119 research outputs found
An experimental study of wall-injected flows in a rectangular cylinder
An experimental investigation of the flow inside a rectangular cylinder with air injected continuously along the wall is performed. This kind of flow is a two-dimensional approximation of what happens inside a solid rocket motor, where the lateral grain burns expelling exhaust gas or in processes with air filtration or devices to attain uniform flows. We propose a brief derivation of some analytical solutions and a comparison between these solutions and experimental data, which are obtained using the Particle Image Velocimetry (PIV) technique, in order to provide a global reconstruction of the flowfield. The flow, which enters orthogonal to the injecting wall, turns suddenly its direction being pushed towards the exit of the chamber. Under the incompressible and inviscid flow hypothesis, two analytical solutions are reported and compared. The first one, known as Hart-McClure solution, is irrotational and the injection velocity is non-perpendicular to the injecting wall. The other one, due to Taylor and Culick, has non-zero vorticity and constant, vertical injection velocity. The comparison with laminar solutions is useful to assess whether transition to turbulence is reached and how the disturbance thrown in by the porous injection influences and modifies those solutions
Smartphone and social network addiction in early adolescents: The role of self-regulatory self-efficacy in a pilot school-based intervention
Background: Youths' online problematic behaviors, such as smartphone or social network sites (SNS) addiction, gained increasing attention nowadays, due to their impact on concurrent and later adjustment, such as emotional and/or behavioral problems, academic impairments, or relational issues. Aims: This study aims to evaluate the effectiveness of a pilot school-based intervention to contrast online addictive behaviors while fostering adolescents' self-regulative abilities. Materials & Methods: The intervention started in January 2022 in an Italian junior high school located in Rome, and consisted of four meetings with students. A total sample of 462 15-year-old adolescents (Mage = 15.2; SD = 0.50; 41% females; Ncontrol = 214; Nintervention = 248) was considered. Within the latent difference score framework, we examined short-term changes from the pre-to-the-postintervention levels of SNS and smartphone addiction, and self-regulatory self-efficacy (SRSE) beliefs as a possible booster of the intervention's effectiveness. Results: Results showed a significant decrease in both online addictions (SNS and smartphone addiction), controlling for age, gender, sexual orientation, and socioeconomic status, because of the short-term efficacy of the project. The buffering effect of SRSE beliefs was further supported. Conclusion: These findings emphasized the usefulness of promoting youths' self-regulative beliefs to contrast problematic tendencies, according to a Positive Youth Development perspective which focused on resources rather than only on the prevention of negative outcomes for youths' adjustment
Well-posedness for degenerate third order equations with delay and applications to inverse problems
[EN] In this paper, we study well-posedness for the following third-order in time equation with delay <disp-formula idoperators defined on a Banach space X with domains D(A) and D(B) such that t)is the state function taking values in X and u(t): (-, 0] X defined as u(t)() = u(t+) for < 0 belongs to an appropriate phase space where F and G are bounded linear operators. Using operator-valued Fourier multiplier techniques we provide optimal conditions for well-posedness of equation (0.1) in periodic Lebesgue-Bochner spaces Lp(T,X), periodic Besov spaces Bp,qs(T,X) and periodic Triebel-Lizorkin spaces Fp,qs(T,X). A novel application to an inverse problem is given.The first, second and third authors have been supported by MEC, grant MTM2016-75963-P. The second author has been supported by AICO/2016/30. The fourth author has been supported by MEC, grant MTM2015-65825-P.Conejero, JA.; Lizama, C.; Murillo-Arcila, M.; Seoane Sepúlveda, JB. (2019). Well-posedness for degenerate third order equations with delay and applications to inverse problems. Israel Journal of Mathematics. 229(1):219-254. https://doi.org/10.1007/s11856-018-1796-8S2192542291K. Abbaoui and Y. Cherruault, New ideas for solving identification and optimal control problems related to biomedical systems, International Journal of Biomedical Computing 36 (1994), 181–186.M. Al Horani and A. Favini, Perturbation method for first- and complete second-order differential equations, Journal of Optimization Theory and Applications 166 (2015), 949–967.H. Amann, Operator-valued Fourier multipliers, vector-valued Besov spaces, and applications, Mathematische Nachrichten 186 (1997), 5–56.U. A. Anufrieva, A degenerate Cauchy problem for a second-order equation. A wellposedness criterion, Differentsial’nye Uravneniya 34 (1998), 1131–1133; English translation: Differential Equations 34 (1999), 1135–1137.W. Arendt and S. Bu, The operator-valued Marcinkiewicz multiplier theorem and maximal regularity, Mathematische Zeitschrift 240 (2002), 311–343.W. Arendt and S. Bu, Operator-valued Fourier multipliers on periodic Besov spaces and applications, Proceedings of the Edinburgh Mathematical Society 47 (2004), 15–33.W. Arendt, C. Batty and S. Bu, Fourier multipliers for Holder continuous functions and maximal regularity, Studia Mathematica 160 (2004), 23–51.V. Barbu and A. Favini, Periodic problems for degenerate differential equations, Rendiconti dell’Istituto di Matematica dell’Università di Trieste 28 (1996), 29–57.A. Bátkai and S. Piazzera, Semigroups for Delay Equations, Research Notes in Mathematics, Vol. 10, A K Peters, Wellesley, MA, 2005.S. Bu, Well-posedness of second order degenerate differential equations in vector-valued function spaces, Studia Mathematica 214 (2013), 1–16.S. Bu and G. Cai, Periodic solutions of third-order degenerate differential equations in vector-valued functional spaces, Israel Journal of Mathematics 212 (2016), 163–188.S. Bu and G. Cai, Well-posedness of second-order degenerate differential equations with finite delay in vector-valued function spaces, Pacific Journal of Mathematics 288 (2017), 27–46.S. Bu and Y. Fang, Periodic solutions of delay equations in Besov spaces and Triebel–Lizorkin spaces, Taiwanese Journal of Mathematics 13 (2009), 1063–1076.S. Bu and J. Kim, Operator-valued Fourier multipliers on periodic Triebel spaces, Acta Mathematica Sinica 21 (2005), 1049–1056.G. Cai and S. Bu, Well-posedness of second order degenerate integro-differential equations with infinite delay in vector-valued function spaces, Mathematische Nachrichten 289 (2016), 436–451.R. Chill and S. Srivastava, Lp-maximal regularity for second order Cauchy problems, Mathematische Zeitschrift 251 (2005), 751–781.R. Denk, M. Hieber and J. Prüss, R-boundedness, Fourier multipliers and problems of elliptic and parabolic type, Memoirs of the American Mathematical Society 166 (2003).O. Diekmann, S. A. van Giles, S. M. Verduyn Lunel and H.-O. Walther, Delay Equations, Applied Mathematical Sciences, Vol. 110, Springer, New York, 1995.K. J. Engel and R. Nagel, One-Parameter Semigroups for Linear Evolution Equations, Graduate Texts in Mathematics, Vol. 194, Springer, New York, 2000.M. Fabrizio, A. Favini and G. Marinoschi, An optimal control problem for a singular system of solid liquid phase-transition, Numerical Functional Analysis and Optimization 31 (2010), 989–1022.A. Favini and G. Marinoschi, Periodic behavior for a degenerate fast diffusion equation, Journal of Mathematical Analysis and Applications 351 (2009), 509–521.A. Favini and G. Marinoschi, Identification of the time derivative coefficients in a fast diffusion degenerate equation, Journal of Optimization Theory and Applications 145 (2010), 249–269.A. Favini and A. Yagi, Degenerate differential equations in Banach spaces, Monographs and Textbooks in Pure and Applied Mathematics, Vol. 215, Marcel Dekker, New York, 1999.X. L. Fu and M. Li, Maximal regularity of second-order evolution equations with infinite delay in Banach spaces, Studia Mathematica 224 (2014), 199–219.G. C. Gorain, Boundary stabilization of nonlinear vibrations of a flexible structure in a bounded domain in Rn, Journal of Mathematical Analysis and Applications 319 (2006), 635–650.P. Grisvard, Équations différentielles abstraites, Annales Scientifiques de l’école Normale Superieure 2 (1969), 311–395.J. K. Hale and W. Huang, Global geometry of the stable regions for two delay differential equations, Journal of Mathematical Analysis and Applications 178 (1993), 344–362.Y. Hino, S. Murakami and T. Naito, Functional Differential Equations with Infinite Delay, Lecture Notes in Mathematics, Vol. 1473, Springer, Berlin, 1991.B. Kaltenbacher, I. Lasiecka and M. Pospieszalska, Well-posedness and exponential decay of the energy in the nonlinear Moore-Gibson-Thomson equation arising in high intensity ultrasound, Mathematical Models & Methods in Applied Sciences 22 (2012), 1250035.V. Keyantuo and C. Lizama, Fourier multipliers and integro-differential equations in Banach spaces, Journal of the London Mathematical Society 69 (2004), 737–750.V. Keyantuo and C. Lizama, Maximal regularity for a class of integro-differential equations with infinite delay in Banach spaces, Studia Mathematica 168 (2005), 25–50.V. Keyantuo, C. Lizama and V. Poblete, Periodic solutions of integro-differential euations in vector-valued function spaces, Journal of Differential Equations 246 (2009), 1007–1037.C. Lizama, Fourier multipliers and periodic solutions of delay equations in Banach spaces, Journal of Mathematical Analysis and Applications 324 (2006), 921–933.C. Lizama and V. Poblete, Maximal regularity of delay equations in Banach spaces, Studia Mathematica 175 (2006), 91–102.C. Lizama and R. Ponce, Periodic solutions of degenerate differential equations in vector valued function spaces, Studia Mathematica 202 (2011), 49–63.C. Lizama and R. Ponce, Maximal regularity for degenerate differential equations with infinite delay in periodic vector-valued function spaces, Proceedings of the Edinburgh Mathematical Society 56 (2013), 853–871.R. Marchand, T. Mcdevitt and R. Triggiani, An abstract semigroup approach to the third-order Moore–Gibson–Thompson partial differential equation arising in highintensity ultrasound: structural decomposition, spectral analysis, exponential stability, Mathematical Methods in the Applied Sciences 35 (2012), 1896–1929.V. Poblete, Solutions of second-order integro-differential equations on periodic Besov spaces, Proceedings of the Edinburgh Mathematical Society 50 (2007), 477–492.V. Poblete and J. C. Pozo, Periodic solutions of an abstract third-order differential equation, Studia Mathematica 215 (2013), 195–219.J. Prüss, Evolutionary Integral Equations and Applications, Monographs in Mathematics, Vol. 87, Birkhäuser, Heidelberg, 1993.G. A. Sviridyuk and V. E. Fedorov, Linear Sobolev type Equations and Degenerate Semigroups of Operators, Inverse and Ill-posed Problems Series, VSP, Utrecht, 2003.L. Weis, Operator-valued Fourier multiplier theorems and maximal Lp-regularity, Mathematische Annalen 319 (2001), 735–758
Internal Ballistics Simulation of a NAWC Tactical SRM
In the design and development of SRMs, the use of numerical tools able to predict the behavior of a given motor is important in order to decrease the planning times and costs. This paper is devoted to present the results of the internal ballistics numerical simulation of the NAWC tactical motor n. 6, from ignition to burn-out, by means of a quasi-one-dimensional unsteady numerical model, SPINBALL, coupled with a three-dimensional grain burnback model, GREG. In particular, the attention is focused on the effects on the SRM behavior of erosive burning, total pressure drops and the cause of the pressure overpeak occurring during the last part of the ignition transient. The numerical simulation shows a very good agreement with the experimental pressure trace. NAWC n. 6 internal ballistic is completely led by erosive burning, which is the root cause of the pressure peak occurring immediately after the SRM start-up
- …