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Abstract
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1 Introduction
The goal of the present paper is to study the nonlocal boundary value problems (BVPs) for
parameter dependent linear differential-operator equations (DOEs) with discontinuous
top-order coefficients,

sa(x)u()(x) +A(x)u(x) + s

A(x)u()(x) +A(x)u(x) + λu(x) = f (x), ()

and the nonlinear equation

a(x)u()(x) + B
(
x,u,u()

)
u(x) = F

(
x,u,u()

)
,

where a is a complex valued function, s is a positive, λ is a complex parameter, and
A = A(x), Ai = Ai(x) are linear and B is a nonlinear operator in a Banach space E. Here,
the principal coefficients a and A may be discontinuous. More precisely, we assume that
a and A(·)A–(x) belong to the operator-valued Sarason class VMO. The Sarason class
VMO was first defined in []. In the recent years, there has been considerable interest in
elliptic and parabolic equations with VMO coefficients. This is mainly due to the fact that
the VMO class contains as a subspace C(�̄) that ensures the extension of Lp-theory of
operators with continuous coefficients to discontinuous coefficients (see, e.g., [–]). On
the other hand, the Sobolev spacesW ,n(�) andW σ , σn (�),  < σ < , are also contained in
VMO. Global regularity of the Dirichlet problem for elliptic equations with VMO coeffi-
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cients has been studied in [–]. We refer to the survey [], where an excellent presenta-
tion and relations with another similar results can be found concerning the regularizing
properties of these operators in the framework of Sobolev spaces.
It is known that many classes of PDEs (partial differential equations), pseudo DEs and

integro DEs can be expressed in the form of DOEs. Many researchers (see, e.g., [–])
investigated similar spaces of functions and classes of PDEs under a singleDOE.Moreover,
the maximal regularity properties of DOEs with continuous coefficients were studied, e.g.,
in [, , ].
Here, the equation with top-order VMO-operator coefficients is considered in abstract

spaces. We shall prove the uniform separability of the problem (), i.e., we show that, for
each f ∈ Lp(, ;E), there exists a unique strong solution u of the problem () and a positive
constant C depending only on p, γ , E and A such that

∑
i=

s
i
 |λ|– i


∥∥u(i)∥∥Lp(,;E) + ‖Au‖Lp(,;E) ≤ C‖f ‖Lp(,;E).

Note that the principal part of a corresponding differential operator is nonselfadjoint.
Nevertheless, the sharp uniform coercive estimate for the resolvent and Fredholmness are
established. Then the existence and uniqueness of the above nonlinear problem is derived.
In application, we study maximal regularity properties of anisotropic elliptic equations in
mixed Lp spaces and the systems (finite or infinite) of differential equations with VMO
coefficients in the scalar Lp space.
Since () involves unbounded operators, it is not easy to get representation for theGreen

function and estimate of solutions. Therefore, we use the modern harmonic analysis el-
ements, e.g., the Hilbert operators and the commutator estimates in E-valued Lp spaces,
embedding theorems of Sobolev-Lions spaces and some semigroups estimates to over-
come these difficulties. Moreover, we also use our previous results on equations with con-
tinuous leading coefficients and the perturbation theory of linear operators to obtain our
main assertions.

2 Notations and background
Throughout the paper, we set E to be a Banach space and � ⊂ Rn. Lp(�;E) denotes the
space of all strongly measurable E-valued functions that are defined on � with the norm

‖f ‖p = ‖f ‖Lp(�;E) =
(∫

�

∥∥f (x)∥∥p
E dx

) 
p
,  ≤ p < ∞.

BMO(E) (bounded mean oscillation) (see [, ]) is the space of all E-valued local inte-
grable functions with the norm

sup
B

∫
B

∥∥f (x) – fB
∥∥
E dx = ‖f ‖∗,E <∞,

where B ranges in the class of the balls in Rn and fB is the average 
|B|

∫
B f (x)dx.

For f ∈ BMO(E) and r > , we set

sup
ρ≤r

∫
B

∥∥f (x) – fB
∥∥
E dx = η(r),

where B ranges in the class of balls with radius ρ .

http://www.fixedpointtheoryandapplications.com/content/2013/1/6
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Wewill say that a function f ∈ BMO(E) is in VMO(E) if limr→+ η(r) = .We will call the
η(r) a VMOmodulus of f .
Note that, if E = C, where C is the set of complex numbers, then BMO(E) and VMO(E)

coincide with the John-Nirenberg class BMO and Sarason class VMO, respectively.
The Banach space E is called a UMD (unconditional martingale difference)-space if the

Hilbert operator

(Hf )(x) = lim
ε→

∫
|x–y|>ε

f (y)
x – y

dy

is bounded in Lp(R,E), p ∈ (,∞) (see, e.g., [, ]).UMD spaces include, e.g., Lp, lp spaces
and Lorentz spaces Lpq, p,q ∈ (,∞).
Let

Sϕ =
{
λ ∈C, | argλ| ≤ ϕ

} ∪ {},  ≤ ϕ < π .

A linear operator A is said to be a ϕ-positive (or positive) in a Banach space E with the
boundM >  if D(A) is dense on E and

∥∥(A + λI)–
∥∥
L(E) ≤ M

(
 + |λ|)–

for λ ∈ Sϕ , ϕ ∈ (,π ], I is an identity operator in E and L(E) is the space of bounded linear
operators in E. Sometimes instead of A+ λI , it will be written as A+ λ and denoted by Aλ.
It is known [, §..] that there exist fractional powers Aθ of the positive operator A.
Let E(Aθ ) denote the space D(Aθ ) with the graphical norm

‖u‖E(Aθ ) =
(‖u‖p + ∥∥Aθu

∥∥p) 
p ,  ≤ p < ∞, –∞ < θ < ∞.

Let E and E be two Banach spaces. A set W ⊂ L(E,E) is called R-bounded (see
[, ]) if there is a positive constant C such that for all T,T, . . . ,Tm ∈ W and
u,u, . . . ,um ∈ E,m ∈N

∫ 



∥∥∥∥∥
m∑
j=

rj(y)Tjuj

∥∥∥∥∥
E

dy≤ C
∫ 



∥∥∥∥∥
m∑
j=

rj(y)uj

∥∥∥∥∥
E

dy,

where {rj} is a sequence of independent symmetric {–, }-valued random variables on
[, ].
Let S(Rn;E) denote the Schwarz class, i.e., the space of all E-valued rapidly decreas-

ing smooth functions on Rn. Let F denote the Fourier transformation. A function � ∈
L∞(Rn;B(E,E)) is called a Fourier multiplier from Lp(Rn;E) to Lp(Rn;E) if the map
u → �u = F–�(ξ )Fu, u ∈ S(Rn;E) is well defined and extends to a bounded linear op-
erator

� : Lp
(
Rn;E

) → Lp
(
Rn;E

)
.

The set of all multipliers from Lp(Rn;E) to Lp(Rn;E) will be denoted by Mp
p(E,E). For

E = E = E, it will be denoted byMp
p(E).

http://www.fixedpointtheoryandapplications.com/content/2013/1/6
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Let

Un =
{
β = (β,β, . . . ,βn) ∈Nn : βk ∈ {, }}.

Definition  A Banach space E is said to be a space satisfying the multiplier condition
if, for any � ∈ C(n)(Rn;L(E)), the R-boundedness of the set {ξβDβ

ξ �(ξ ) : ξ ∈ Rn\,β ∈Un}
implies that � is a Fourier multiplier in Lp(Rn;E), i.e., � ∈Mp

p(E) for any p ∈ (,∞).

Definition  The ϕ-positive operator A is said to be an R-positive in a Banach space E if
there exists ϕ ∈ [,π ) such that the set LA = {A(A + λ)– : λ ∈ Sϕ} is R-bounded.
A linear operator A(x) is said to be positive in E uniformly in x ifD(A(x)) is independent

of x, D(A(x)) is dense in E and

∥∥(
A(x) + λ

)–∥∥ ≤ M
(
 + |λ|)–

for all λ ∈ S(ϕ), ϕ ∈ [,π ).

Let σ∞(E,E) denote the space of all compact operators from E to E. For E = E = E,
it is denoted by σ∞(E).
Assume E and E are two Banach spaces and E is continuously and densely embedded

into E. Letm be a natural number.Wm,p(�;E,E) (the so-called Sobolev-Lions type space)
denotes a space of all functions u ∈ Lp(�;E) possessing the generalized derivativesDm

k u =
∂mu
∂xmk

such that Dm
k u ∈ Lp(�;E) endowed with the norm

‖u‖Wm,p(�;E,E) = ‖u‖Lp(�;E) +
n∑
k=

∥∥Dm
k u

∥∥
Lp(�;E) <∞.

For E = E, the spaceWm,p(�;E,E) will be denoted byWm,p(�;E). It is clear that

Wm,p(�;E,E) =Wm,p(�;E)∩ Lp(�;E).

Let s be a positive parameter. We define in Wm,p(�;E,E) the following parameter-
dependent norm:

‖u‖Wm,p
s (�;E,E) = ‖u‖Lp(�;E) +

n∑
k=

∥∥sDm
k u

∥∥
Lp(�;E).

The space Bs
p,p(�;E,E) is defined as a trace space for Wm,p(�;E,E) as in a scalar case

(see, e.g., [, §..]).
Function u ∈ W ,p(, ;E(A),E,Lk) = {u ∈ W ,p(, ;E(A),E),Lku = } satisfying the

equation () a.e. on (, ) is said to be a solution of the problem () on (, ).
From [] we have

Theorem A Suppose the following conditions are satisfied:
() E is a Banach space satisfying the multiplier condition with respect to p ∈ (,∞) and

A is an R-positive operator in E;

http://www.fixedpointtheoryandapplications.com/content/2013/1/6
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() α = (α,α, . . . ,αn) are n tuples of nonnegative integer numbers such that κ = |α|
m ≤ 

and  < μ ≤  –κ;
() � ∈ Rn is a region such that there exists a bounded linear extension operator from

Wm,p(�;E(A),E) toWm,p(Rn;E(A),E).
Then the embedding

DαWm,p(�;E(A),E
) ⊂ Lp

(
�;E

(
A–κ–μ

))
is continuous and there exists a positive constant Cμ such that

s
|α|
m

∥∥Dαu
∥∥
Lp(�;E(A–κ–μ)) ≤ Cμ

[
hμ‖u‖Wm,p

s (�;E(A),E) + h–(–μ)‖u‖Lp(�;E)
]

for all u ∈Wm,p(�;E(A),E) and  < h≤ h <∞.

Theorem A Suppose all the conditions of Theorem A are satisfied. Assume � is a
bounded region in Rn and A– ∈ σ∞(E). Then, for  < μ ≤  –κ, the embedding

DαWm,p(�;E(A),E
) ⊂ Lp

(
�;E

(
A–κ–μ

))
is compact.

In a similar way as in [, Theorem .], we have the following result.

LemmaA Let E be a Banach space and f ∈ VMO(E). The following conditions are equiv-
alent:
() f ∈ VMO(E);
() f is in the BMO closure of the set of uniformly continuous functions which belong to

VMO;
() limy→ ‖f (x – y) – f (x)‖∗,E = .
For f ∈ Lp(�;E), p ∈ (,∞), a ∈ L∞(Rn), consider the commutator operator

H[a, f ](x) = a(x)Hf (x) –H(af )(x) = lim
ε→

∫
|x–y|>ε,

[a(x) – a(y)]
x – y

f (y)dy.

From [, Theorem ] and [, Corollary .], we have

Theorem A Let E be a UMD space and a ∈ VMO ∩ L∞(Rn). Then H[a, f ] is a bounded
operator in Lp(R;E), p ∈ (,∞).

From Theorem A and the property () of Lemma A we obtain, respectively, the fol-
lowing.

Theorem A Assume all the conditions of Theorem A are satisfied. Also, let a ∈ VMO∩
L∞(Rn) and let η be the VMO modulus of a. Then, for any ε > , there exists a positive
number δ = δ(ε,η) such that

∥∥H[a, f ]
∥∥
Lp(,r;E) ≤ Mε‖f ‖Lp(,r;E), r ∈ (, δ).

http://www.fixedpointtheoryandapplications.com/content/2013/1/6
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Theorem A Let E be a UMD space and A(·) uniformly R-positive in E. Moreover, let
A(·)A–(x) ∈ L∞(R;L(E))∩ BMO(L(E)), x ∈ R. Then the commutator operator

H[A, f ](x) = A(x)A–(x)Hf (x) –H
(
A(x)A–(x)f

)
(x)

= lim
ε→

∫
|x–y|>ε,

[A(x)A–(x) –A(y)A–(x)]
x – y

f (y)dy

is bounded in Lp(R;E), p ∈ (,∞).

TheoremA Assume all the conditions of TheoremA are satisfied and η is a VMOmod-
ulus of A(·)A–(x).
Then, for any ε > , there exists a positive number δ = δ(ε,η) such that

∥∥H[A, f ]
∥∥
Lp(�r ;E)

≤ Mε‖f ‖Lp(�r ;E), r ∈ (, δ).

Consider the nonlocal BVP for a parameter dependent DOE with constant coefficients

(L + λ)u = sau()(x) + (A + λ)u(x) = f (x), x ∈ (, ),

Lku =
mk∑
i=

sμi
[
αkiu(i)() + βkiu(i)()

]
= fk , k = , , ()

where mk ∈ {, }, a, αki, βki are complex numbers, s is a positive parameter, λ is a complex
spectral parameter, μi = i

 +

p , θk =

mk
 + 

p , Aλ = A + λ and A is a linear operator in E.
Let ω, ω be roots of the equation aω +  =  and let

αk = αkmk , βk = βkmk , μ =

∣∣∣∣∣(–ω)mα βω
m


(–ω)mα βω
m


∣∣∣∣∣ .

It is known that if the operator A is ϕ-positive in E, then operators ωkA


λ , k = ,  generate

analytic semigroups

Uλs(x) = eωs
– 
 A



λ x, Uλs(x) = e–ωs

– 
 A



λ (–x) for λ ∈ S(ϕ).

Let

Ek =
(
E(A),E

)
θk ,p

.

From [, Theorem ] and [, Theorem .], we obtain

Theorem A Assume the following conditions are satisfied:
() E is a Banach space satisfying the multiplier condition with respect to p ∈ (,∞);
() A is an R-positive operator in E for  ≤ ϕ < π and μ �= ;
() Reωk �=  and λ

ωk
∈ S(ϕ) for λ ∈ S(ϕ), k = , .

http://www.fixedpointtheoryandapplications.com/content/2013/1/6
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Then
() for f ∈ Lp(, ;E), fk ∈ Ek , λ ∈ S(ϕ) and for sufficiently large |λ|, the problem () has a

unique solution u ∈W ,p(, ;E(A),E).Moreover, the coercive uniform estimate holds

∑
i=

s
i
 |λ|– i


∥∥u(i)∥∥Lp(,;E) + ‖Au‖Lp(,;E) ≤ C

[
‖f ‖Lp(,;E) +

∑
k=

‖fk‖Ek
]
.

() For fk = , the solution is represented as

u(x) =
∫ 


Gλs(x, y)f (y)dy, ()

Gλs(x, y) =
∑

i,j=

m∑
k=

[
Bij(λ)

(
s–Aλ

)– 
 (+mi–k–)Ujλs(x)Uλs( – y)

]

+
∑

i,j=

m∑
k=

[
Dij(λ)A

– 
 (+mi–k–)

λ Ujλs(x)Uλs(y)
]
+Uλs(x – y),

where Bij(λ) and Dij(λ) are uniformly bounded operators in E and

Uλs(x – y) =

⎧⎨
⎩a–s 

A– 


λ Uλs(x – y), x ≥ y,

–a–s 
A– 


λ Uλs(x – y), x ≤ y.

Consider the BVP for a DOE with variable coefficients

sa(x)u()(x) +
(
A(x) + λ

)
u(x) = f (x), x ∈ (, ),

Lku =
mk∑
i=

sθk
[
αkiu(i)() + βkiu(i)()

]
= , k = , , ()

where a = a(x) is a complex valued function, s is a positive parameter, mk ∈ {, }, αki, βki

are complex numbers, λ is a spectral parameter, θk = mk
 + 

p and A(x) is a linear operator
in E.
Let ω = ω(x), ω = ω(x) be roots of the equation a(x)ω +  =  and let

αk = αkmk , βk = βkmk , μ(x) =

∣∣∣∣∣(–ω)mα βω
m


(–ω)mα βω
m


∣∣∣∣∣ .
In the next theorem, let us consider the case that principal coefficients are continuous.

The well-posedness of this problem occurs in the studying of equations with VMO coef-
ficients. From [, Theorem ] and [, Theorem .], we get

Theorem A Suppose the following conditions are satisfied:
() E is a Banach space satisfying the multiplier condition with respect to p ∈ (,∞);
() a ∈ C[, ], –a ∈ S(ϕ), a() = a(), and μ(x) �=  for a.e. x ∈ [, ];
() Reωk(x) �=  and λ

ωk
∈ S(ϕ) for λ ∈ S(ϕ), k = , . a.e. x ∈ [, ];

() A(x) is a uniformly R-positive operator in E and

A(·)A–(x) ∈ C
(
[, ];L(E)

)
, x ∈ (, ),A() = A().

http://www.fixedpointtheoryandapplications.com/content/2013/1/6
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Then, for all f ∈ Lp(, ;E), λ ∈ S(ϕ) and for sufficiently large |λ|, there is a unique solution
u ∈ W ,p(, ;E(A),E) of the problem ().Moreover, the following coercive uniform estimate
holds:

∑
i=

s
i
 |λ|– i


∥∥u(i)∥∥Lp(,;E) + ‖Au‖Lp(,;E) ≤ C‖f ‖Lp(,;E).

3 DOEs with VMO coefficients
Consider the principal part of the problem ()

(L + λ)u = sa(x)u()(x) +
(
A(x) + λ

)
u(x) = f (x), x ∈ (, ),

Lku =
mk∑
i=

sμi
[
αkiu(i)() + βkiu(i)()

]
= , k = , . ()

Condition  Assume the following conditions are satisfied:
() E is a UMD space, p ∈ (,∞);
() a ∈ VMO∩ L∞(R), η is a VMOmodulus of a, –a ∈ S(ϕ), μ(x) �= ;
() Reωk(x) �=  and λ

ωk
∈ S(ϕ) for λ ∈ S(ϕ),  ≤ ϕ < π , k = , . a.e. x ∈ [, ];

() A(x) is a uniformly R-positive operator in E and

A(·)A–(x) ∈ L∞
(
, ;L(E)

) ∩VMO
(
L(E)

)
, x ∈ (, );

() a() = a(), A() = A() and η is a VMO modulus of A(·)A–(x).

First, we obtain an integral representation formula for solutions.

Lemma  Let Condition  hold and f ∈ Lp(, ;E). Then, for all solutions u of the problem
() belonging to W ,p(, ;E(A),E), we have

u(i)(x) =
∫ 


�iλs(x,x – y)

{[
a(x) – a(y)

]
u()(y)

+
[
A(x) –A(y)

]
u(y) + f (y)

}
dy + f (x), ()

A(x)u(x) =
∫ 


�′
λs(x,x – y)

{[
a(x) – a(y)

]
u()(y)

+
[
A(x) –A(y)

]
u(y) + f (y)

}
dy + f (x),

where

�
′
iλs(x,x – y) =

∑
i,j=

m∑
k=

[
B′
ij(λ)

(
s–Aλ

)– 
 (+mk–k–i–)Ujλs(x)Uλs( – y)

]

+
∑

i,j=

m∑
k=

[
D′

ij(λ)
(
s–Aλ

)– 
 (+mk–k–i–)Ujλs(x)Uλs(y)

]

+U ′
νλs(x – y), ν = , , ,

http://www.fixedpointtheoryandapplications.com/content/2013/1/6
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here B′
ij(λ), D′

ij(λ) are uniformly bounded operators,

U ′
νλs(x – y) =

⎧⎨
⎩ωi

a–s(–ν)/A–(–ν)/
λ Uλs(x – y), x ≥ y,

–ωi
a–s(–ν)/A–(–ν)/

λ Uλs(x – y), x ≤ y,

and the expression �′
λ(x,x – y) is a scalar multiple of �λ(x,x – y).

Proof Consider the problem () for a(x) = a(x) and A(x) = A(x), i.e.,

(L + λ)u = sa(x)u()(x) +
(
A(x) + λ

)
u(x) = f (x), x ∈ (, ),

Lku =
mk∑
i=

sμi
[
αkiu(i)() + βkiu(i)()

]
= , k = , . ()

Let u ∈ C()([, ];E(A)) be a solution of the problem (). Taking into account the equality
Lu = (L – L)u + Lu and Theorem A, we get

u(i)(x) =
∫ 


�iλs(x,x – y)

{[
a(x) – a(y)

]
u()(y)

+
[
A(x) –A(y)

]
u(y) + f (y)

}
dy + f (x),

A(x)u(x) =
∫ 


�′
λs(x,x – y)

{[
a(x) – a(y)

]
u()(y)

+
[
A(x) –A(y)

]
u(y) + f (y)

}
dy + f (x).

Setting x = x in above, we get () for u ∈ C()([, ];E(A)). Then the density argument,
using Theorem A, gives the conclusion for

u ∈W ,p(, ;E(A),E)
, Lku = .

Consider the problem () on (,b), i.e.,

(Lb + λ)u = sa(x)u()(x) +
(
A(x) + λ

)
u(x) = f (x), x ∈ (,b),

Lbku =
mk∑
i=

sμi
[
αkiu(i)() + βkiu(i)(b)

]
= , k = , . ()

�

Theorem  Suppose Condition  is satisfied. Then there exists a number b ∈ (, ) such
that the uniform coercive estimate

∑
i=

s
i
 |λ|– i


∥∥u(i)∥∥Lp(,b;E) + ‖Au‖Lp(,b;E) ≤ C

∥∥(Lb + λ)u
∥∥
Lp(,b;E) ()

holds for large enough |λ| and u ∈W ,p(,b;E(A),E), Lbku = , λ ∈ S(ϕ), where C is a posi-
tive constant depending only on p,M, η, η.

http://www.fixedpointtheoryandapplications.com/content/2013/1/6
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Proof By Lemma , for any solution u ∈W ,p(,b;E(A),E) of the problem (), we have

u(i)(x) =
∫ b


�ibλs(x,x – y)

{[
a(x) – a(y)

]
u()(y)

+
[
A(x) –A(y)

]
u(y) + f (y)

}
dy + f (x), ()

where

�ibλs(x,x – y) =
∑

i,j=

m∑
k=

[
B′
ij(λ)

(
s–Aλ

)– 
 (+mk–k–i–)Ujλ(x)Uλ(b – y)

]

+
∑

i,j=

m∑
k=

[
D′

ij(λ)
(
s–Aλ

)– 
 (+mk–k–i–)Ujλ(x)Uλ(y)

]

+U ′
νλs(x – y), ν = , , , ()

here B′
ij(λ), D′

ij(λ) are uniformly bounded operators,

Uλ(x) = eωs
– 
 A



λ x, Uλ(x) = e–ωs

– 
 A



λ (b–x)

and

U ′
νλs(x – y) =

⎧⎨
⎩ωi

a–s(–ν)/A–(–ν)/
λ Uλs(x – y), x ≥ y,

–ωi
a–s(–ν)/A–(–ν)/

λ Uλs(x – y), x ≤ y,
ν = , , .

Moreover, from () and (), clearly, we get

Au(x) =
∫ b


�′
bλs(x,x – y)

{[
a(x) – a(y)

]
u()(y) +

[
A(x) –A(y)

]
u(y) + f (y)

}
dy, ()

where the expression �′
bλ(x,x – y) differs from �bλ(x,x – y) only by a constant.

Consider the operators

Bλf =
∫ 


Gbλs(x, y)f (y)dy, Biλsf =

∫ b


�ibλs(x,x – y)f (y)dy,

Siλu =
∫ b


�ibλ(x,x – y)

[
a(x) – a(y)

]
u()(y)dy,

Diλsu =
∫ b


�ibλs(x,x – y)

[
A(x) –A(y)

]
u(y)dy, i = , , ,

�λsu =
∫ b


�′
bλs(x,x – y)

[
a(x) – a(y)

]
u()(y)dy,

�λu =
∫ b


�′
bλ(x,x – y)

[
A(x) –A(y)

]
u(y)dy.

Since the operators Bλ and Bλ are regular on Lp(,b;E), by using the positivity proper-
ties of A and the analyticity of semigroups Ukλ(x) in a similar way as in [, Theorem .],

http://www.fixedpointtheoryandapplications.com/content/2013/1/6
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we get

‖Biλf ‖Lp(,b;E) ≤ M|λ|– –i
 ‖f ‖Lp(,b;E), i = , . ()

Since the Hilbert operator is bounded in Lp(R;E) for a UMD space E, we have

‖Bλf ‖Lp(,b;E) ≤ M‖f ‖Lp(,b;E). ()

Thus, by virtue of Theorems A, A and in view of ()-() for any ε > , there exists a
positive number b = b(ε,η,η) such that

‖Siλu‖Lp(,b;E) ≤ Mε|λ|– –i


∥∥u()∥∥Lp(,b;E),

‖Diλu‖Lp(,b;E) ≤ Mε|λ|– –i


∥∥A(x)u∥∥
Lp(,b;E), i = , , , ()

‖�λu‖Lp(,b;E) ≤ Mε
∥∥u()∥∥Lp(,b;E), ‖�λu‖Lp(,b;E) ≤ Mε

∥∥A(x)u∥∥
Lp(,b;E).

Hence, the estimates ()-() imply (). �

Theorem AssumeCondition  holds.Let u ∈W ,p(, ;E(A),E) be a solution of ().Then,
for sufficiently large |λ|, λ ∈ S(ϕ), the following coercive uniform estimate holds:

∑
i=

s
i
 |λ|– i


∥∥u(i)∥∥Lp(,;E) + ‖Au‖Lp(,;E) ≤ C

[∥∥(L + λ)u
∥∥
Lp(,;E) + ‖u‖Lp(,;E)

]
. ()

Proof This fact is shown by a covering and flattening argument, in a similar way as in
Theorem A. Particularly, by partition of unity, the problem is localized. Choosing diam-
eters of supports for corresponding finite functions, by using Theorem , Theorems A,
A, A and embedding Theorem A (see the same technique for DOEs with continuous
coefficients [, ]), we obtain the assertion.
Let Qs denote the operator in Lp(, ;E) generated by the problem () for λ = , i.e.,

D(Qs) =W ,p(, ;E(A),E,Lk), Qsu = sa(x)u() +A(x)u. �

Theorem  Assume Condition  holds. Then, for all f ∈ Lp(, ;E), λ ∈ S(ϕ) and for large
enough |λ|, the problem () has a unique solution u ∈W ,p(, ;E(A),E).Moreover, the fol-
lowing coercive uniform estimate holds:

∑
i=

s
i
 |λ|– i


∥∥u(i)∥∥Lp(,;E) + ‖Au‖Lp(,;E) ≤ C‖f ‖Lp(,;E). ()

Proof First, let us show that the operator Q + λ has a left inverse. Really, it is clear that

‖u‖Lp(,;E) = 
|λ|

[∥∥(Qs + λ)u
∥∥
Lp(,;E) + ‖Qsu‖Lp(,;E)

]
.

By Theorem A for u ∈W ,p(, ;E(A),E), we have

‖Qsu‖Lp(,;E) ≤ C‖u‖W,p
s (,;E(A),E).

http://www.fixedpointtheoryandapplications.com/content/2013/1/6
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Then, by virtue of () and in view of the above relations, we infer, for all u ∈ W ,p(, ;
E(A),E) and sufficiently large |λ|, that there is a small ε and C(ε) such that

∑
i=

s
i
 |λ|– i


∥∥u(i)∥∥Lp(,;E) + ‖Au‖Lp(,;E)

≤ C
[∥∥(Qs + λ)u

∥∥
Lp(,;E) + ε‖u‖W,p(,;E(A),E) +C(ε)

∥∥(Qs + λ)u
∥∥
Lp(,;E)

]
. ()

From the estimate () for u ∈W ,p(, ;E(A),E), we get

∑
i=

s
i
 |λ|– i


∥∥u(i)∥∥Lp(,;E) + ‖Au‖Lp(,;E) ≤ C

∥∥(Q + λ)u
∥∥
Lp(,;E). ()

The estimate () implies that () has a unique solution and the operator Qs + λ has a
bounded inverse in its rank space. We need to show the rank space coincides with all
the space Lp(, ;E). It suffices to prove that there is a solution u ∈ W ,p(, ;E(A),E) for
all f ∈ Lp(, ;E). This fact can be derived in a standard way, approximating the equa-
tion with a similar one with smooth coefficients [, ]. More precisely, by virtue of
[, Theorem .], UMD spaces satisfy the multiplier condition. Moreover, by the part
() of Lemma A, given a ∈ VMO with VMO modules η(r), we can find a sequence
of mollifiers functions {ah} converging to a in BMO as h →  with a VMO modulus
ηh such that ηh(r) ≤ η(r). In a similar way, it can be derived for the operator function
A(x)A–(x) ∈ VMO(L(E)). �

Result  Theorem  implies that the resolvent (Qs +λ)– satisfies the following sharp uni-
form estimate:

∑
i=

s
i
 |λ|– i



∥∥∥∥ di

dxi
(Qs + λ)–

∥∥∥∥
L(Lp(,;E))

+
∥∥A(Qs + λ)–

∥∥
L(Lp(,;E)) ≤ C ()

for | argλ| ≤ ϕ, ϕ ∈ (,π ) and s > .
The estimate () particularly implies that the operator Q is uniformly positive in

Lp(, ;E) and generates analytic semigroups for ϕ ∈ (π
 ,π ) (see, e.g., [, §..]).

Remark  Conditions a() = a(), A() = A() arise due to nonlocality of the boundary
conditions (). If the boundary conditions are local, then the conditions mentioned above
are not required any more.

Consider the problem (), where Lku is the same boundary condition as in (). Let Os

denote a differential operator generated by the problem (). We will show the separability
and Fredholmness of ().

Theorem  Assume
() Condition  holds;
() for any ε > , there is C(ε) >  such that for a.e. x ∈ (, ) and for  < ν < ,  < ν < 

 ,

∥∥A(x)u
∥∥
E ≤ ε‖Au‖E +C(ε)‖u‖E , u ∈ E(A),∥∥A(x)u

∥∥
E ≤ ε‖u‖(E(A),E) 

 ,∞
+C(ε)‖u‖, u ∈ (

E(A),E
)

 ,∞.

http://www.fixedpointtheoryandapplications.com/content/2013/1/6


Shakhmurov Fixed Point Theory and Applications 2013, 2013:6 Page 13 of 21
http://www.fixedpointtheoryandapplications.com/content/2013/1/6

Then, for all f ∈ Lp(, ;E) and for large enough |λ|, λ ∈ S(ϕ), there is a unique solution
u ∈ W ,p(, ;E(A),E) of the problem () and the following coercive uniform estimate holds:

∑
i=

s
i
 |λ|– i


∥∥u(i)∥∥Lp(,;E) + ‖Au‖Lp(,;E) ≤ C‖f ‖Lp(,;E). ()

Proof It is sufficient to show that the operator Os + λ has a bounded inverse (Os + λ)–

from Lp(, ;E) toW ,p(, ;E(A),E). Put Osu =Qsu +Qu, where

Qu = s

Au() +Au,u ∈W ,p(, ;E(A),E,Lk).

By the second assumption and Theorem A, there is a small ε and C(ε) such that

‖Au‖Lp(,;E) ≤ C
∥∥A–νu

∥∥
Lp(,;E)

≤ ε‖u‖W,p
s (,;E(A),E) +C(ε)‖u‖Lp(,;E),∥∥s 

Au()
∥∥
Lp(,;E) ≤ C

∥∥s 
A


 –νu

∥∥
Lp(,;E)

≤ ε‖u‖W,p
s (,;E(A),E) +C(ε)‖u‖Lp(,;E).

()

In view of estimates () and (), we have

‖Au‖Lp(,;E) < δ‖Qsu‖Lp(,;E),∥∥s 
Au()

∥∥
Lp(,;E) < δ‖Qsu‖Lp(,;E)

()

for u ∈ W ,p(, ;E(A),E) and δk < . By Theorem , the operator Qs + λ has a bounded
inverse (Qs + λ)– from Lp(, ;E) to W ,p(, ;E(A),E) for sufficiently large |λ|. So, ()
implies the following uniform estimate:

∥∥Q(Qs + λ)–
∥∥
L(Lp(,;E)) < .

It is clear that

(Os + λ) =
[
I +Q(Qs + λ)–

]
(Qs + λ),

(Os + λ)– = (Q + λ)–
[
I +Q(Qs + λ)–

]–.
Then, by above relation and by virtue of Theorem , we get the assertion. �

Theorem  implies the following result.

Result  Suppose all the conditions of Theorem  are satisfied. Then the resolvent (Os +
λ)– of the operator Os satisfies the following sharp uniform estimate:

∑
i=

s
i
 |λ|– i



∥∥∥∥ di

dxi
(Os + λ)–

∥∥∥∥
L(Lp(,;E))

+
∥∥A(Os + λ)–

∥∥
L(Lp(,;E)) ≤ C

for | argλ| ≤ ϕ, ϕ ∈ [,π ) and s > .
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Consider the problem () for λ = , i.e.,

Lu = sa(x)u()(x) +A(x)u(x) +A(x)u() +A(x)u = f (x), x ∈ (, ),

Lku =
mk∑
i=

sμi
[
αkiu(i)() + βkiu(i)()

]
= , k = , . ()

Theorem  Assume all the conditions of Theorem  hold and A– ∈ σ∞(E).Then the prob-
lem () is Fredholm from W ,p(, ;E(A),E) into Lp(, ;E).

Proof Theorem  implies that the operator Os + λ has a bounded inverse (Os + λ)– from
Lp(, ;E) toW ,p(, ;E(A),E) for large enough |λ|; that is, the operatorOs+λ is Fredholm
fromW ,p(, ;E(A),E) into Lp(, ;E). Then, by virtue of TheoremA and by perturbation
theory of linear operators, we obtain the assertion. �

4 Nonlinear DOEs with VMO coefficients
Let, at first, consider the linear BVP in a moving domain (,b(s)),

a(x)u()(x) +A(x)u(x) +A(x)u()(x) +A(x)u(x) = f (x), ()

Lju =
mj∑
i=

[
αjiu(i)() + βjiu(i)(b)

]
= , j = , ,

where a is a complex valued function, and A = A(x), Ai = Ai(x) are possible operators in a
Banach space E, where b(s) is a positive continuous independent of u.
Theorem  implies the following result.

Result  Let all the conditions of Theorem  be satisfied. Then the problem (), for
f ∈ Lp(,b(s);E), p ∈ (,∞), λ ∈ Sϕ and for large enough |λ|, has a unique solution u ∈
W ,p(,b;E(A),E) and the following coercive uniform estimate holds:

∑
i=

|λ|– i

∥∥u(i)∥∥Lp(,b;E) + ‖Au‖Lp(,b;E) ≤ ‖f ‖Lp(,b;E).

Proof Really, under the substitution τ = xb(s), the moving boundary problem () maps
to the following BVP with a parameter in a fixed domain (, ):

b–(s)ã(τ )u()(τ ) + (Ã + λ)u(τ ) + b–(s)Ã(τ )u()(τ ) + Ã(τ )u(τ ) = f (τ ),
mj∑
i=

b–i(s)
[
αjiu(i)() + βjiu(i)()

]
= , j = , ,

where

τ ∈ (, ), Ã = A
(
τb–(s)

)
, Ãi = Ai

(
τb–(s)

)
.

Then, by virtue of Theorem , we obtain the assertion. �
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Consider the nonlinear problem

a(x)u()(x) + B(x,u,ux)u(x) = F(x,u,ux), ()
mk∑
i=

[
αkiu(i)() + βkiu(i)(a)

]
= , k = , ,

wheremk ∈ {, }, αki, βki are complex numbers, x ∈ (,b), where b is a positive number in
(,b].
In this section, we will prove the existence and uniqueness of amaximal regular solution

of the nonlinear problem (). Assume A is a ϕ-positive operator in a Banach space E. Let

X = Lp(,b;E), Y =W ,p(,b;E(A),E)
,

Ej =
(
E(A),E

)
σj ,p

, σj =
 + jp
p

, X =
∏
j=

Ej.

Remark  By using [, §.], we obtain that the embedding DjY ∈ Ej is continuous and
there exists the constant C such that for w ∈ Y ,W = {w,w}, wj =Djw(·), j = , ,

‖w‖X,∞ =
∏
j=

∥∥Djw
∥∥
C([,b],Ej)

= sup
x∈[,b]

∏
j=

∥∥Djw(x)
∥∥
Ej

≤ C‖w‖Y .

Condition  Assume the following are satisfied:
() η = (–)mαβ – (–)mαβ �=  and a(x) is a positive continuous function on [,b],

a() = a(b);
() E is a UMD space and p ∈ (,∞);
() F(x,υ,υ) : [,b]×X → E is a measurable function for each υi ∈ Ei, i = , ;

F(x, ·, ·) is continuous with respect to x ∈ [,b] and f (x) = F(x, ) ∈ X . Moreover, for
each R > , there exists μR such that

∥∥F(x,U) – F(x, Ū)
∥∥
E ≤ μR‖U – Ū‖X ,

where U = {u,u} and Ū = {ū, ū} for a.a. x ∈ [,b], ui, ūi ∈ Ei and

‖U‖X ≤ R, ‖Ū‖X ≤ R.

() for U = {u,u} ∈ X, the operator B(x,U) is R-positive in E uniformly with respect
to x ∈ [,b]; B(x,U)B–(x,U) ∈ C([,b];B(E)), where the domain definition
D(B(x,U)) does not depend on x and U ; B(x,W ) : (,b)×X → B(E(A),E) is
continuous, where A = A(x) = B(x,W ) for fixedW = {w,w} ∈ X;

() for each R > , there is a positive constant L(R) such that
‖[B(x,U) – B(x, Ū)]υ‖E ≤ L(R)‖U – Ū‖X‖Aυ‖E for x ∈ (,b), U , Ū ∈ X,
‖U‖X ,‖Ū‖X ≤ R and υ ∈ D(A) and A() = A(b).

Theorem  Let Condition  hold. Then there is b ∈ (,b] such that the problem () has
a unique solution that belongs to the space W 

p (,b;E(A),E).
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Proof Consider the linear problem

–a(x)w()(x) +
(
A(x) + d

)
w(x) = f (x), ()

Lkw =
mk∑
i=

αkiw(i)() + βkiw(i)(b) = ,

where

f (x) = F(x, ), x ∈ (,b).

By virtue of Result , the problem () has a unique solution for all f ∈ X and for sufficiently
large d >  that satisfies the following

‖w‖Y ≤ C‖f ‖X ,

where the constant C does not depend on f ∈ X and b ∈ (,b]. We want to solve the
problem () locally by means of maximal regularity of the linear problem () via the
contraction mapping theorem. For this purpose, let w be a solution of the linear BVP ().
Consider a ball

Br =
{
υ ∈ Y ,Lkυ = ,k = , ,‖υ –w‖Y ≤ r

}
.

For υ ∈ Br , consider the linear problem

–a(x)u()(x) +Au(x) + du = F(x,V ) +
[
B(,W ) – B(x,V )

]
υ, ()

Lku =
mk∑
i=

αkiu(i)() + βkiu(i)(b) = ,

where

V =
{
υ,υ()}, W =

{
w,w()}.

Define a map Q on Br by Qυ = u, where u is a solution of the problem (). We want
to show that Q(Br) ⊂ Br and that Q is a contraction operator provided b is sufficiently
small and r is chosen properly. For this aim, by using maximal regularity properties of the
problem (), we have

‖Qυ –w‖Y = ‖u –w‖Y ≤ C
{∥∥F(x,V ) – F(x, )

∥∥
X +

∥∥[
B(,W ) – B(x,V )

]
υ
∥∥
X

}
.

By assumption (), we have

∥∥[
B(,W )υ – B(x,V )

]
υ
∥∥
X

≤ sup
x∈[,b]

{∥∥[
B(,W ) – B(x,W )

]
υ
∥∥
B(X,X)

+
∥∥B(x,W ) – B(x,V )

∥∥
B(X,X)

‖υ‖Y
}

≤ [
δ(b) + L(R)‖W –V‖∞,X

][‖υ –w‖Y + ‖w‖Y
]

http://www.fixedpointtheoryandapplications.com/content/2013/1/6
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≤ {
δ(b) + L(R)

[
C‖υ –w‖Y + ‖υ –w‖Y

][‖υ –w‖Y + ‖w‖Y
]}

≤ {
δ(b) + L(R)[Cr + r]

[
r + ‖w‖Y

]}
,

where

δ(b) = sup
x∈[,b]

∥∥[
B(,W ) – B(x,W )

]∥∥
B(X,X)

.

Bearing in mind

∥∥F(x,V ) – F(x, , )
∥∥
E ≤ δ(b) +

∥∥F(x,V ) – F(x,W )
∥∥
E +

∥∥F(x,W ) – F(x, )
∥∥
E

≤ δ(b) +μR
[‖υ –w‖Y + ‖w‖Y

]
μRC

[‖υ –w‖Y + ‖w‖Y
]

≤ μR
[
Cr + ‖w‖Y

]
,

where R = Cr+‖w‖Y is a fixed number. In view of the above estimates, by a suitable choice
of μR, LR and for sufficiently small b ∈ [;b), we have

‖Qυ –w‖Y ≤ r,

i.e.,

Q(Br) ⊂ Br .

Moreover, in a similar way, we obtain

‖Qυ –Qῡ‖Y ≤ C
{
μRC +Ma + L(R)

[‖υ –w‖Y +Cr
]

+ L(R)C
[
r + ‖w‖Y

]‖υ – ῡ‖Y
}
+ δ(b).

By a suitable choice of μR, LR and for sufficiently small b ∈ (,b), we obtain ‖Qυ –
Qῡ‖Y < η‖υ – ῡ‖Y , η < , i.e.,Q is a contraction operator. Eventually, the contractionmap-
ping principle implies a unique fixed point of Q in Br which is the unique strong solution
u ∈ Y . �

5 Boundary value problems for anisotropic elliptic equations with VMO
coefficients

The Fredholm property of BVPs for elliptic equations with parameters in smooth domains
were studied, e.g., in [, ], also, for nonsmooth domains, these questions were investi-
gated, e.g., in [].
Let � ⊂ Rn be an open connected set with a compact Cm-boundary ∂�. Let us con-

sider the nonlocal boundary value problems on a cylindrical domainG = (, )×� for the
following anisotropic elliptic equation with VMO top-order coefficients:

(L + λ)u = sa(x)
∂u
∂x

+ s

 d(x, y)

∂u
∂x

+ d(x, y)u

+
∑

|α|≤m

aα(y)Dα
y u + λu = f (x, y), x ∈ (, ), y ∈ �, ()
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Lku =
mk∑
i=

sμi
[
αkiu(i)x (, y) + βkiu(i)x (, y)

]
= , k = , , ()

Bju =
∑

|β|≤mj

bjβ (y)Dβ
y u(x, y) = , x ∈ (, ), y ∈ ∂�, j = , , . . . ,m, ()

where s is a positive parameter, a, di are complex valued functions, αki and βki are complex
numbers,

Dj = –i
∂

∂yj
, mk ∈ {, }, y = (y, . . . , yn), μi =

i

+


p

.

If G = (, )×�, p = (p,p), Lp(G) will denote the space of all p-summable scalar-valued
functions with a mixed norm (see, e.g., [, §]), i.e., the space of all measurable functions
f defined on G, for which

‖f ‖Lp(G) =
(∫ 



(∫
�

∣∣f (x, y)∣∣p dy)
p
p
dx

) 
p
< ∞.

Analogously, W ,m,p(G) denotes the anisotropic Sobolev space with the corresponding
mixed norm [, §].

Theorem  Let the following conditions be satisfied;
() a,d ∈ VMO∩ L∞(R), a() = a(), –a ∈ S(ϕ), μ(x) �= , a.e. x ∈ [, ];
() Reωk �=  and λ

ωk
∈ S(ϕ) for λ ∈ S(ϕ),  ≤ ϕ < π , k = ,  a.e. x ∈ [, ];

() d ∈ L∞, d(·, y)d

 –ν

 (·) ∈ L∞(, ) for a.e. y ∈ � and  < ν < 
 ;

() aα ∈ VMO∩ L∞(Rn) for each |α| = m and aα ∈ [L∞ + Lγk ](�) for each |α| = k < m
with rk ≥ q and m – k > l

rk
;

() bjβ ∈ Cm–mj (∂�) for each j, β andmj < m,
∑m

j= bjβ (y
� )σj �= , for |β| =mj, y

� ∈ ∂G,
where σ = (σ,σ, . . . ,σn) ∈ Rn is a normal to ∂G;

() for y ∈ �̄, ξ ∈ Rn, ν ∈ S(ϕ), ϕ ∈ (,π ), |ξ | + |ν| �=  let ν +
∑

|α|=m aα(y)ξα �= ;
() for each y ∈ ∂�, a local BVP in local coordinates corresponding to y

ν +
∑

|α|=m
aα(y)Dαϑ(y) = ,

Bjϑ =
∑

|β|=mj

bjβ (y)Dβu(y) = hj, j = , , . . . ,m

has a unique solution ϑ ∈ C(R+) for all h = (h,h, . . . ,hn) ∈ Rn, and for ξ � ∈ Rn–

with |ξ �| + |ν| �= .
Then
(a) for all f ∈ Lp(G), λ ∈ S(ϕ) and sufficiently large |λ|, the problem ()-() has a

unique solution u belonging toW ,m,p(G) and the following coercive uniform
estimate holds:

∑
i=

s
i
 |λ|– i



∥∥∥∥∂ iu
∂ ix

∥∥∥∥
Lp(G)

+
∑

|β|=m

∥∥Dβ
y u

∥∥
Lp(G) ≤ C‖f ‖Lp(G);

(b) for λ = , the problem ()-() is Fredholm in Lp(G).
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Proof Let E = Lp (�). Then by virtue of [], the part () of Condition  is satisfied. Con-
sider the operator A acting in Lp (�) defined by

D(A) =W m,p (�;Bju = ), Au =
∑

|α|≤m

aα(y)Dαu(y).

For x ∈ �, also consider operators in Lp (�)

D(Ai) =W m,p (�;Bju = ),

A(x)u = d(x, y)u(y), A(x)u = d(x, y)u(y).

The problem ()-() can be rewritten in the form (), where u(x) = u(x, ·), f (x) = f (x, ·)
are functions with values in E = Lp (�). By virtue of [], the problem

νu(y) +
∑

|α|≤m

aα(y)Dα
y u(y) = f (y),

Bju =
∑

|β|≤mj

bjβ (y)Dβ
y u(y) = , j = , , . . . ,m

has a unique solution for f ∈ Lp (�) and arg ν ∈ S(ϕ), |ν| → ∞. Moreover, in view of [,
Theorem .], the operatorA is R-positive in Lp (�), i.e., Condition  holds.Moreover, it is
known that the embeddingW m,p (�) ⊂ Lp (�) is compact (see, e.g., [, Theorem ..]).
Then, by using interpolation properties of Sobolev spaces (see, e.g., [, §]), it is clear that
the condition () of Theorem  is fulfilled too. Then from Theorems , , the assertions
are obtained. �

6 Systems of differential equations with VMO coefficients
Consider the nonlocal BVPs for infinity systems of parameter-differential equations with
principal VMO coefficients,

sa(x)u()m (x) +
N∑
j=

s

 bmj(x)u()j (x) +

N∑
j=

dmj(x)uj(x) +
(
dm(x) + λ

)
um(x)

= fm(x), x ∈ (, ),m = , , . . . ,N , ()

Lku =
mk∑
i=

sμi
[
αkiu(ı)m () + βkiu(i)m ()

]
= , k = , , ()

where s is a positive parameter, a, bmj, dmj are complex valued functions, N is a finite or
infinite natural number, αki and βki are complex numbers, μi = i

 +

p .

Let

d(x) =
{
dm(x)

}
, dm > , u = {um}, Du = {dmum}, m = , , . . . ,∞,

lq(D) =

{
u : u ∈ lq(N),‖u‖lq(D) = ‖Du‖lq =

( N∑
m=

|dmum|q
) 

q

<∞
}
,

x ∈ (, ),  < q < ∞.
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Let Q denote the operator in Lp(, ; lq) generated by the problem ()-(). Let

B = L
(
Lp(, ; lq)

)
.

Theorem  Suppose the following conditions are satisfied:
() a ∈ VMO∩ L∞(R), a() = a(), –a ∈ S(ϕ), μ(x) �=  a.e. x ∈ (, );
() Reωk(x) �=  and λ

ωk
∈ S(ϕ) for λ ∈ S(ϕ), a.e. x ∈ (, ),  ≤ ϕ < π , k = , ;

() dj ∈ VMO∩ L∞(R), bmj,dmj ∈ L∞(, ), p ∈ (,∞);
() there are  < ν < ,  < ν < 

 such that

sup
m

N∑
j=

bmj(x)d
–(  –ν)
j (x) <M,

sup
m

N∑
j=

dmj(x)d–(–ν)
j (x) <M for a.e. x ∈ (, ).

Then, for all f (x) = {fm(x)}N ∈ Lp(, ; lq), λ ∈ S(ϕ) and for sufficiently large |λ|, the prob-
lem ()-() has a unique solution u = {um(x)}∞ belonging to W ,p((, ), lq(D), lq) and the
following coercive estimate holds:

∑
i=

s
i
 |λ|– i



∥∥∥∥diu
dxi

∥∥∥∥
Lp(,;lq)

+ ‖Au‖Lp(,;lq) ≤ C‖f ‖Lp(,;lq). ()

Proof Really, let E = lq, A and Ak(x) be infinite matrices such that

A =
[
dm(x)δjm

]
, A(x) =

[
dmj(x)

]
, A(x) =

[
bmj(x)

]
, m, j = , , . . . ,∞.

It is clear that the operator A is R-positive in lq. Therefore, by Theorem , the problem
()-() has a unique solution u ∈W ,p((, ); lq(D), lq) for all f ∈ Lp((, ); lq), λ ∈ S(ϕ) the
estimate () holds. �

Remark  There are many positive operators in different concrete Banach spaces.
Therefore, putting concrete Banach spaces and concrete positive operators (i.e., pseudo-
differential operators or finite or infinite matrices for instance) instead of E and A, respec-
tively, by virtue of Theorem , , we can obtain a different class of maximal regular BVPs
for partial differential or pseudo-differential equations or their finite and infinite systems
with VMO coefficients.
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