39 research outputs found

    Plasmodium knowlesi Infection in Humans, Cambodia, 2007–2010

    Get PDF
    Two cases of Plasmodium knowlesi infection in humans were identified in Cambodia by 3 molecular detection assays and sequencing. This finding confirms the widespread distribution of P. knowlesi malaria in humans in Southeast Asia. Further wide-scale studies are required to assess the public health relevance of this zoonotic malaria parasite

    Comparative Study of the Sensitivity of Different Diagnostic Methods for the Laboratory Diagnosis of Buruli Ulcer Disease

    Get PDF
    Background. Several diagnostic laboratory methods are available for case confirmation of Buruli ulcer disease. This study assessed the sensitivity of various diagnostic tests in relation to clinical presentation of the disease, type of diagnostic specimen, and treatment history. Methods. Swab samples, 3-mm punch biopsy tissue specimens, and surgically excised tissue specimens from 384 individuals with suspected Buruli ulcer disease were obtained at 9 different study sites in Ghana and were evaluated with dry reagent-based polymerase chain reaction (PCR), microscopic examination, culture, and histopathological analysis. The study subjects presented with nonulcerative and ulcerative lesions and were divided into 3 treatment groups: (1) previously untreated patients scheduled for antimycobacterial treatment, (2) patients treated with surgery alone, and (3) patients treated with surgery in combination with previous antimycobacterial treatment. Results. Of 384 suspected cases of Buruli ulcer disease, 268 were confirmed by at least 1 positive test result. The overall sensitivity of PCR (85%) was significantly higher than that of microscopic examination (57%) and culture (51%). After data were stratified by treatment group, type of lesion, and diagnostic specimen type, analysis revealed that PCR of 3-mm punch biopsy tissue specimens (obtained from previously untreated nonulcerative lesions) and of swab samples (obtained from previously untreated ulcers) had the highest diagnostic sensitivity (94% and 90%, respectively). Although duration of the disease did not significantly influence the sensitivity of any test, previous antimycobacterial treatment was significantly associated with decreased sensitivity of PCR and culture. Conclusions. Across all subgroups, PCR had the highest sensitivity. PCR assessment of 3-mm punch biopsy tissue specimens proved to be the best diagnostic tool for nonulcerative lesions, and PCR assessment of swab samples was the best diagnostic tool for ulcerative lesions. For monitoring of antimycobacterial treatment success within controlled trials, however, only culture is appropriat

    Comparison of different methods for delayed post-mortem diagnosis of falciparum malaria

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Between 10,000 and 12,000 cases of imported malaria are notified in the European Union each year. Despite an excellent health care system, fatalities do occur. In case of advanced autolysis, the post-mortem diagnostic is impaired. Quicker diagnosis could be achieved by using rapid diagnostic malaria tests.</p> <p>Methods</p> <p>In order to evaluate different methods for the post-mortem diagnosis of <it>Plasmodium falciparum </it>malaria in non-immunes, a study was performed on the basis of forensic autopsies of corpses examined at variable intervals after death in five cases of fatal malaria (with an interval of four hours to five days), and in 20 cases of deaths unrelated to malaria. Detection of parasite DNA by PCR and an immunochromatographic test (ICT) based upon the detection of <it>P. falciparum </it>histidine-rich protein 2 (PfHRP2) were compared with the results of microscopic examination of smears from cadaveric blood, histopathological findings, and autopsy results.</p> <p>Results</p> <p>In all cases of fatal malaria, post-mortem findings were unsuspicious for the final diagnosis, and autoptic investigations, including histopathology, were only performed because of additional information by police officers and neighbours. Macroscopic findings during autopsy were unspecific. Histopathology confirmed sequestration of erythrocytes and pigment in macrophages in most organs in four patients (not evaluable in one patient due to autolysis). Microscopy of cadaveric blood smears revealed remnants of intraerythrocytic parasites, and was compromised or impossible due to autolysis in two cases. PCR and ICT performed with cadaveric blood were positive in all malaria patients and negative in all controls.</p> <p>Conclusion</p> <p>In non-immune fatalities with unclear anamnesis, ICT can be recommended as a sensitive and specific tool for post-mortem malaria diagnosis, which is easier and faster than microscopy, and also applicable when microscopic examination is impossible due to autolysis. PCR is more expensive and time-consuming, but may be used as confirmatory test. In highly endemic areas where asymptomatic parasitaemia is common, confirmation of the diagnosis of malaria as the cause of death has to rely on histopathological findings.</p

    Laboratory Confirmation of Buruli Ulcer Disease in Togo, 2007–2010

    Get PDF
    Buruli ulcer disease (BUD) is an emerging disease particularly affecting children under the age of 15 years. Due to scarring and contractures BUD may lead to severe functional disability. Introduction of antimycobacterial treatment necessitated the laboratory confirmation of BUD, and WHO recommends confirmation of at least 50% of patients with suspected BUD by polymerase chain reaction (PCR). In Togo, cases have been reported since the early 1990s. However, less than five percent were laboratory confirmed. Since 2007, the German Leprosy and Tuberculosis Relief Organization (DAHW) has supported the Togolese National Buruli Ulcer Control Program in the area of training, treatment and laboratory confirmation of BUD. In close collaboration of DAHW and the Department for Infectious Diseases and Tropical Medicine, University Hospital, Munich (DITM), diagnostic samples from Togolese patients with suspected BUD were subjected to PCR. Out of 202 suspected BUD cases 109 BUD patients (54%) were PCR confirmed over a period of three years. Whereas the PCR case confirmation rate initially was below 50%, intensified training measures for health staff in the field of clinical diagnosis and collection of diagnostic samples ultimately resulted in 69% PCR confirmed cases. Our findings confirm the prevalence of BUD in Maritime Region

    Temporal and spatial analysis of the 2014-2015 Ebola virus outbreak in West Africa

    Get PDF
    West Africa is currently witnessing the most extensive Ebola virus (EBOV) outbreak so far recorded. Until now, there have been 27,013 reported cases and 11,134 deaths. The origin of the virus is thought to have been a zoonotic transmission from a bat to a two-year-old boy in December 2013 (ref. 2). From this index case the virus was spread by human-to-human contact throughout Guinea, Sierra Leone and Liberia. However, the origin of the particular virus in each country and time of transmission is not known and currently relies on epidemiological analysis, which may be unreliable owing to the difficulties of obtaining patient information. Here we trace the genetic evolution of EBOV in the current outbreak that has resulted in multiple lineages. Deep sequencing of 179 patient samples processed by the European Mobile Laboratory, the first diagnostics unit to be deployed to the epicentre of the outbreak in Guinea, reveals an epidemiological and evolutionary history of the epidemic from March 2014 to January 2015. Analysis of EBOV genome evolution has also benefited from a similar sequencing effort of patient samples from Sierra Leone. Our results confirm that the EBOV from Guinea moved into Sierra Leone, most likely in April or early May. The viruses of the Guinea/Sierra Leone lineage mixed around June/July 2014. Viral sequences covering August, September and October 2014 indicate that this lineage evolved independently within Guinea. These data can be used in conjunction with epidemiological information to test retrospectively the effectiveness of control measures, and provides an unprecedented window into the evolution of an ongoing viral haemorrhagic fever outbreak.status: publishe

    Acute Undifferentiated Febrile Illness in Rural Cambodia: A 3-Year Prospective Observational Study

    Get PDF
    In the past decade, malaria control has been successfully implemented in Cambodia, leading to a substantial decrease in reported cases. Wide-spread use of malaria rapid diagnostic tests (RDTs) has revealed a large burden of malaria-negative fever cases, for which no clinical management guidelines exist at peripheral level health facilities. As a first step towards developing such guidelines, a 3-year cross-sectional prospective observational study was designed to investigate the causes of acute malaria-negative febrile illness in Cambodia. From January 2008 to December 2010, 1193 febrile patients and 282 non-febrile individuals were recruited from three health centers in eastern and western Cambodia. Malaria RDTs and routine clinical examination were performed on site by health center staff. Venous samples and nasopharyngeal throat swabs were collected and analysed by molecular diagnostic tests. Blood cultures and blood smears were also taken from all febrile individuals. Molecular testing was applied for malaria parasites, Leptospira, Rickettsia, O. tsutsugamushi, Dengue-and Influenza virus. At least one pathogen was identified in 73.3% (874/1193) of febrile patient samples. Most frequent pathogens detected were P. vivax (33.4%),P. falciparum (26.5%),pathogenic Leptospira (9.4%),Influenza viruses (8.9%),Dengue viruses (6.3%),O. tsutsugamushi (3.9%),Rickettsia (0.2%),and P. knowlesi (0.1%). In the control group, a potential pathogen was identified in 40.4%,most commonly malaria parasites and Leptospira. Clinic-based diagnosis of malaria RDT-negative cases was poorly predictive for pathogen and appropriate treatment. Additional investigations are needed to understand their impact on clinical disease and epidemiology, and the possible role of therapies such as doxycycline, since many of these pathogens were seen in non-febrile subjects

    Use of Occult Blood Detection Cards for Real-Time PCR-Based Diagnosis of Schistosoma Mansoni Infection.

    Get PDF
    In Schistosoma mansoni infection, diagnosis and control after treatment mainly rely on parasitological stool investigations which are laborious and have limited sensitivity. PCR methods have shown equal or superior sensitivity but preservation and storage methods limit their use in the field. Therefore, the use of occult blood detection cards (fecal cards) for easy sampling and storage of fecal samples for further PCR testing was evaluated in a pilot study.Stool specimens were collected in a highly endemic area for S. mansoni in Ethiopia and submitted in an investigator-blinded fashion to microscopic examination by Kato-Katz thick smear as well as to real-time PCR using either fresh frozen stool samples or stool smears on fecal cards which have been stored at ambient temperature for up to ten months.Out of 55 stool samples, 35 were positive by microscopy, 33 and 32 were positive by PCR of frozen samples and of fecal card samples, respectively. When microscopy was used as diagnostic "gold standard", the sensitivity of PCR on fresh stool was 94.3% (95%-CI: 86.6; 100) and on fecal cards 91.4% (95%-CI: 82.2; 100).The use of fecal cards proved to be a simple and useful method for stool collection and prolonged storage prior to PCR based diagnosis of S. mansoni infection. This technique may be a valuable approach for large scale surveillance and post treatment assessments
    corecore