1,005 research outputs found

    The Carboxylpropeptide of Type I Procollagen in Skin Fibrillogenesis

    Get PDF
    Previous studies suggested that the antinopropeptide of type 1 procollagen may initiate fibril formation. The purpose of this investigation was to study the location of the carboxypropeptide of type 1 procollagen during collagen fibrillogenesis. Chick embryonic and posthatching skin specimens were studied by immunofluorescence and immunoelectron microscopy and by immunoblotting with antibodies against the amino and carboxypropeptide of type 1 procollagen. The carboxylpropeptide was demonstrated at the surface of collagen fibrils, 20–40nm in diameter (10-day embryos) and in fibrils, 40–65nm (21-day embryos). In addition, the carboxylpropeptide was found at the cell surface and free in the ground substance. The aminopropeptide was only seen in fibrils, 20–30nm in diameter, as previously reported. Ratios of pN-collagen/pC-collagen increased from 16 days embryonic to 3 and 9 days postembryonic skins. This study suggests that both pN-collagen (antinopropeptide plus collagen) arid pC-collagen (carboxylpropetide plus collagen) participate in fibrillogenesis

    Immunochemistry of Elastotic Material in Sun-Damaged Skin

    Get PDF
    The nature of elastotic material in sun-damaged human skin was investigated by indirect immunofluorescence. Antibodies were used against the following components of the dermis: type I and type VI collagens, aminopropeptide of type I and type III procollagens, fibronectin, elastin, microfibrillar proteins, and basement membrane represented by the 7S domain of type IV collagen, laminin, and nidogen. The elastotic material exhibited marked fluorescence for elastin and microfibrillar proteins which codistributed with fibronectin. The presence of type I and VI collagens and procollagen type III were demonstrated to a lesser extent within the elastotic material. These results suggest that solar elastosis is primarily derived from elastic fibers and not from preexisting or newly synthesized collagens

    Culturing Keratinocytes and Fibroblasts in a Three-Dimensional Mesh Results in Epidermal Differentiation and Formation of a Basal Lamina-Anchoring Zone

    Get PDF
    The purpose of this study was to characterize an in vitro co-culture model in which fibroblasts grown in a three-dimensional nylon mesh were recombined with human keratinocytes. The cultures were kept for 3 and 5 weeks and then processed for electron microscopy. Keratinocytes showed reconstruction of an epidermis consisting of a basal layer with hemidesmosome's, a stratified epithelium with tonofilament's and desmosomes, a granular layer with keratinosomes and keratohyaline granules, and a transitional stratum corneum. Anchoring filaments, lamina densa, anchoring fibrils, bundles of elastin-associated microfibrils (diameters 10 nm) and fine collagen fibrils were formed. Collagen fibrils near the epidermis were much thinner than those in the lower levels.The present study shows that the dermal model containing metabolically active fibroblasts in their natural environment will support epidermal morphogenesis and differentiation including the formation of a basal lamina and anchoring zone

    Initiation of skin basement membrane formation at the epidermo-dermal interface involves assembly of laminins through binding to cell membrane receptors

    Get PDF
    To study the mechanism of basement membrane formation, we determined by immunochemistry temporal and spatial expression of laminin-5 (Ln-5), laminin-1 (Ln-1) and their integrin receptors during early skin morphogenesis. A 3-dimensional skin culture was used that allows the study of the sequential molecular events of basement membrane formation at the epidermodermal interface. During early anchorage of keratinocytes to the extracellular matrix there is expression of Ln-5, BP-230 antigen and &#945;3, &#946;1 integrin subunits. During epidermal stratification and prior to the formation of the lamina densa there is assembly of Ln-5, Ln-1, collagen IV and nidogen accompanied by keratinocyte basal clustering of &#945;2, &#945;3, &#945;6, &#946;1, and &#946;4 integrin subunits. The assembly pattern of Ln-1 and Ln-5 can be disturbed with functional antibodies against the &#946;1 (AIIB2) and &#945;6 (GoH3) integrin subunits. Ln-1 assembly can also be disturbed with antibodies against its E8 domain and by competitive inhibition with a synthetic peptide (AG-73) derived from its G-4 domain. Quantitative RT-PCR showed that the dermis contributes about 80% of the laminin &#947;1 chain mRNA while 20% is produced by the epidermis which emphasizes its dual tissue origin and the major contribution of the mesenchyma in laminin production. The laminin &#947;2 chain mRNA, present in Ln-5, was mostly of epidermal origin. This study presents evidence that during the initiation of basement membrane formation, laminins bind to keratinocyte plasma membrane receptors and thus may serve as nucleation sites for further polymerization of these compounds by a self-assembly process.</p

    Differential Expression of Lumican and Fibromodulin Regulate Collagen Fibrillogenesis in Developing Mouse Tendons

    Get PDF
    Collagen fibrillogenesis is finely regulated during development of tissue-specific extracellular matrices. The role(s) of a leucine-rich repeat protein subfamily in the regulation of fibrillogenesis during tendon development were defined. Lumican-, fibromodulin-, and double-deficient mice demonstrated disruptions in fibrillogenesis. With development, the amount of lumican decreases to barely detectable levels while fibromodulin increases significantly, and these changing patterns may regulate this process. Electron microscopic analysis demonstrated structural abnormalities in the fibrils and alterations in the progression through different assembly steps. In lumican-deficient tendons, alterations were observed early and the mature tendon was nearly normal. Fibromodulin-deficient tendons were comparable with the lumican-null in early developmental periods and acquired a severe phenotype by maturation. The double-deficient mice had a phenotype that was additive early and comparable with the fibromodulin-deficient mice at maturation. Therefore, lumican and fibromodulin both influence initial assembly of intermediates and the entry into fibril growth, while fibromodulin facilitates the progression through growth steps leading to mature fibrils. The observed increased ratio of fibromodulin to lumican and a competition for the same binding site could mediate these transitions. These studies indicate that lumican and fibromodulin have different developmental stage and leucine-rich repeat protein specific functions in the regulation of fibrillogenesis

    Exploring hypotheses of the actions of TGF-beta 1 in epidermal wound healing using a 3D computational multiscale model of the human epidermis

    Get PDF
    In vivo and in vitro studies give a paradoxical picture of the actions of the key regulatory factor TGF-beta 1 in epidermal wound healing with it stimulating migration of keratinocytes but also inhibiting their proliferation. To try to reconcile these into an easily visualized 3D model of wound healing amenable for experimentation by cell biologists, a multiscale model of the formation of a 3D skin epithelium was established with TGF-beta 1 literature-derived rule sets and equations embedded within it. At the cellular level, an agent-based bottom-up model that focuses on individual interacting units ( keratinocytes) was used. This was based on literature-derived rules governing keratinocyte behavior and keratinocyte/ECM interactions. The selection of these rule sets is described in detail in this paper. The agent-based model was then linked with a subcellular model of TGF-beta 1 production and its action on keratinocytes simulated with a complex pathway simulator. This multiscale model can be run at a cellular level only or at a combined cellular/subcellular level. It was then initially challenged ( by wounding) to investigate the behavior of keratinocytes in wound healing at the cellular level. To investigate the possible actions of TGF-beta 1, several hypotheses were then explored by deliberately manipulating some of these rule sets at subcellular levels. This exercise readily eliminated some hypotheses and identified a sequence of spatial-temporal actions of TGF-beta 1 for normal successful wound healing in an easy-to-follow 3D model. We suggest this multiscale model offers a valuable, easy-to-visualize aid to our understanding of the actions of this key regulator in wound healing, and provides a model that can now be used to explore pathologies of wound healing

    PPAR? Downregulation by TGF in Fibroblast and Impaired Expression and Function in Systemic Sclerosis: A Novel Mechanism for Progressive Fibrogenesis

    Get PDF
    The nuclear orphan receptor peroxisome proliferator-activated receptor-gamma (PPAR-γ) is expressed in multiple cell types in addition to adipocytes. Upon its activation by natural ligands such as fatty acids and eicosanoids, or by synthetic agonists such as rosiglitazone, PPAR-γ regulates adipogenesis, glucose uptake and inflammatory responses. Recent studies establish a novel role for PPAR-γ signaling as an endogenous mechanism for regulating transforming growth factor-ß (TGF-ß)- dependent fibrogenesis. Here, we sought to characterize PPAR-γ function in the prototypic fibrosing disorder systemic sclerosis (SSc), and delineate the factors governing PPAR-γ expression. We report that PPAR-γ levels were markedly diminished in skin and lung biopsies from patients with SSc, and in fibroblasts explanted from the lesional skin. In normal fibroblasts, treatment with TGF-ß resulted in a time- and dose-dependent down-regulation of PPAR-γ expression. Inhibition occurred at the transcriptional level and was mediated via canonical Smad signal transduction. Genome-wide expression profiling of SSc skin biopsies revealed a marked attenuation of PPAR-γ levels and transcriptional activity in a subset of patients with diffuse cutaneous SSc, which was correlated with the presence of a ''TGF-ß responsive gene signature'' in these biopsies. Together, these results demonstrate that the expression and function of PPAR-γ are impaired in SSc, and reveal the existence of a reciprocal inhibitory cross-talk between TGF-ß activation and PPAR-γ signaling in the context of fibrogenesis. In light of the potent anti-fibrotic effects attributed to PPAR-γ, these observations lead us to propose that excessive TGF-ß activity in SSc accounts for impaired PPAR-γ function, which in turn contributes to unchecked fibroblast activation and progressive fibrosis. © 2010 Wei et al

    Connective tissue activation

    Full text link
    Four normal (NF) and 4 scleroderma skin fibro-blast (SF) strains were compared with respect to 1) basal 14 C-glucosamine and 35 SO 4 -labeled glycosaminoglycan (GAG) synthesis, 2) responsiveness to autacoid mediators, and 3) performance following maximal stimulation. Under basal conditions, SF synthesized and secreted 2–3 times more radioactive hyaluronic acid than the NF ( P < 0.001); molecular volume by gel chromatography was similar and suggested a high molecular weight product. SF were essentially as responsive to normal lymphoid and platelet factors as were NF. No consistent qualitative or quantitative differences in sulfated GAG synthesis were noted between the 2 groups of cells. Incubation of NF and SF with a false “core protein” such as p-nitrophenyl-Β-D-xyloside suggested that synthesis of the core protein was rate limiting; SF and NF were equally facile in SO 4 -GAG chain synthesis in the presence of a Β-xyloside. SF appear to retain in vitro a partially activated state for many generations, at least with respect to hyaluronic acid synthesis.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/37761/1/1780261109_ftp.pd
    • …
    corecore