5 research outputs found

    TMEM106B is a genetic modifier of frontotemporal lobar degeneration with C9orf72 hexanucleotide repeat expansions

    Get PDF
    Hexanucleotide repeat expansions in chromosome 9 open reading frame 72 (C9orf72) have recently been linked to frontotemporal lobar degeneration (FTLD) and amyotrophic lateral sclerosis, and may be the most common genetic cause of both neurodegenerative diseases. Genetic variants at TMEM106B influence risk for the most common neuropathological subtype of FTLD, characterized by inclusions of TAR DNA-binding protein of 43 kDa (FTLD-TDP). Previous reports have shown that TMEM106B is a genetic modifier of FTLD-TDP caused by progranulin (GRN) mutations, with the major (risk) allele of rs1990622 associating with earlier age at onset of disease. Here, we report that rs1990622 genotype affects age at death in a single-site discovery cohort of FTLD patients with C9orf72 expansions (n = 14), with the major allele correlated with later age at death (p = 0.024). We replicate this modifier effect in a 30-site international neuropathological cohort of FTLD-TDP patients with C9orf72 expansions (n = 75), again finding that the major allele associates with later age at death (p = 0.016), as well as later age at onset (p = 0.019). In contrast, TMEM106B genotype does not affect age at onset or death in 241 FTLD-TDP cases negative for GRN mutations or C9orf72 expansions. Thus, TMEM106B is a genetic modifier of FTLD with C9orf72 expansions. Intriguingly, the genotype that confers increased risk for developing FTLD-TDP (major, or T, allele of rs1990622) is associated with later age at onset and death in C9orf72 expansion carriers, providing an example of sign epistasis in human neurodegenerative disease

    Effect of angiotensin-converting enzyme inhibitor and angiotensin receptor blocker initiation on organ support-free days in patients hospitalized with COVID-19

    Get PDF
    IMPORTANCE Overactivation of the renin-angiotensin system (RAS) may contribute to poor clinical outcomes in patients with COVID-19. Objective To determine whether angiotensin-converting enzyme (ACE) inhibitor or angiotensin receptor blocker (ARB) initiation improves outcomes in patients hospitalized for COVID-19. DESIGN, SETTING, AND PARTICIPANTS In an ongoing, adaptive platform randomized clinical trial, 721 critically ill and 58 non–critically ill hospitalized adults were randomized to receive an RAS inhibitor or control between March 16, 2021, and February 25, 2022, at 69 sites in 7 countries (final follow-up on June 1, 2022). INTERVENTIONS Patients were randomized to receive open-label initiation of an ACE inhibitor (n = 257), ARB (n = 248), ARB in combination with DMX-200 (a chemokine receptor-2 inhibitor; n = 10), or no RAS inhibitor (control; n = 264) for up to 10 days. MAIN OUTCOMES AND MEASURES The primary outcome was organ support–free days, a composite of hospital survival and days alive without cardiovascular or respiratory organ support through 21 days. The primary analysis was a bayesian cumulative logistic model. Odds ratios (ORs) greater than 1 represent improved outcomes. RESULTS On February 25, 2022, enrollment was discontinued due to safety concerns. Among 679 critically ill patients with available primary outcome data, the median age was 56 years and 239 participants (35.2%) were women. Median (IQR) organ support–free days among critically ill patients was 10 (–1 to 16) in the ACE inhibitor group (n = 231), 8 (–1 to 17) in the ARB group (n = 217), and 12 (0 to 17) in the control group (n = 231) (median adjusted odds ratios of 0.77 [95% bayesian credible interval, 0.58-1.06] for improvement for ACE inhibitor and 0.76 [95% credible interval, 0.56-1.05] for ARB compared with control). The posterior probabilities that ACE inhibitors and ARBs worsened organ support–free days compared with control were 94.9% and 95.4%, respectively. Hospital survival occurred in 166 of 231 critically ill participants (71.9%) in the ACE inhibitor group, 152 of 217 (70.0%) in the ARB group, and 182 of 231 (78.8%) in the control group (posterior probabilities that ACE inhibitor and ARB worsened hospital survival compared with control were 95.3% and 98.1%, respectively). CONCLUSIONS AND RELEVANCE In this trial, among critically ill adults with COVID-19, initiation of an ACE inhibitor or ARB did not improve, and likely worsened, clinical outcomes. TRIAL REGISTRATION ClinicalTrials.gov Identifier: NCT0273570

    Potential genetic modifiers of disease risk and age at onset in patients with frontotemporal lobar degeneration and GRN mutations: a genome-wide association study

    No full text
    BACKGROUND: Loss-of-function mutations in GRN cause frontotemporal lobar degeneration (FTLD). Patients with GRN mutations present with a uniform subtype of TAR DNA-binding protein 43 (TDP-43) pathology at autopsy (FTLD-TDP type A); however, age at onset and clinical presentation are variable, even within families. We aimed to identify potential genetic modifiers of disease onset and disease risk in GRN mutation carriers. METHODS: The study was done in three stages: a discovery stage, a replication stage, and a meta-analysis of the discovery and replication data. In the discovery stage, genome-wide logistic and linear regression analyses were done to test the association of genetic variants with disease risk (case or control status) and age at onset in patients with a GRN mutation and controls free of neurodegenerative disorders. Suggestive loci (p<1 × 10-5) were genotyped in a replication cohort of patients and controls, followed by a meta-analysis. The effect of genome-wide significant variants at the GFRA2 locus on expression of GFRA2 was assessed using mRNA expression studies in cerebellar tissue samples from the Mayo Clinic brain bank. The effect of the GFRA2 locus on progranulin concentrations was studied using previously generated ELISA-based expression data. Co-immunoprecipitation experiments in HEK293T cells were done to test for a direct interaction between GFRA2 and progranulin. FINDINGS: Individuals were enrolled in the current study between Sept 16, 2014, and Oct 5, 2017. After quality control measures, statistical analyses in the discovery stage included 382 unrelated symptomatic GRN mutation carriers and 1146 controls free of neurodegenerative disorders collected from 34 research centres located in the USA, Canada, Australia, and Europe. In the replication stage, 210 patients (67 symptomatic GRN mutation carriers and 143 patients with FTLD without GRN mutations pathologically confirmed as FTLD-TDP type A) and 1798 controls free of neurodegenerative diseases were recruited from 26 sites, 20 of which overlapped with the discovery stage. No genome-wide significant association with age at onset was identified in the discovery or replication stages, or in the meta-analysis. However, in the case-control analysis, we replicated the previously reported TMEM106B association (rs1990622 meta-analysis odds ratio [OR] 0·54, 95% CI 0·46-0·63; p=3·54 × 10-16), and identified a novel genome-wide significant locus at GFRA2 on chromosome 8p21.3 associated with disease risk (rs36196656 meta-analysis OR 1·49, 95% CI 1·30-1·71; p=1·58 × 10-8). Expression analyses showed that the risk-associated allele at rs36196656 decreased GFRA2 mRNA concentrations in cerebellar tissue (p=0·04). No effect of rs36196656 on plasma and CSF progranulin concentrations was detected by ELISA; however, co-immunoprecipitation experiments in HEK293T cells did suggest a direct binding of progranulin and GFRA2. INTERPRETATION: TMEM106B-related and GFRA2-related pathways might be future targets for treatments for FTLD, but the biological interaction between progranulin and these potential disease modifiers requires further study. TMEM106B and GFRA2 might also provide opportunities to select and stratify patients for future clinical trials and, when more is known about their potential effects, to inform genetic counselling, especially for asymptomatic individuals. FUNDING: National Institute on Aging, National Institute of Neurological Disorders and Stroke, Canadian Institutes of Health Research, Italian Ministry of Health, UK National Institute for Health Research, National Health and Medical Research Council of Australia, and the French National Research Agency
    corecore