42 research outputs found

    U-series Disequilibria in Guatemalan Lavas, Crustal Contamination, and Implications for Magma Genesis Along the Central American Subduction Zone

    Get PDF
    New U-series results indicate that Guatemalan volcanic rocks display both 238U and 230Th excesses. 230Th excess is restricted to volcanoes in central Guatemala, both along and behind the front. 230Th excess correlates with a number of incompatible element ratios, such as Th/Nb and Ba/Th. It also shows a negative correlation with MgO. Guatemalan volcanic rocks have (230Th/232Th) ratios that overlap those of Costa Rican volcanics and are therefore considerably lower than the unusually high ratios characterizing volcanic rocks from Nicaragua. Along-arc variations in (230Th/232Th) therefore mirror those of a number of diagnostic geochemical parameters, such as Ba/La, which are symmetrical about a peak in west central Nicaragua. The one siliceous lava analyzed, from the Cerro Quemado dome complex, has a recognizable crustal imprint, distinguished, for instance, by high Th/Nb and low Ba/Th. In mafic samples, 238U excess is attributed to addition of a U-enriched fluid component from the subducting Cocos plate. Our preferred explanation for 230Th excess in Guatemalan mafic samples, on the other hand, is crustal contamination, consistent with the relatively high Th/Nb and low Ba/Th ratios in these samples. We suspect, however, that crustal contamination only exerts a sizable control over the U-series disequilibrium of mafic magmas in Guatemala, and not elsewhere along the Central American volcanic front. This agrees with previously published trace element and isotopic evidence that throughout Central America, with the exception of Guatemala, mafic magmas are largely uncontaminated by crustal material.The work was supported by NSF grant OCE-0405666

    Galapagos-OIB signature in southern Central America: mantle refertilization by arc-hot spot interaction

    Get PDF
    [1] Although most Central American magmas have a typical arc geochemical signature, magmas in southern Central America (central Costa Rica and Panama) have isotopic and trace element compositions with an ocean island basalt (OIB) affinity, similar to the Galapagos-OIB lavas (e.g., Ba/La 10, 206Pb/204Pb > 18.8). Our new data for Costa Rica suggest that this signature, unusual for a convergent margin, has a relatively recent origin (Late Miocene ∼6 Ma). We also show that there was a transition from typical arc magmas (analogous to the modern Nicaraguan volcanic front) to OIB-like magmas similar to the Galapagos hot spot. The geographic distribution of the Galapagos signature in recent lavas from southern Central America is present landward from the subduction of the Galapagos hot spot tracks (the Seamount Province and the Cocos/Coiba Ridge) at the Middle American Trench. The higher Pb isotopic ratios, relatively lower Sr and Nd isotopic ratios, and enriched incompatible-element signature of central Costa Rican magmas can be explained by arc–hot spot interaction. The isotopic ratios of central Costa Rican lavas require the subducting Seamount Province (Northern Galapagos Domain) component, whereas the isotopic ratios of the adakites and alkaline basalts from southern Costa Rica and Panama are in the geochemical range of the subducting Cocos/Coiba Ridge (Central Galapagos Domain). Geological and geochemical evidence collectively indicate that the relatively recent Galapagos-OIB signature in southern Central America represents a geochemical signal from subducting Galapagos hot spot tracks, which started to collide with the margin ∼8 Ma ago. The Galapagos hot spot contribution decreases systematically along the volcanic front from central Costa Rica to NW Nicaragua

    Evidence for Two Numerical Systems That Are Similar in Humans and Guppies

    Get PDF
    Background: Humans and non-human animals share an approximate non-verbal system for representing and comparing numerosities that has no upper limit and for which accuracy is dependent on the numerical ratio. Current evidence indicates that the mechanism for keeping track of individual objects can also be used for numerical purposes; if so, its accuracy will be independent of numerical ratio, but its capacity is limited to the number of items that can be tracked, about four. There is, however, growing controversy as to whether two separate number systems are present in other vertebrate species. Methodology/Principal Findings: In this study, we compared the ability of undergraduate students and guppies to discriminate the same numerical ratios, both within and beyond the small number range. In both students and fish the performance was ratio-independent for the numbers 1–4, while it steadily increased with numerical distance when larger numbers were presented. Conclusions/Significance: Our results suggest that two distinct systems underlie quantity discrimination in both humans and fish, implying that the building blocks of uniquely human mathematical abilities may be evolutionarily ancient, datin

    Rapid helium isotopic variability in Mauna Kea shield lavas from the Hawaiian Scientific Drilling Project

    Get PDF
    Author Posting. © American Geophysical Union, 2004. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geochemistry Geophysics Geosystems 5 (2004): Q04G14, doi:10.1029/2002GC000439.This paper presents new magmatic helium isotopic compositions in a suite of lavas from phase II of the Hawaiian Scientific Drilling Project (HSDP2) core, which sampled Mauna Kea volcano to a maximum depth of 3098 m below sea level. Most of the measurements were performed by in vacuo crushing of olivine phenocrysts, but include submarine pillow glasses from the 2200 to 2500 meter depth interval, and orthopyroxene phenocrysts from an intrusive at 1880 m. The magmatic 3He/4He ratios range from 6 to 24.7 times atmospheric (Ra), which significantly extends the range of values for Mauna Kea volcano. The 3He/4He ratios are lowest (i.e., close to MORB values of ∼8 Ra) near the top of the Mauna Kea section and rise slowly, to 10–12 Ra, at 1000 m below sea level, consistent with results from the HSDP1 core. At depths greater than 1000 m in the core, primarily in the submarine lavas, there are brief periods when the 3He/4He ratios are higher than 14.5 Ra, always returning to a baseline value. Twelve such excursions were identified in the core; all but one are in the submarine section, and most (7) are in the deepest section, at depths of 1950 to 3070 m. The baseline 3He/4He value rises from 10–12 Ra near 1000 m depth to 12–14 Ra at 3000 m. The helium spikes are found only in lavas that are older than 380 Ka in age, based on an age model derived from Ar-Ar data (W. D. Sharp et al., manuscript in preparation, 2003). Excluding the excursions defined by single lava flows (3) and intrusive units (3), the average spike duration is approximately 15 (±9) Ka (n = 6). The high 3He/4He spikes are interpreted as pulses of magma from the center of the actively upwelling Hawaiian hot spot. The short duration of the high 3He/4He excursions suggests that Mauna Kea was never directly over high the 3He/4He component of the plume (during the HSDP2 eruptive period), presumed to be the plume center. Assuming that the Mauna Kea helium spikes result from melting of heterogeneities within the plume, their short duration implies that the length scales of heterogeneities in the solid upwelling mantle are between 60 m and 12 km (for upwelling rates of 2 to 40 cm/yr). The high 3He/4He are associated with high 208Pb/204Pb, and relatively low 143Nd/144Nd, Zr/Nb, and SiO2. The correlations with major elements, trace elements and isotopes demonstrate that helium is coupled to the other geochemical variations, and that the Mauna Kea isotopic variability is caused by heterogeneities within the upwelling plume.This work was supported by EAR/NSF through the Continental Dynamics and Instrumentation and Facilities programs

    Late Eocene-earliest Miocene Sr isotopic reference section of DSDP Site 73-522

    No full text
    We present a revised calibration of Sr isotopes to the geomagnetic polarity timescale (GPTS) using closely spaced (~0.15 m.y. resolution) samples from the classic uppermost Eocene through lowermost Miocene section at Site 522, eastern South Atlantic. The Sr isotopic data are fit with two linear segments with a sharp change in slope at circa 27.5 Ma from 0.000038/m.y. (27.5 to 34.4 Ma) to 0.000051/m.y. (23.8 to 27.5 Ma). Regression analysis indicates that stratigraphic resolution ranges from ±1 m.y. (for one analysis) to ±0.6 m.y. (for three analyses) for the younger interval and ±1.2 m.y. (for one analysis) to ±0.7 m.y. (for three analyses) for the older interval, representing an increase in resolution from previous studies of ±1-2 m.y. The paleoceanographic significance of this change in slope is unclear. It occurs during an interval of intermittent Antarctic glaciation, between the Oi2a and Oi2b glaciations. The subsequent interval from circa 27 to 24 Ma appears to be an interval of minimal glaciation. Thus this observation does not support previous suggestions that increases in rates of Sr isotopic change are directly associated with the frequency of Antarctic glaciations. Rather, the increase in slope may be related to increased weathering associated with the "mid-Oligocene" glaciation
    corecore