sarah Edkins, Emma Gray), genotyping (Robert Andrews, Hannah Blackburn, Doug Simpkin, Siobhan Whitehead), research administration (Anja Kolb-Kokocinski, Carol Smee, Danielle Walker) and informatics (Martin Pollard, Josh Randall).
INCIPE: NIcole Soranzo’s research is supported by the Wellcome Trust (Grant Codes WT098051 and WT091310), the EU FP7 (EPIGENESYS Grant Code 257082 and BLUEPRINT Grant Code HEALTH-F5-2011-282510).
Inter99: The Inter99 was initiated by Torben Jørgensen (PI), Knut Borch-Johnsen (co-PI), Hans Ibsen and Troels F. Thomsen. The steering committee comprises the former two and Charlotta Pisinger. The study was financially supported by research grants from the Danish Research Council, the Danish Centre for Health Technology Assessment, Novo Nordisk Inc., Research Foundation of Copenhagen County, Ministry of Internal Affairs and Health, the Danish Heart Foundation, the Danish Pharmaceutical Association, the Augustinus Foundation, the Ib Henriksen Foundation, the Becket Foundation and the Danish Diabetes Association. Genetic studies of both Inter99 and Health 2008 cohorts were funded by the Lundbeck Foundation and produced by The Lundbeck Foundation Centre for Applied Medical Genomics in Personalised Disease Prediction, Prevention and Care (LuCamp, www.lucamp.org ). The Novo Nordisk Foundation Center for Basic Metabolic Research is an independent Research Center at the University of Copenhagen partially funded by an unrestricted donation from the Novo Nordisk Foundation (www.metabol.ku.dk).
InterAct Consortium: Funding for the InterAct project was provided by the EU FP6 programme (grant number LSHM_CT_2006_037197). We thank all EPIC participants and staff for their contribution to the study. We thank the lab team at the MRC Epidemiology Unit for sample management and Nicola Kerrison for data management.
IPM BioMe Biobank: The Mount Sinai IPM BioMe Program is supported by The Andrea and Charles Bronfman Philanthropies. Analyses of BioMe data was supported in part through the computational resources and staff expertise provided by the Department of Scientific Computing at the Icahn School of Medicine at Mount Sinai.
The Insulin Resistance Atherosclerosis Family Study (IRASFS): The IRASFS was conducted and supported by the National Institute of Diabetes and Digestive and Kidney Diseases (HL060944, HL061019, and HL060919). Exome chip genotyping and data analyses were funded in part by grants DK081350 and HG007112. A subset of the IRASFS exome chips were contributed with funds from the Department of Internal Medicine at the University of Michigan. Computing resources were provided, in part, by the Wake Forest School of Medicine Center for Public Health Genomics.
The Insulin Resistance Atherosclerosis Study (IRAS): The IRAS was conducted and supported by the National Institute of Diabetes and Digestive and Kidney Diseases (HL047887, HL047889, HL047890 and HL47902). Exome chip genotyping and data analyses were funded in part by grants DK081350 and HG007112). Computing resources were provided, in part, by the Wake Forest School of Medicine Center for Public Health Genomics.
JHS: The JHS is supported by contracts HHSN268201300046C, HHSN268201300047C, HHSN268201300048C, HHSN268201300049C, HHSN268201300050C from the National Heart, Lung and Blood Institute and the National Institute on Minority Health and Health Disparities. ExomeChip genotyping was supported by the NHLBI of the National Institutes of Health under award number R01HL107816 to S. Kathiresan. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.
The London Life Sciences Prospective Population (LOLIPOP) Study: We thank the co-primary investigators of the LOLIPOP study: Jaspal Kooner, John Chambers and Paul Elliott. The LOLIPOP study is supported by the National Institute for Health Research Comprehensive Biomedical Research Centre Imperial College Healthcare NHS Trust, the British Heart Foundation (SP/04/002), the Medical Research Council (G0700931), the Wellcome Trust (084723/Z/08/Z) and the National Institute for Health Research (RP-PG-0407-10371).
MAGIC: Data on glycaemic traits were contributed by MAGIC investigators and were downloaded from www.magicinvestigators.org.
MESA: The Multi-Ethnic Study of Atherosclerosis (MESA) and MESA SHARe project are conducted and supported by contracts N01-HC-95159 through N01-HC-95169 and RR-024156 from the National Heart, Lung, and Blood Institute (NHLBI). Funding for MESA SHARe genotyping was provided by NHLBI Contract N02-HL-6-4278. MESA Family is conducted and supported in collaboration with MESA investigators; support is provided by grants and co
Recommended from our members
Phytoplankton Patches at Oceanic Fronts Are Linked to Coastal Upwelling Pulses: Observations and Implications in the California Current System
Locally enhanced biological production and increased carbon export are persistent features at oceanic density fronts. Studies often assume biological properties are uniform along fronts or hypothesize that along- and across-front gradients reflect physical-biological processes occurring in the front. However, the residence times of waters in fronts are often shorter than biological response times. Thus, an alternate—often untested—hypothesis is that observed biological patchiness originates upstream of a front. To test these two hypotheses, we explore an eddy-associated front in the California Current System sampled during two surveys, separated by 3 weeks. Patches of high phytoplankton biomass were found at the northern ends of both surveys, and phytoplankton biomass decreased along the front. While these patches occurred in similar locations, it was unclear whether the same patch was sampled twice, or whether the two patches were different. Using an advection-reaction framework combined with field and satellite data, we found that variations in along-front gradients in dissolved oxygen, particle biovolume, and salinity support the conclusion that the two phytoplankton patches were different. They were only coincidentally sampled in similar locations. Backward- and forward-in-time tracking of water parcels showed that these phytoplankton patches had distinct origins, associated with specific, strong coastal upwelling pulses upstream of the front. Phytoplankton grew in these recently upwelled waters as they advected into and along the frontal system. By considering both local and upstream physical-biological forcings, this approach enables better characterizations of critical physical and biogeochemical processes that occur at fronts across spatial and temporal scales
The California Undercurrent as a Source of Upwelled Waters in a Coastal Filament
In the California Current System, cross-shore transport of upwelled, nutrient-rich waters from the coastal margin to the open ocean can occur within intermittent, submesoscale-to-mesoscale features such as filaments. Time-varying spatial gradients within filaments affect net cross-shore fluxes of physical, biological, and chemical tracers but require high-resolution measurements to accurately estimate. In June 2017, the California Current Ecosystem Long Term Ecological Research program process cruise (P1706) conducted repeat sections by an autonomous Spray glider and a towed SeaSoar to investigate the role of one such coastal upwelling feature, the Morro Bay filament, which was characterized by enhanced cross-filament gradients (both physical and biological) and an along-filament jet. Within the jet, speeds were up to 0.78 m/s and the offshore transport was 1.5 Sverdrups (3.8 Sverdrups) in the upper 100 m (500 m). A climatological data product from the sustained California Underwater Glider Network provided necessary information for water mass differentiation. The analysis revealed that the cold, salty side of the filament carried recently upwelled California Undercurrent water and corresponded to higher chlorophyll-a fluorescence than the warm, fresh side, which carried California Current water. Thus, there was a convergence of heterogeneous water masses within the core of the filament’s offshore-flowing jet. These water masses have different geographic origins and thermohaline characteristics, which has implications for filament-related cross-shore fluxes and submesoscale-to-mesoscale biological community structure gradients
Recommended from our members