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Abstract. In this paper, we study well-posedness for the following third-order in time equation
with delay

(0.1) α(Mu′)′′(t) + (Nu′)′(t) = βAu(t) + γBu′(t) +Gu′
t + Fut + f(t), t ∈ [0, 2π]

where α, β, γ are real numbers, A and B are linear operators defined on a Banach space X with
domains D(A) and D(B) such that D(A) ∩D(B) ⊂ D(M) ∩D(N); u(t) is the state function
taking values in X and ut : (−∞, 0] → X defined as ut(θ) = u(t + θ) for θ < 0 belongs to an
appropriate phase space where F and G are bounded linear operators. Using operator-valued
Fourier multipliers techniques we provide optimal conditions for well-posedness of equation (0.1)
in periodic Lebesgue-Bochner spaces Lp(T, X), periodic Besov spaces Bs

p,q(T, X) and periodic
Triebel-Lizorkin spaces F s

p,q(T, X). A novel application to an inverse problem is given.

1. Introduction

Well-posedness for abstract degenerate (also called Sobolev type) evolution equations have
been studied in the literature since a long time ago. Anufrieva [5] studied well-posedness of the
second order degenerate equation

Mu′′(t) = Au(t) +Bu′(t), t > 0,

where A,B are closed linear operators defined on a Banach space X and M is bounded with
KerM 6= 0. She used the technique of integrated semigroups and she obtained a criterion for the
well-posedness of the above problem in terms of the behavior of the operatorM(λ2M−λB−A)−1.
Barbu and Favini [9] studied the inhomogeneous equation

(1.2) (Mu)′(t) = Au(t) + f(t), t ∈ [0, 2π],

where M and A are closed linear operators on X with D(A) continuously embedded in D(M)
and A has a bounded inverse. They associate to (1.2) the periodicity condition Mu(0) = Mu(2π)
and consider the operational method by Grisvard [29] to treat the equation. One of the main
hypothesis considered by Barbu and Favini is that the operator M(λM −A)−1 must satisfy the
estimate

‖M(λM −A)−1‖ ≤ C(1 + |λ|)−β, λ ∈ Σα,

where Σα := {z ∈ C : <(z) ≥ −c(1 + |Im (z)|)α}, c is a positive constant and 0 < β ≤ α ≤ 1.
More recently, Favini and Marinoschi [25] studied a concrete degenerate PDE problem that
arises in fast diffusion. For a general treatment of degenerate differential equations in Banach
spaces we refer the reader to the classical textbook [23] by Favini and Yagi, where the method
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of multivalued operators is developed and several interesting examples are given, and the more
recent monograph [46] by Sviridyuk and Fedorov. It is important to observe that there is
a strong connection between well posedness and inverse problems [3] and consequently some
optimal control problems. To this regard, we quote references [2], [9], [22] and [26]. See also our
last section in this paper.

On the other hand, since the pioneer work by Amann [4], Arendt and Bu [6] and Weis [44]
methods based on operator-valued Fourier multipliers theorems have been considered by many
authors in the study of well-posedness of abstract evolution equations in Banach spaces. See
[6, 7, 8, 19, 31, 32, 33, 34, 40, 41] and references therein.

In [37], the authors used operator-valued Fourier multiplier methods to provide conditions on
the symbol (λM −A)−1 to characterize well-posedness in Lebesgue-Bochner, Besov and Triebel-
Lizorkin vector-valued spaces for the degenerate first order Cauchy problem (1.2). In [39] the
authors also investigated well-posedness of equation (1.2) adding a delay term. The case M = Id
was investigated by Arendt, Bu and Kim in [6, 7, 16].

In [12] S. Bu investigates, using the same method just described, the second-order degenerate
equation

(Mu′)′(t) = Au(t) + f(t), t ∈ [0, 2π]

with conditions u(0) = u(2π) and Mu′(t) = Mu′(2π), where A and M are closed linear operators
defined on a UMD Banach space X that satisfy D(A) ⊂ D(M). See also the work by Bu and Cai
[17, 14] for second order degenerate differential equations with delay, and the paper by Chill and
Srivastava [18] where Lp-well-posedness for second-order differential equations in case M = Id
is studied.

In [13], Cai and Bu studied the following third order equation:

(1.3)

{
α(Mu)′′′(t) + (Mu)′′(t) = βAu(t) + γBu′(t) + f(t), t ∈ [0, 2π]
Mu(0) = Mu(2π), (Mu)′(0) = (Mu)′(2π), (Mu)′′(0) = (Mu)′′(2π).

This is an important model in acoustics for wave propagation in viscous thermally relaxing
fluids. See [28, 32, 40] and references therein for details. They obtain a characterization of the
well-posedness of (1.3) in vector valued Lebesgue-Bochner, Besov and Triebel-Lizorkin spaces
using operator-valued Fourier multiplier methods. This characterization involves Rademacher
boundedness conditions of the operator-valued symbol (αλ3M + λ2M − βA − γλB)−1 defined
on a UMD-space X. These results extend the ones provided in [43] where the case M = Id was
considered. In both cases, they use sophisticate representations of the above symbol in order to
prove Mikhlin type multiplier conditions [13, Proposition 2.2 and Proposition 3.1], [43, Lemma
4.3 and Lemma 5.3].

On the other hand, delay equations appear in computational and applied contexts that have
been the subject of research by many authors in the last decades, see for instance [11, 30, 20].
The study of well-posedness for delay differential equations has been also studied by many
authors. In [36], Lizama considered the following first order finite delay equation:

(1.4) u′(t) = Au(t) + Fut + f(t), t ∈ [0, 2π].

Here ut : (−∞, 0] → X defined as ut(θ) = u(t + θ) for θ < 0 belongs to an abstract phase
space S and F is a bounded linear operator from S to X. He characterized the existence and
uniqueness of periodic solutions of the inhomogeneous abstract equation (1.4) and provided
sufficient and necessary conditions for Lp-well-posedness for such a problem in terms of the
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symbol (λ−A− Fλ)−1 where

Fλx = F (eλx), eλ(t) = eiλt, λ ∈ R, t ≤ 0, x ∈ X.

On the other hand, Hölder well-posedness of (1.4) was considered in [38] and Besov and Triebel-
Lizorkin well-posedness of (1.4) was investigated by Bu and Fang in [15].

In [27] Fu and Li characterized the well-posedness in vector-valued Lebesgue spaces (resp.
Besov and Triebel-Lizorkin) using operator-valued Fourier multipliers for the second order dif-
ferential equation with delay given by

(1.5) u′′(t) +Bu′(t) +Au(t) = Gu′t + Fut + f(t), t ∈ [0, 2π],

where A and B are linear operators defined on a Banach space X. In the proof of their main
results, these authors assume that the pair (A,B) is coercive and a combination of conditions in
terms of uniform boundedness and R-boundedness of the symbol (λ2 + λB − λGλ − Fλ +A)−1.
We also observe that an intricate representation of the above symbol is necessary in order to
prove certain Mikhlin type bounds [27, Lemma 4.2].

The aim of this paper is to study the following degenerate equation with delay

(1.6) α(Mu′)′′(t) + (Nu′)′(t) = βAu(t) + γBu′(t) +Gu′t + Fut + f(t), t ∈ [0, 2π],

where α, β, γ are real numbers, A and B are linear operators defined on a Banach space X with
domains D(A) and D(B) such that D(A) ∩ D(B) ⊂ D(M) ∩ D(N); u(t) is the state function
taking values in X and ut : (−∞, 0] → X defined as ut(θ) = u(t + θ) for θ < 0 belongs to an
appropriate phase space, being F and G bounded linear operators.

Compared with the non degenerate case which was studied in [43] and without delay, the
nature of equation (1.6) leads to a different treatment that requires new tools.

As remarked in [35], there are three important notions that are needed in the study of max-
imal regularity of abstract equations by operator-valued Fourier multiplier theorems, namely
n−regularity of scalar sequences, M -boundedness and MR−boundedness of order n for op-
erator sequences. The concept of n−regular sequences was introduced in [33] as a discrete
version of the notion of k−regularity used in [45]. Define the differences ∆kMn by ∆0Mn = Mn,
∆1Mn = ∆Mn = Mn+1−Mn, and ∆k+1Mn = ∆(∆kMn), for k ≥ 1. If {Mn} is the operator fam-
ily under consideration, M− boundedness (resp. MR−boundedness) of order m (m ∈ N ∪ {0})
means that the sequences {nj∆jMn} are bounded (resp. R−bounded) for 0 ≤ j ≤ m.

One of the main problems when dealing with the above mentioned concepts, is the absence
of practical criteria for MR-boundedness (resp. M -boundedness) for the manipulation of struc-
turally complicated operator-valued symbols. The first original contribution of this paper is to
show a new computable condition for M -boundedness and MR-boundedness of order 1 and 2.
More precisely, we prove:

Theorem 1.1. Let T : D(T ) ⊂ X → X be a closed linear operator defined in a Banach space
X. For each k ∈ Z, let Hk : X → D(T ) be a sequence of bounded and linear operators such that
0 ∈ ρ(Hk) for all k ∈ Z. Suppose that (ck)k∈Z ⊂ C is a 1-regular sequence and denote

(1.7) Mk := ckTHk,

and

(1.8) Lk := (H−1
k −H

−1
k+1)Hk.
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If {Mk : k ∈ Z} and {kLk : k ∈ Z} are R-bounded sets, then {Mk : k ∈ Z} is MR-bounded of
order 1. If, in addition, (ck)k∈Z is 2-regular and the set {k2∆Lk : k ∈ Z} is R-bounded, then
{Mk : k ∈ Z} is MR-bounded of order 2.

For instance in the simplest case ck = 1, T = M and Hk = (ikM − A)−1 for the equation
(1.2), we easily obtain Mk = M(ikM − A)−1 and Lk = −iM(ikM − A)−1. In particular, we
note that R-boundedness of the set {kLk}k∈Z characterizes Lp-well-posedness of (1.2) in UMD
Banach spaces [37, Theorem 3.3].

Our second main contribution in this paper is a characterization of Lp- well posedness for
degenerate third-order differential equations with infinite delay which has not been considered
in the literature yet.

More specifically, we succeed in proving the following:

Theorem 1.2. Let 1 < p < ∞ and α, β, γ ∈ R. Assume A,B and M,N are closed linear
operators defined on a UMD space X such that D(A) ∩D(B) ⊂ D(M) ∩D(N). Assume that
{kGk : k ∈ Z} is R-bounded. The following assertions are equivalent:

(i) For each f ∈ Lp(T, X), there exists a unique strong Lp-solution of (1.6).
(ii) For each k ∈ Z the operator

Nk = [iαk3M + k2N + βA+ γ(ik)B + (ik)Gk + Fk]
−1,

exists as a bounded linear operator in X and the sets {iαk3MNk}k∈Z, {k2NNk}k∈Z,
{γkBNk}k∈Z, {kNk}k∈Z are R-bounded.

Compared with earlier results by Fu and Li [27, Theorem 3.4] in case α = 0 and N = I,
we note that they assumed that the set {k2Nk}k∈Z must be R-bounded as well as uniform
boundedness of the set {kBNk}k∈Z. However, they assumed a stronger hypothesis of coercivity
on the pair (A,B) that in our case is not necessary. Compared with a recent result by Bu and
Cai [14] we observe that our result generalizes their main theorem ([14, Theorem 2.2]) for B = I
and α = 0. In such a case our condition on R-boundedness of the set {kGk}k∈Z implies that the
set {k(Gk+1 −Gk} must be R-bounded, which is assumed by Bu and Cai.

In the case of Besov and Triebel-Lizorkin scales of periodic vector-valued spaces, R-boundedness
can be replaced by uniform boundedness and the spectral condition 0 ∈ ρ(M). We remark that
this condition is only required when the delays are present in the equation. In such a case, our
new characterization is stated as follows:

Theorem 1.3. Let 1 ≤ p, q ≤ ∞, s ∈ R and α, β, γ ∈ R. Assume A,B and M,N are closed
linear operators defined on a Banach space X such that D(A) ∩ D(B) ⊂ D(M) ∩ D(N) and
0 ∈ ρ(M). Assume that {kGk : k ∈ Z} is uniformly bounded. The following assertions are
equivalent:

(i) The equation

α(Mu′)′′(t) + (Nu′)′(t) = βAu(t) + γBu′(t) +Gu′t + Fut + f(t), t ∈ [0, 2π]

is Bs
p,q-well posed;

(ii) Z ⊂ ρM,N (A,B) and the sets {iαk3MNk}∈Z, {k2NNk}∈Z, {γkBNk}k∈Z are uniformly
bounded.

Observe that no additional restriction on the Banach space X is necessary. Other interesting
fact of our findings that contrasts with the case of Lebesgue-Bochner vector-valued spaces is
that we only need three conditions of boundedness instead of four. In this way, our result
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complements one of the main theorems by Cai and Bu [13, Theorem 3.3]. Note that in the case
M = N = I, α = 0 and B = I condition (ii) reduces to inquire that the set {k2Nk}k∈Z must be
uniformly bounded, which recovers exactly [27, Theorem 4.3]. In addition, Theorem 1.3 extends
the main result of [27, Section 4] to the case B 6= I. In this way, the obtained results furnish
extra information on optimal conditions. Finally, we consider the following inverse problem:

(1.9) α(Mu′)′′(t) + (Nu′)′(t) = βAu(t) + γBu′(t) + f(t)z, t ∈ [0, 2π],

with the additional information

(1.10) Φ[Mu′(t)] = g(t) Φ[Nu′(t)] = h(t),

where z ∈ X,Φ ∈ X∗ and the unknown (u, f) is to be determined. The main novelty, and
third main contribution of this paper, is the treatment of the above problem combining our
new results on well posedness and an original method recently introduced by Al Horani and
Favini [3] which consists in reducing the inverse problem to a direct evolution equation, where
perturbations A+A1 and B +B1 substitutes the operators A and B, respectively. As observed
in [3], the described inverse problem can be also faced in the form of optimal control problems.

2. Preliminaries

Let T = R\2πZ. Given 1 ≤ p <∞, let Lp(T, X) be the space of all Bochner measurable vector-
valued, p-integrable functions on T. The k-th Fourier coefficient of a function f ∈ L1(T, X) is
defined as

f̂(k) :=
1

2π

∫ 2π

0
e−iktf(t)dt

for all k ∈ Z. We denote by f ∈ L1(T, X), a function that can be periodically extended to the
left onto the interval (−∞, 0]. Then, the k-th Fourier coeficient in t of ft(θ) := f(t+ θ), t ∈ T,

θ ≤ 0 is f̂t(k) = eikθf̂(k).
In what follows, we will introduce the notation B(X,Y ) for the space of bounded linear

operators from X into Y endowed with the uniform operator topology. We abbreviate B(X)
whenever X ≡ Y.

Definition 2.1. Let X and Y be Banach spaces and 1 ≤ p < ∞. We say that (Mk)k∈Z ⊂
B(X,Y ) is an Lp-Fourier multiplier if, for each f ∈ Lp(T, X), there exists u ∈ Lp(T, Y ) such

that û(k) = Mkf̂(k) for all k ∈ Z.

Let X be a Banach space. We define the means

‖(x1, ..., xn)‖R :=
1

2n

∑
εj∈{−1,1}n

∥∥∥ n∑
j=1

εjxj

∥∥∥,
for x1, ..., xn ∈ X.

Definition 2.2. Let X and Y be Banach spaces. A set T ⊂ B(X,Y ) is called R-bounded if
there is a constant c ≥ 0 such that

(2.1) ‖(T1x1, ..., Tnxn)‖R ≤ c‖(x1, ..., xn)‖R,

for all T1, ..., Tn ∈ T , x1, ..., xn ∈ X, n ∈ N. The least c such that (2.1) is satisfied is called the
R-bound of T and is denoted R(T ).
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Denote by rj the j-th Rademacher function, that is rk(t) := sign(sin(2kπt)). For x ∈ X
we denote by rj ⊗ x the vector-valued function t → rj(t)x. An equivalent definition using the
Rademacher functions replaces (2.1) by

(2.2)
∥∥∥ n∑
k=1

rk ⊗ Tkxk
∥∥∥
L2((0,1);Y )

≤ c
∥∥∥ n∑
k=1

rk ⊗ xk
∥∥∥
L2((0,1);X)

.

In the next proposition we summarize some importante properties concerning R-bounded
sets. For a proof and related information, we refer the reader to the monograph [19] by Denk,
Hieber and Prüss.

Proposition 2.3. The following properties hold:

• Given a R-bounded set T ⊂ B(X,Y ), it follows that

sup{||T || : T ∈ T } ≤ R(T ).

• If X and Y are Hilbert spaces, R- boundedness is equivalent to uniform boundedness.
• Given X,Y Banach spaces, then if T ,S ⊂ B(X,Y ) are R-bounded, then

T + S = {T + S : T ∈ T , S ∈ S}

is also R-bounded and R(T + S) ≤ R(T ) +R(S).
• Given X,Y, Z Banach spaces, then if T ⊂ B(X,Y ) and S ⊂ B(Y, Z) are R-bounded,

then

T S = {TS : T ∈ T , S ∈ S}
is also R-bounded and R(T S) ≤ R(T )R(S).
• A set T ∈ B(X) defined by T = {λI : λ ∈ Ω} with Ω a bounded set is R-bounded.

Let A,B,M,N be closed linear operators defined on a Banach space X. We now introduce the
notion of M -resolvent of A and B. Under the assumption that D(A) ∩D(B) ⊂ D(M) ∩D(N),
the M -resolvent of A and B is defined as

ρM,N (A,B) := {s ∈ R : αis3M + s2N + βA+ γisB + isGs + Fs : [D(A) ∩D(B)]→ X

(2.3) is invertible and [αis3M + s2N + βA+ γisB + isGs + Fs]
−1 ∈ B(X)}.

Here [D(A) ∩D(B)] denotes a Banach space under the norm ‖x‖[D(A)∩D(B)] := ‖x‖ + ‖Ax‖ +
‖Bx‖.

Let {Tk}k∈Z ⊂ B(X,Y ) be a sequence of operators. We set

∆0Tk = Tk, ∆Tk = ∆1Tk = Tk+1 − Tk
and for n ∈ N with n ≥ 2 we have

∆nTk = ∆(∆n−1Tk).

Definition 2.4. [33] We say that a sequence {Tk}k∈Z ⊂ B(X,Y ) is M -bounded of order n
(n ∈ N ∪ {0}), if

(2.4) sup
0≤l≤n

sup
k∈Z
||kl∆lTk|| <∞.
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To be more explicit when n = 0, M -boundedness of order n for {Tk} simply means that {Tk}
is bounded. For n = 1 this is equivalent to

(2.5) sup
k∈Z
||Tk|| <∞ and sup

k∈Z
||k (Tk+1 − Tk)|| <∞.

When n = 2 we require in addition to (2.5) that

(2.6) sup
k∈Z
||k2 (Tk+2 − 2Tk+1 + Tk)|| <∞.

Remark 2.5. (i) Analogously, we define M - boundedness of order n in case of sequences {ak}k∈Z
of real or complex numbers (this amounts to taking Mk = akI in B(X)).

(ii) Note that if {Mk}k∈Z and {Nk}k∈Z are M -bounded of order n then {Mk ± Nk}k∈Z is
M -bounded of order n. In fact, the set of n−bounded sequences is a vector space. This is obvious
from the definition.

(iii) If {Mk}k∈Z and {Nk}k∈Z are sequences in B(Y, Z) and B(X,Y ) that are M -bounded of
order n, then {Mk Nk}k∈Z ⊂ B(X,Z) is also M -bounded of the same order.

Remark 2.6. A simple but very useful rule for the ∆ operator acting on the product of two
sequences {ak}k∈Z and {Tk}k∈Z is the following:

(2.7) ∆(akTk) = ∆(ak)Tk + ak+1∆Tk, k ∈ Z.

In particular, applying this rule to the identity 1
ak
ak = 1 we get

(2.8) ∆(
1

ak
) = − ∆(ak)

akak+1
.

The following definition was first considered in [33].

Definition 2.7. A sequence {ck}k∈Z ⊂ C is called n-regular if the sequences {kp∆pck
ck
}k∈Z are

bounded for all p = 1, . . . , n.

We prove the following lemma that will be needed later.

Lemma 2.8. Let (ck)k∈Z ⊂ C be a 2-regular sequence. If we denote by dk = ∆ck
ck

, then the

sequence (k2∆dk)k∈Z is bounded.

Proof. A simple computation using (2.7) and (2.8) shows that

∆dk = ∆

(
1

ck

)
∆ck +

1

ck+1
∆2ck = −∆ck

ck

∆ck
ck+1

+
∆2ck
ck+1

,

then k2∆dk = −k∆ck
ck

k∆ck
ck+1

+ k2∆2ck
ck

is bounded from the 2-regularity of (ck)k∈Z. �

We recall the following definition.

Definition 2.9. We say that a sequence {Mk}k∈Z ⊂ B(X,Y ) is MR-bounded of order n, if for
each 0 ≤ l ≤ n the set

(2.9) {kl∆lMk : k ∈ Z },

is R-bounded.
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Remark 2.10. A sequence {Mk}k∈Z ⊂ B(X,Y ) is MR-bounded of order 1 if the sets

(2.10) {Mk : k ∈ Z} and {k (Mk+1 −Mk) : k ∈ Z}
are R-bounded.

If in addition we have that the set

(2.11) {k2 (Mk+1 − 2Mk +Mk−1) : k ∈ Z}
is R-bounded then {Mk}k∈Z is MR-bounded of order 2.

Remark 2.11. In Hilbert spaces MR-bounded and M -bounded are identical concepts. In gen-
eral, MR-bounded implies R-bounded which in turn implies boundedness. Moreover, note that
MR-boundedness implies M -boundedness.

3. Well-posedness in Lp-spaces

Let 1 ≤ p <∞ and X be a Banach space. In this section, we want to give optimal conditions
that can describe the well-posedness of the problem

(3.12) α(Mu′)′′(t) + (Nu′)′(t) = βAu(t) + γBu′(t) +Gu′t + Fut + f(t), t ∈ T := [0, 2π],

in 2π-periodic vector valued Lp-spaces. In other words, we want to obtain a complete charac-
terization on the existence, uniqueness and well posedness of the problem only in terms of the
data of the problem. Here A,B,N and M are closed linear operators such that D(A)∩D(B) ⊂
D(N)∩D(M) and F,G ∈ B(Lp(−2π, 0);X), X). We first recall some definitions and results that
will be needed to prove the main theorem of this section. We define the vector-valued function
spaces:

Wn,p
per (T, X) := {u ∈ Lp(T, X) : there exists v ∈ Lp(T, X), v̂(k) = (ik)nû(k) for all k ∈ Z}.

We define the following space of maximal regularity.

Sp(A,B,M,N) :=

{u ∈W 1,p
per(T, [D(A) ∩D(B)]) ∩ Lp(T, [D(A) ∩D(B)]) :

u′ ∈ Lp(T, [D(A) ∩D(B)]),Mu′ ∈W 2,p
per(T, X), Nu′ ∈W 1,p

per(T, X)}.

The space Sp(A,B,M,N) is a Banach space with the norm

||u||Sp(A,B,M,N) :=||u||p + ‖u′‖p + ‖Bu′‖p + ||Au||p + ||(Nu′)′||p
+ ||(Mu′)′′||p + ||Nu′||p + ‖Mu′‖p.

Denote eλ(θ) = eiλθ for all λ ∈ R and θ ≤ 0, and define (eλ ⊗ x)(t) := eλ(t)x, x ∈ X, t ∈ R.
Clearly eλ⊗x ∈ Lp(−2π, 0), X) for each x ∈ X and λ ∈ R. We define the one-parameter families
of operators {Fλ}λ∈R and {Gλ}λ∈R by

(3.13) Fλ(x) = F (eλ ⊗ x) and Gλ(x) = G(eλ ⊗ x), λ ∈ R, x ∈ X.

Remark 3.12. From (3.13) we have that Fkx := F (ek ⊗ x), Gkx := G(ek ⊗ x), x ∈ X are
bounded and linear operators for each k ∈ Z. Moreover, when u ∈ Lp(T, X) we have

(3.14) F̂ u·(k) = Fkû(k), Ĝu·(k) = Gkû(k)

This implies that {Fk}k∈Z and {Gk}k∈Z are Lp-Fourier multipliers (cf. Definition 2.1), and

‖Fut‖ ≤ ‖F‖‖u·‖p = ‖F‖‖u‖p,



WELL-POSEDNESS 9

and thus Fu·, Gu· ∈ Lp(T, X). This justifies why we do not consider this property in the definition
of the space of maximal regularity.

We include the following useful and stronger result that is contained in the proof of Lemma
3.2 in [27].

Lemma 3.13. The sets {Fk : k ∈ Z} and {Gk : k ∈ Z} are R-bounded.

The following two theorems establish the equivalence between R-boundedness and the fact of
being an Lp-multiplier. They can be found in [6].

Theorem 3.14. Let X,Y be UMD spaces. If a sequence {Mk}k∈Z ⊂ B(X,Y ) is MR-bounded
of order 1, then (Mk)k∈Z defines an Lp-Fourier multiplier whenever 1 < p <∞.
Theorem 3.15. Let X,Y be Banach spaces, 1 ≤ p < ∞ and let (Mk)k∈Z ⊂ B(X,Y ) be an
Lp-Fourier multiplier. Then the set {Mk : k ∈ Z} is R-bounded.

We next introduce the following definition.

Definition 3.16. Let 1 ≤ p < ∞ and f ∈ Lp(T, X). We call u ∈ Sp(A,B,M,N) a strong
Lp-solution of equation (3.12) if it satisfies (3.12) for all t ∈ T. We say that equation (3.12)
is Lp-well-posed if for each f ∈ Lp(T, X), there exists a unique strong Lp-solution of equation
(3.12).

As a consequence of the Closed Graph Theorem we get the following estimate:

Remark 3.17. If equation (3.12) is Lp-well-posed, then there exists a constant C > 0 such that
for each f ∈ Lp(T, X), we have

||u||Sp(A,B,M,N) ≤ C||f ||Lp .

The following is the first main result in this paper. It provides an important criterion for
MR-boundedness in the context of maximal regularity for abstract evolution equations.

Theorem 3.18. Let T : D(T ) ⊂ X → X be a closed linear operator defined in a Banach space
X. For each k ∈ Z let Hk : X → D(T ) be a sequence of bounded and linear operators such that
0 ∈ ρ(Hk) for all k ∈ Z. Suppose that (ck)k∈Z ⊂ C is a 1-regular sequence and denote

(3.15) Mk := ckTHk,

and

(3.16) Lk := (H−1
k −H

−1
k+1)Hk.

If {Mk : k ∈ Z} and {kLk : k ∈ Z} are R-bounded sets, then {Mk : k ∈ Z} is MR-bounded of
order 1. If, in addition, (ck)k∈Z is 2-regular and the set {k2∆Lk : k ∈ Z} is R-bounded, then
{Mk : k ∈ Z} is MR-bounded of order 2.

Proof. A computation shows that

∆Mk = (∆ck)THk + ck+1T∆Hk =
∆ck
ck

Mk + ck+1T (Hk+1 −Hk)

=
∆ck
ck

Mk + ck+1THk+1(I −H−1
k+1Hk)

=
∆ck
ck

Mk +Mk+1Lk.(3.17)
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Then k∆Mk = k∆ck
ck

Mk +Mk+1kLk. Since (ck)k∈Z is 1-regular and kLk is R-bounded, it follows

that {k∆Mk : k ∈ Z} is R-bounded. It shows that {Mk : k ∈ Z} is MR-bounded of order 1.

Let denote dk = ∆ck
ck

, then from (3.17) we obtain

∆2Mk = (∆dk)Mk +
∆ck+1

ck+1
(∆Mk) + (∆Mk+1)(Lk) +Mk+2(∆Lk).

Therefore, we have

k2∆2Mk = (k2∆dk)Mk +
k∆ck+1

ck+1
(k∆Mk) + (k∆Mk+1)(kLk) +Mk+2(k2∆Lk).

Since (ck)k∈Z is 2-regular, (k2∆dk)k∈Z is bounded from Lemma 2.8 and {k2∆Lk : k ∈ Z} is
R-bounded by hypothesis. It follows by Proposition 2.3 that {k2∆2Mk : k ∈ Z} is R-bounded.
Therefore, {Mk : k ∈ Z} is MR-bounded of order 2.

�

Let A,B and M,N be closed linear operators such that D(A) ∩ D(B) ⊂ D(M) ∩ D(N).
Assume Z ⊂ ρM,N (A,B). We denote

(3.18) Nk := −[bkM + akN + βA+ ikγB + ikGk + Fk]
−1, ak = k2, bk = iαk3, k ∈ Z,

where α, β, γ ∈ R are fixed constants.
The following proposition is the key technical tool for the proof of our second main result.

Proposition 3.19. Let A,B and M be closed linear operators defined on a UMD space X such
that D(A)∩D(B) ⊂ D(M)∩D(N) and α, β, γ ∈ R. If Z ⊂ ρM,N (A,B) and {ik3MNk : k ∈ Z},
{k2NNk : k ∈ Z}, {kBNk : k ∈ Z}, {kNk : k ∈ Z} and {kGk : k ∈ Z} are R-bounded sets,
then the sets {k(N−1

k − N−1
k+1)Nk}k∈Z, {k∆(k3MNk)}k∈Z, {k∆(k2NNk)}k∈Z,{k∆(kBNk)}k∈Z

and {k∆(kNk)}k∈Z are R-bounded sets.

Proof. Let Mk = ik3MNk. In order to show that Mk is an Lp-multiplier it is sufficient to show
that {k∆Mk : k ∈ Z} is R-bounded. We apply Theorem 3.18 with ck = ik3, which is clearly a
1-regular sequence, Hk = Nk and T = M . By hypothesis {Mk : k ∈ Z} is R-bounded, then it
only remains to show that {kLk : k ∈ Z} is R-bounded. Indeed,

kLk = k(Nk
−1 −N−1

k+1)Nk

= k[∆bkM + ∆akN + iγB + i(k + 1)Gk+1 − ikGk + (Fk+1 − Fk)]Nk

= k[∆bkM + (2k + 1)N + iγB + i(k + 1)Gk+1 − ikGk + (Fk − Fk+1)]Nk

= α
k∆bk
bk

Mk +
2k + 1

k
(k2NNk) + iγ(kBNk) + i(k + 1)Gk+1(kNk)− i(kGk)(kNk)

+ (Fk − Fk+1)(kNk).

Note that the set {Fk}k∈Z is bounded by Lemma 3.13. By hypothesis and Proposition 2.3
it follows that {kLk : k ∈ Z} is R-bounded. The R-boundedness of {k∆(kBNk) : k ∈ Z},
{k∆(kNk) : k ∈ Z} and {k∆(k2NNk) : k ∈ Z} follows similarly applying Theorem 3.18 with
ck = k, T = B and Hk = Nk in the first case, ck = k, T = I and Hk = Nk in the second case
and ck = k2, T = N and Hk = Nk in the third case. �

Remark 3.20. From the proof, we observe that theorem 3.18 and proposition 3.19 also holds if
“R-bounded” is replaced by “uniformly bounded”.
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As a consequence, we obtain immediately the following corollary.

Corollary 3.21. Let A,B and M be closed linear operators defined on a UMD space X such
that D(A)∩D(B) ⊂ D(M)∩D(N) and α, β, γ ∈ R. If Z ⊂ ρM,N (A,B) and {ik3MNk : k ∈ Z},
{kBNk : k ∈ Z}, {k2NNk : k ∈ Z}, {kNk : k ∈ Z} and {kGk : k ∈ Z} are R-bounded sets, then
(ik3MNk)k∈Z, (k2NNk)k∈Z, (kBNk)k∈Z and (kNk)k∈Z are Lp-Fourier multipliers.

We now show the second main result of this section that provides a computable criterion to
characterize the well-posedness of equation (3.12).

Theorem 3.22. Let 1 < p < ∞ and α, β, γ ∈ R. Assume A,B and M,N are closed linear
operators defined on a UMD space X such that D(A) ∩D(B) ⊂ D(M) ∩D(N). Assume that
{kGk : k ∈ Z} is R-bounded. The following assertions are equivalent:

(i) Equation (3.12) is Lp-well posed;
(ii) Z ⊂ ρM,N (A,B) and the sets {ik3αMNk : k ∈ Z}, {k2NNk : k ∈ Z}, {kγBNk : k ∈ Z}
{kNk : k ∈ Z} are R-bounded.

Proof. We first prove (i) =⇒ (ii). Assume that equation (3.12) is Lp-well posed. Let k ∈ Z and

y ∈ X be given. Then we define f ∈ Lp(T, X) as f(t) = eikty. It is clear that f̂(k) = y and

f̂(n) = 0 for n 6= k. By hypothesis, there exists a unique u ∈ Sp(A,B,M,N) that satisfies:

(3.19) α(Mu)′′′(t) + (Nu)′′(t) = βAu(t) + γBu′(t) +Gu′t + Fut + f(t), t ∈ [0, 2π].

Observe that by the linearity of F and G we get that

Ĝu′t(k) = G(eikθû′(k)) = G(eikθikû(k)) = ikGkûk

and
F̂ ut(k) = F (eikθû(k)) = Fkûk k ∈ Z.

Taking Fourier transform in both sides of (3.19) we get:

(3.20) −[bkM + akN + βA+ ikγB + ikGk + Fk]û(k) = y

and

(3.21) −[bnM + anN + βA+ γ(in)B + (in)Gn + Fn]û(n) = 0, n 6= k.

This shows that −[bkM + akN + βA + γ(ik)B + (ik)Gk + Fk] is surjective. In order to show
injectivity, let x ∈ D(A) ∩D(B) be such that

−[bkM + akN + βA+ γ(ik)B + (ik)Gk + Fk]x = 0.

Let u(t) = eiktx for t ∈ T. It is clear that u ∈ Sp(A,B,M,N) and u solves (3.12) for f = 0.
Then by uniqueness, x = 0 and injectivity follows directly. Therefore, −[bkM + akN + βA +
γ(ik)B + (ik)Gk +Fk] is bijective from D(A)∩D(B) onto X. Moreover, −[bkM + akN + βA+
γ(ik)B + (ik)Gk + Fk]

−1 ∈ B(X). Indeed, given y ∈ X and k ∈ Z let f(t) = eikty and let u be
the corresponding solution of (3.12) for f. Then

û(n) =

{
0, if n 6= k;

−[bkM + akN + βA+ γ(ik)B + (ik)Gk + Fk]
−1y, if n = k.

This implies u(t) = −e−ikt[bkM + akN + βA + γ(ik)B + (ik)Gk + Fk]
−1y by uniqueness. By

remark 3.17 there exists C > 0 independent of y and k such that

‖u‖Sp(A,B,M,N) ≤ C||f ||Lp .
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As a consequence,

||[bkM + akN + βA+ γ(ik)B + (ik)Gk + Fk]
−1|| ≤ C,

for all k ∈ Z. This proves the claim. We have shown that Z ⊂ ρM,N (A,B). Let Mk = ik3MNk,
Sk = k2NNk, Hk = kBNk and Rk = kNk with k ∈ Z, where Nk is defined in (3.18). Let show
that (Mk)k∈Z, (Sk)k∈Z, (Hk)k∈Z and (Rk)k∈Z are Lp-Fourier multipliers. Given f ∈ Lp(T, X),
there exists u ∈ Sp(A,B,M,N) which is a solution of equation (3.19) by assumption. Taking
Fourier transforms on both sides of (3.19), we get that û(k) ∈ D(A) ∩D(B) and

−[bkM + akN + βA+ γ(ik)B + (ik)Gk + Fk]û(k) = f̂(k), k ∈ Z.

Since −[bkM+akN+βA+γ(ik)B+(ik)Gk+Fk] is invertible it follows that û(k) = −Nkf̂(k), k ∈
Z. As u ∈ Sp(A,B,M,N) we get that

̂[(Mu)′′′](k) = −ik3Mû(k) = ik3MNkf̂(k) = Mkf̂(k)(3.22)

̂[(Nu)′′](k) = −k2Nû(k) = k2NNkf̂(k) = Skf̂(k)(3.23)

û′(k) = ikû(k) = ikNkf̂(k) = −iRkf̂(k) and(3.24)

B̂u′(k) = ikBû(k) = ikBNkf̂(k) = −iHkf̂(k).(3.25)

Finally, since (Mu)′′′, (Nu)′′, u′ and Bu′ ∈ Lp(T, X) we get that (Mk)k∈Z, (Sk)k∈Z, (Hk)k∈Z and
(Rk)k∈Z are Lp-Fourier multipliers, proving the claim. Then, by Theorem 3.15, we conclude that
the sets {Mk : k ∈ Z}, {Sk : k ∈ Z}, {Hk : k ∈ Z} and {Rk : k ∈ Z} are R-bounded, proving
(ii).

Let now show (ii) =⇒ (i). We assume that Z ⊂ ρM,N (A,B) and the sets {ik3MNk : k ∈ Z},
{k2NNk : k ∈ Z}, {kBNk : k ∈ Z} and {kNk : k ∈ Z} are R-bounded. Let Mk = ik3MNk,
Sk = k2NNk, Hk = kBNk and Rk = kNk with k ∈ Z. It follows from Corollary 3.21 that
(Mk)k∈Z, (Sk)k∈Z, (Hk)k∈Z and (Rk)k∈Z are Lp-Fourier multipliers.

Note that:

(3.26) −IX = αMk + Sk + βANk + γiHk + ikGkNk + FkNk.

Next, observe that the R-boundedness of the set {kNk}k∈Z implies that the set {k(Nk+1−Nk)}
is also R-bounded. It follows from Theorem 3.14 that {Nk}k∈Z is an Lp-Fourier multiplier. In
particular, Nk ∈ B(X, [D(A) ∩D(B)]).

From (3.26) we deduce that {ANk}k∈Z is also an Lp-Fourier multiplier since the sum and
product of Lp-Fourier multipliers is still an Lp-Fourier multiplier.

Then for all f ∈ Lp(T, X) there exist w, u2 ∈ Lp(T, [D(A) ∩ D(B)]) and u1 ∈ Lp(T, X)
satisfying

(3.27) ŵ(k) = Nkf̂(k), û1(k) = ANkf̂(k), û2(k) = ikNkf̂(k).

Consequently, û2(k) = ikŵ(k) when k ∈ Z. This implies that w ∈ W 1,p
per(T; [D(A) ∩ D(B)]) [6,

Lemma 2.1] and w′(t) = u2(t) a.e. [6, Lemma 3.1]. In particular, w′ ∈ Lp(T, [D(A) ∩D(B)]).
Since {ikBNk}k∈Z is an Lp-Fourier multiplier, we have that there exists v ∈ Lp(T, X) such

that

(3.28) v̂(k) = B(ikNk)f̂(k) = Bû2(k) = Bŵ′(k), k ∈ Z.

It follows from [6, Lemma 3.1] that w′(t) ∈ D(B) and Bw′(t) = v(t) a.e. In addition, Bw′ ∈
Lp(T, X).
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Since the set {k2NNk}k∈Z is an Lp-Fourier multiplier by hypothesis, we deduce that there
exists u ∈ Lp(T, X) such that

(3.29) û(k) = −k2NNkf̂(k) = ikNû2(k) = ikNŵ′(k) = ikN̂w′(k),

where we have used that N is closed. It implies that Nw′ ∈ W 1,p
per(T;X) and u(t) = (Nw′)′(t)

a.e. In particular. (Nw′)′ ∈ Lp(T, X).
Analogously, since the set {k3MNk}k∈Z is an Lp-Fourier multiplier, there exists r ∈ Lp(T, X)

such that

(3.30) r̂(k) = −ik3MNkf̂(k) = −k2Mû2(k) = (ik)2M̂w′(k),

because M is closed. We deduce that Mw′ ∈ W 2,p
per(T, X) and (Mw′)′′(t) = r(t) a.e. Moreover,

(Mw′)′′ ∈ Lp(T, X).
We note that the sets {Gk}k∈Z and {Fk}k∈Z are Lp-Fourier multipliers by Remark 3.12. Thus

{ikGkNk}k∈Z and {FkNk}k∈Z are Lp-Fourier multipliers as the product of Lp-Fourier multipliers
is still an Lp-Fourier multiplier. Therefore, exists s1 ∈ Lp(T, X) such that

ŝ1(k) = ikGkNkf̂(k) = Gkû2(k) = Gkŵ′(k) = Ĝw′·(k), k ∈ Z.
We conclude that Gw′· ∈ Lp(T, X). Analogously, we have that there exists s2 ∈ Lp(T, X) such
that

ŝ2(k) = FkNkf̂(k) = Fkŵ(k) = F̂w·(k),

and hence Fw· ∈ Lp(T, X). We have shown that w ∈ Sp(A,B,M,N). Finally, from the identity
(3.26) we obtain

α ̂(Mw′)′′(k) + (̂Nw′)′(k) = αr̂(k) + û(k) = (−αik3MNk − k2NNk)f̂(k) = −(αMk + Sk)f̂(k)

= (IX + βANk + iγHk + ikGkNk + FkNk)f̂(k)

= f̂(k) + βAŵ(k) + γBŵ′(k) + Ĝw′·(k) + F̂w·(k).

This implies that

α(Mw′)′′(t) + (Nw′)′(t) = f(t) + βAw(t) + γBw′(t) +Gw′t + Fwt,

by the uniqueness theorem (see [6, Pag. 314]).
It only remains to prove uniqueness. Indeed, let w ∈ Sp(A,B,M,N) satisfying

(3.31) α(Mw′)′′(t) + (Nw′)′(t) = βAw(t) + γBw′(t) +Gw′t + Fwt, t ∈ T.
Taking Fourier transform in (3.31), we get that −[bkM+akN+βA+γ(ik)B+(ik)Gk+Fk]ŵ(k) =
0 for all k ∈ Z. Hence w = 0 as Z ⊂ ρM,N (A,B) by hypothesis. Thus, (3.12) is Lp-well-posed.
This completes the proof.

�

Remark 3.23. We point out the following

(i) Our result avoids the coercivity condition on the pair (A,B) assumed in [27, Section 3]
where the case M = 0, N = I is studied. In contrast, we have to assume extra conditions
on R-boundedness.

(ii) The hypothesis of R-boundedness of the set {kGk : k ∈ Z} is natural as it is required in
Theorem 4.7 of [27] when showing maximal regularity in Triebel-Lizorkin spaces.

(iii) Lp-well posedness does not depend on the parameter p, that is, if equation (3.12) is
Lp-well posed for some 1 < p <∞ then it is Lp-well posed for all 1 < p <∞.
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4. Well-posedness in Besov and Triebel-Lizorkin spaces

In this section, we show the well-posedness of problem (3.12) in periodic Besov spacesBs
p,q(T, X)

and periodic Triebel-Lizorkin spaces F sp,q(T, X). We first introduce the notion of vector-valued
periodic Besov spaces (see [7]).

Let S(R) be the space of all rapidly decreasing smooth functions on R and D(T) the space of
infinitely differentiable functions defined on T endowed with the locally convex topology defined
by the seminorms

||f ||n = sup
x∈T
|f (n)(x)| for n ∈ N.

Let D′
(T, X) := B(D(T), X), we consider the dyadic-like sets of R:

I0 = {t ∈ R : |t| ≤ 2}, Ik = {t ∈ R : 2k−1 ≤ |t| ≤ 2k+1}, k ∈ N.

Let φ(R) be the set of systems φ = (φk)k∈N ⊂ S(R) such that sup(φk) ⊂ Ik for each k ∈ N,∑
k∈N φk(x) = 1 for x ∈ R and for each α ∈ N, supx∈R,k∈N 2kα|φ(α)

k (x)| <∞. Let φ = (φk)k∈N ⊂
φ(R) be fixed, for all 1 ≤ p, q ≤ ∞, s ∈ R, the X-valued periodic Besov space is defined by

Bs
p,q(T, X) =

f ∈ D′
(T, X) : ||f ||Bs

p,q
:=

∑
j≥0

2sjq

∣∣∣∣∣
∣∣∣∣∣∑
k∈Z

ek ⊗ φj(k)f̂(k)

∣∣∣∣∣
∣∣∣∣∣
q

p

1/q

<∞

 .

The space Bs
p,q(T, X) endowed with the norm ||.||Bs

p,q
is a Banach space.

Remark 4.24. We note the following

(i) The space Bs
p,q(T, X) is independent of the choice of φ.

(ii) If s1 ≤ s2 then Bs1
p,q(T, X) ⊂ Bs2

p,q(T, X) and the embedding is continuous.

(iii) If s > 0, then Bs
p,q(T, X) ⊂ Lp(T, X), and f ∈ Bs+1

p,q (T, X) if and only if f is differen-

tiable a.e. on T and f
′ ∈ Bs

p,q(T, X).
In particular, (iii) implies that if u ∈ Bs

p,q(T, X) is such that there exists v ∈ Bs
p,q(T, X)

satisfying v̂(k) = ikû(k) when k ∈ Z, then u ∈ Bs+1
p,q (T, X) and u′ = v [6, Lemma 2.1].

In this section we consider the equation

(4.32) α(Mu′)′′(t) + (Nu′)′(t) = βAu(t) + γBu′(t) +Gu′t + Fut + f(t), t ∈ T := [0, 2π],

in 2π-periodic vector valued Bs
p,q-spaces. Once again A,B,N and M are closed linear operators

such that D(A) ∩D(B) ⊂ D(N) ∩D(M) and F,G ∈ B(Bs
p,q(−2π, 0);X), X).

Remark 4.25. As observed in [14, Section 3], Fk, Gk ∈ B(X) and there exists a constant C > 0
such that

‖Fk‖ ≤ C‖F‖, ‖Gk‖ ≤ C‖G‖, k ∈ Z.
Moreover, when u ∈ Bs

p,q(T, X) then

F̂ u·(k) = Fkû(k), Ĝu·(k) = Gkû(k), k ∈ Z.

However, in contrast with vector-valued Lebesgue spaces, the functions Fu· and Gu′· are not
necessarily in Bs

p,q(T, X) for 1 ≤ p, q ≤ ∞, s > 0. This particularity, will require the use of new
tools in the proof of the main result in this section.



WELL-POSEDNESS 15

Let 1 ≤ p, q ≤ ∞, s > 0. We define the maximal regularity space that describe the Bs
p,q-well

posedness of the equation (4.32) by

Sp,q,s(A,B,M,N) := {u ∈ Bs+1
p,q (T, [D(A) ∩D(B)]) ∩Bs

p,q(T, [D(A) ∩D(B)]) :

Mu′ ∈ Bs+2
p,q (T, X), Nu′ ∈ Bs+1

p,q (T, X), Au,Bu′, Fu·, Gu
′
· ∈ Bs

p,q(T, X)}.
The vectorial space Sp,q,s(A,B,M,N) is a Banach space with the norm

||u||Sp,q,s(A,B,M,N) :=||u||Bs
p,q

+ ||u′||Bs
p,q

+ ||Au||Bs
p,q

+ ||Nu′||Bs
p,q

+ ||(Nu′)′||Bs
p,q

+ ||(Mu′)′′||Bs
p,q

+ ||Bu′||Bs
p,q

+ ||Mu′||Bs
p,q

+ ||Fu·||Bs
p,q

+ ||Gu′·||Bs
p,q
.

We now provide the formal definition of Bs
p,q- well posedness of equation (4.32).

Definition 4.26. Let 1 ≤ p, q <∞, s > 0 and f ∈ Bs
p,q(T, X). We call u ∈ Sp,q,s(A,B,M,N)

a strong Bp,q-solution of (4.32) if it satisfies (4.32) for all t ∈ T. We say that (4.32) is Bs
p,q-

well-posed if for each f ∈ Bs
p,q(T, X), there exists a unique strong Bs

p,q-solution of (4.32).

Remark 4.27. If (4.32) is Bs
p,q-well-posed, by the Closed Graph Theorem, there exists a constant

C > 0 such that for each f ∈ Bs
p,q(T, X), we have

||u||Sp,q,s(A,B,M,N) ≤ C||f ||Bs
p,q
.

We now introduce the notion of Bs
p,q- Fourier multiplier introduced in that will be needed for

our characterization of well-posedness of equation (4.32) in Besov spaces (see [6]).

Definition 4.28. Let X,Y be Banach spaces, 1 ≤ p, q <∞, s ∈ R and let (Mk)k∈Z ⊂ B(X,Y ),
we say that (Mk)k∈Z is a Bs

p,q-Fourier multiplier if, for each f ∈ Bs
p,q(T, X) there exists u ∈

Bs
p,q(T, Y ) such that

û(k) = Mkf̂(k)

for all k ∈ Z.

The following important result, which was proved in [7], provides a sufficient condition for an
operator valued symbol to be a Bs

p,q- Fourier multiplier.

Theorem 4.29. Let X,Y be Banach spaces. If (Mk)k∈Z ⊂ B(X,Y ) is M -bounded of order 2,
then for 1 ≤ p, q ≤ ∞, s ∈ R the set (Mk)k∈Z is a Bs

p,q-Fourier multiplier.

Some important properties of Bs
p,q- Fourier multipliers can be found in [7]. Some of them are

the following:

Remark 4.30. We point out that:

(i) The sum and product of Bs
p,q-Fourier multipliers is a Bs

p,q- Fourier multiplier too.
(ii) If (Mk)k∈Z is a Bs

p,q-Fourier multiplier then it is uniformly bounded.

The following result shows necessary conditions for certain sets to be Bs
p,q-Fourier multipliers

and will be needed in the proof of the main theorem of this section.

Proposition 4.31. Let A,B and M be closed linear operators defined on a UMD space X
such that D(A) ∩ D(B) ⊂ D(M) ∩ D(N) and α, β, γ ∈ R. If Z ⊂ ρM,N (A,B), 0 ∈ ρ(M) and
{ik3MNk : k ∈ Z}, {k2NNk : k ∈ Z}, {kBNk : k ∈ Z}, {kNk : k ∈ Z} and {kGk : k ∈ Z} are
uniformly bounded, then (ik3MNk)k∈Z, (k2NNk)k∈Z, (kBNk)k∈Z and (kNk)k∈Z are Bs

p,q-Fourier
multipliers.
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Proof. Let Mk = iαk3MNk. In order to show that Mk is a Bs
p,q-Fourier multiplier and according

Theorem 4.29 we need to prove that supk∈Z(||Mk||+||k∆Mk||) <∞ and supk∈Z ||k2∆2Mk|| <∞.
The first assertion is a consequence of the hypothesis and Proposition 3.19 (cf. Remark 3.17). In
order to show the second one we apply Theorem 3.18 with ck = iαk3, which is clearly a 2-regular
sequence, Hk = Nk and T = M . By hypothesis supk∈Z ‖Mk‖ < ∞. Moreover, by Proposition
3.19 it follows that supk∈Z ‖kLk‖ <∞, then it only remains to show that supk∈Z ‖k2∆Lk‖ <∞.
Indeed, we have

Lk = (Nk
−1 −N−1

k+1)Nk = [−∆bkM −∆akN − iγB + ikGk − i(k + 1)Gk+1 + (Fk − Fk+1)]Nk.

Then,

k2∆Lk = k2[(bk+1 − bk+2)MNk+1 − (bk − bk+1)MNk]

+ k2[(ak+1 − ak+2)NNk+1 − (ak − ak+1)NNk]

− iγk2B∆Nk

+ [i(k + 1)Gk+1k
2Nk+1 − i(k + 2)Gk+2k

2Nk+2 − ikGkk2Nk + i(k + 1)Gk+1k
2Nk]

+ [(Fk+1 − Fk+2)k2Nk+1 − (Fk − Fk+1)k2Nk],

where ak = k2 and bk = iαk3. It remains to prove that each summand in the right hand side is
bounded. In fact, a calculation shows the identity

(bk+1 − bk+2)Nk+1 − (bk − bk+1)Nk = −(∆2bk)Nk+1 +
∆bk
bk

[
(bkNk − bk+1Nk+1) +Nk+1(∆bk)

]
.

Therefore

k2[(bk+1 − bk+2)MNk+1 − (bk − bk+1)MNk] = −k2 (∆2bk)

bk

bk
bk+1

(bk+1MNk+1)

+ k
∆bk
bk

[k(bkMNk − bk+1MNk+1)

+ bk+1MNk+1
bk
bk+1

{
k(∆bk)

bk

}2

].

Since the sequence bk is 2-regular, Mk = bkMNk and k∆Mk are bounded, the above identity
shows that

sup
k∈Z
‖k2[(bk+1 − bk+2)MNk+1 − (bk − bk+1)MNk]‖ <∞.

Analogously and following the same procedure since ak is also 2-regular, Sk = akNNk and k∆Sk
are bounded, we obtain that

sup
k∈Z
‖k2[(ak+1 − ak+2)NNk+1 − (ak − ak+1)NNk]‖ <∞.

Next, note that in Proposition 3.19 it was shown that supk∈Z ‖k∆(kBNk)‖ <∞. Since

k∆(kBNk) = k[BNk + (k + 1)B∆Nk],

and supk∈Z ‖kBNk‖ <∞ by hypothesis, we deduce that supk∈Z ‖k2B∆Nk‖ <∞.
For the following two terms, observe that 0 ∈ ρ(M) and the identity k2Nk = 1

kM
−1Mk for

k 6= 0, implies

sup
k∈Z
‖k2Nk‖ <∞.
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This fact together with the hypothesis on the boundedness of the sets {kGk}k∈Z and {Fk}k∈Z
proves the claim. Consequently, (ik3MNk)k∈Z is a Bs

p,q-Fourier multiplier.

Let now Mk = k2NNk. It is clear by Proposition 3.19 that supk∈Z(||Mk|| + ||k∆Mk||) < ∞.
To prove that supk∈Z ||k2∆2Mk|| < ∞ we apply the second part of Theorem 3.18 with ck =
k2, Hk = Nk and T = N. By hypothesis and Proposition 3.19 it follows that supk∈Z ‖Mk‖ <∞
and supk∈Z ‖kLk‖ < ∞, respectively. It remains to show that supk∈Z ‖k2∆Lk‖ < ∞, where Lk
is exactly the same that in the above computation. Therefore, (k2NNk)k∈Z is a Bs

p,q-Fourier
multiplier.

Let now Mk = kBNk. It is clear by Proposition 3.19 that supk∈Z(||Mk|| + ||k∆Mk||) < ∞.
To prove that supk∈Z ||k2∆2Mk|| < ∞ we apply the second part of Theorem 3.18 with ck =
k,Hk = Nk and T = B. By hypothesis and Proposition 3.19 it follows that supk∈Z ‖Mk‖ < ∞
and supk∈Z ‖kLk‖ < ∞, respectively. It remains to show that supk∈Z ‖k2∆Lk‖ < ∞, where
Lk is exactly the same that in the above computation. Therefore, (kBNk)k∈Z is a Bs

p,q-Fourier
multiplier.

Finally, we set Mk = kNk. Again Proposition 3.19 shows that supk∈Z(||Mk|| + ||k∆Mk||) <
∞. We apply Theorem 3.18 with ck = k,Hk = Nk and T = I. We have supk∈Z ‖Mk‖ < ∞
and supk∈Z ‖kLk‖ < ∞ by hypothesis and Proposition 3.19, respectively. Then the fact that
supk∈Z ‖k2∆Lk‖ <∞ was just proved. Consequently, (kNk)k∈Z is a Bs

p,q-Fourier multiplier.
�

We shall enunciate the main result of this section. The proof follows essentially the same
steps than the proof of Theorem 3.22. However, we include here the proof in order to make clear
to the reader the essential changes that have to be done in order to treat with the delay terms
and how to assume less hypothesis than in Theorem 3.22.

Theorem 4.32. Let 1 ≤ p, q ≤ ∞, s > 0 and α, β, γ ∈ R. Assume A,B and M,N are closed
linear operators defined on a Banach space X such that D(A) ∩ D(B) ⊂ D(M) ∩ D(N) and
0 ∈ ρ(M). Assume that {kGk : k ∈ Z} is uniformly bounded. The following assertions are
equivalent:

(i) The equation

α(Mu′)′′(t) + (Nu′)′(t) = βAu(t) + γBu′(t) +Gu′t + Fut + f(t), t ∈ [0, 2π]

is Bs
p,q-well posed;

(ii) Z ⊂ ρM (A,B) and the sets {iαk3MNk : k ∈ Z}, {k2NNk : k ∈ Z} and {γkBNk : k ∈ Z}
are uniformly bounded.

Proof. (i) =⇒ (ii) follows the same lines of Theorem 3.22 and therefore is omitted. We prove
(ii) =⇒ (i). We assume that Z ⊂ ρM,N (A,B) and the sets {ik3MNk : k ∈ Z}, {k2NNk : k ∈ Z}
and {kBNk : k ∈ Z} are uniformly bounded.

Since 0 ∈ ρ(M), the identities kNk = 1
k2
M−1(k3MNk) and k2Nk = 1

kM
−1(k3MNk) show

that the sets {kNk : k ∈ Z} and {k2Nk : k ∈ Z} are also uniformly bounded. Therefore
the sets {k(Nk+1 − Nk)}k∈Z and {k2(Nk+2 − 2Nk+1 + Nk)}k∈Z are uniformly bounded and
hence by Theorem 4.29 the set {Nk}k∈Z is a Bs

p,q-Fourier multiplier. Let Mk = ik3MNk,

Sk = k2NNk, Hk = kBNk and Rk = kNk with k ∈ Z. It follows from Proposition 4.31 that
(Mk)k∈Z, (Sk)k∈Z, (Hk)k∈Z and (Rk)k∈Z are Bs

p,q-Fourier multipliers.
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Let f ∈ Bs
p,q(T, X) be given. Since {Nk}k∈Z and {Rk}k∈Z are Bs

p,q-Fourier multipliers, there
exists w, u2 ∈ Bs

p,q(T, [D(A) ∩D(B)]) such that

(4.33) ŵ(k) = Nkf̂(k), û2(k) = ikNkf̂(k).

Consequently, û2(k) = ikŵ(k) for k ∈ Z and we obtain w ∈ Bs+1
p,q (T; [D(A) ∩ D(B)]) and

w′(t) = u2(t) a.e. (cf. Remark 4.24).
Moreover, there exist r, u ∈ Bs

p,q(T, X) satisfying that

(4.34) r̂(k) = −Mkf̂(k) = −ik3MNkf̂(k) = (ik)2Mû2(k) = (ik)2M̂w′(k),

and

(4.35) û(k) = −Skf̂(k) = −k2NNkf̂(k) = ikNû2(k) = ikNŵ′(k) = ikN̂w′(k),

where we have used that M and N are closed linear operators. We deduce that (Mw′)′′ =
r, Mw′ ∈ Bs+2

p,q (T, X) and (Nw′)′ = u, Nw′ ∈ Bs+1
p,q (T, X).

Now, we claim that (FkNk)k∈Z and (ikGkNk)k∈Z are Bs
p,q-Fourier multipliers. Indeed, we

first show that the sets {k∆(FkNk)}k∈Z and {k∆(kGkNk)}k∈Z are uniformly bounded. In fact,
from the identity Nk = 1

k (kNk) we deduce that {Nk}k∈Z is uniformly bounded. It follows from
Remark 4.25 that {FkNk : k ∈ Z} and {ikGkNk : k ∈ Z} are uniformly bounded. On the other
hand, the identities

k(Fk+1Nk+1 − FkNk) = Fk+1(
k

k + 1
Rk+1)− Fk(kNk)

and

k[i(k + 1)Gk+1Nk+1 − ikGkNk] = i
k2

(k + 1)2
(k + 1)Gk+1Rk+1 − ikGk(Rk) + i

k

k + 1
Gk+1Rk+1,

show that the sets {k∆(FkNk)}k∈Z and {k∆(kGkNk)}k∈Z are uniformly bounded. This proves
the claim.

It only remains to show that the sets {k2∆(FkNk)}k∈Z and {k2∆(kGkNk)}k∈Z are uniformly
bounded. In fact, since 0 ∈ ρ(M) and the identity k2Nk = 1

kM
−1Mk for k 6= 0, we obtain that

the set {k2Nk}k∈Z is uniformly bounded. Therefore, the identities

k2(Fk+1Nk+1 − FkNk) = Fk+1(
k2

(k + 1)2
(k + 1)2Nk+1)− Fk(k2Nk)

and

k2[i(k + 1)Gk+1Nk+1 − ikGkNk] = i
k2

(k + 1)2
(k + 1)Gk+1(k + 1)2Nk+1 − ikGk(k2Nk),

show that the sets {k2∆(FkNk)}k∈Z and {k2∆(kGkNk)}k∈Z are uniformly bounded since they
are sum and product of uniformly bounded sets. Then, by Theorem 4.29, our claim follows i.e.
(FkNk)k∈Z and (ikGkNk)k∈Z are Bs

p,q-Fourier multipliers. From this and (4.33) it follows that
there exist s1, s2 ∈ Bs

p,q(T, X) such that

(4.36) ŝ1(k) = ikGkNkf̂(k) = Gkû2(k) = Gkŵ′(k) = Ĝw′·(k),

and

(4.37) ŝ2(k) = FkNkf̂(k) = Fkŵ(k) = F̂w·(k).

Therefore, Gw′· = s1 ∈ Bs
p,q(T, X) and Fw· = s2 ∈ Bs

p,q(T, X).
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From (3.26) we deduce that (ANk)k∈Z is also an Bs
p,q-Fourier multiplier since it can be

expressed as the sum and product of Bs
p,q-Fourier multipliers. Therefore, there exists u1 ∈

Bs
p,q(T, X), such that

(4.38) û1(k) = ANkf̂(k) = Aŵ(k),

where we have used (4.33) in the last equality. By [6, Lemma 3.1] we obtain w(t) ∈ D(A) and
Aw = u1 ∈ Bs

p,q(T, X). Finally, since {Hk}k∈Z is Bs
p,q-Fourier multiplier, we obtain that there

exists v ∈ Bs
p,q(T, X) such that

(4.39) v̂(k) = iHkf̂(k) = B(ikNk)f̂(k) = Bû2(k) = Bŵ′(k).

It follows from [6, Lemma 3.1] that w′(t) ∈ D(B) and Bw′ = v ∈ Bs
p,q(T, X). From (3.26) note

that:

(4.40) f̂(k) = −αMkf̂(k)− Skf̂(k)− βANkf̂(k)− γiHkf̂(k)− ikGkNkf̂(k)− FkNkf̂(k).

Replacing (4.34) - (4.39) in (4.40) we obtain by the uniqueness of the Fourier coefficients that

α(Mw′)′′(t) + (Nw′)′(t) = βAw(t) + γBw′(t) +Gw′t + Fwt + f(t), t ∈ T.

This shows the existence. It only remains to prove uniqueness. Indeed, let w ∈ Sp,q,s(A,B,M,N)
satisfying

(4.41) α(Mw′)′′(t) + (Nw′)′(t) = βAw(t) + γBw′(t) +Gw′t + Fwt, t ∈ T.

Taking Fourier transform in (4.41), we get that −[bkM+akN+βA+γ(ik)B+(ik)Gk+Fk]ŵ(k) =
0, for all k ∈ Z. Hence w = 0 as Z ⊂ ρM,N (A,B) by hypothesis. Thus, equation (4.32) is Bs

p,q-
well-posed. �

Since the second statement of Theorem 4.32 does not depend on the parameters p, q and s,
the following result follows immediately.

Corollary 4.33. Let X be a Banach space and let A,B and M be closed linear operators defined
on a Banach space X such that D(A) ∩D(B) ⊂ D(M) ∩D(N) and α, β, γ ∈ R. Then equation
(4.32) is Bs

p,q-well-posed for some 1 ≤ p, q ≤ ∞, s > 0 if and only if it is Bs
p,q-well-posed for all

1 ≤ p, q ≤ ∞, s > 0.

To finish this section, we consider well-posedness in periodic Triebel-Lizorkin spaces F sp,q with
1 ≤ p < ∞, 1 ≤ q ≤ ∞, s ∈ R. We omit the definition and properties of these spaces but we
refer the reader to [16] for the details.

We consider the problem:

(4.42) α(Mu′)′′(t) + (Nu′)′(t) = βAu(t) + γBu′(t) +Gu′t + Fut + f(t), t ∈ T := [0, 2π],

in 2π-periodic vector valued F sp,q-spaces. Here A,B,N and M are closed linear operators such
that D(A) ∩D(B) ⊂ D(N) ∩D(M) and F,G ∈ B(F sp,q(−2π, 0);X), X).

We define the solution space of the F sp,q- well-posedness of (4.42) by

Fp,q,s(A,B,M,N) := {u ∈ F s+1
p,q (T, [D(A) ∩D(B)]) ∩ F sp,q(T, [D(A) ∩D(B)]) :

Mu′ ∈ F s+2
p,q (T, X), Nu′ ∈ F s+1

p,q (T, X), Au,Bu′, Fu·, Gu
′
· ∈ F sp,q(T, X)}.

The definition of F sp,q- well posedness of equation (4.42) is as follows.
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Definition 4.34. Let 1 ≤ p < ∞, 1 ≤ q ≤ ∞, s > 0 and f ∈ F sp,q(T, X). We call u ∈
Fp,q,s(A,B,M) a strong Fp,q-solution of (4.32) if it satisfies (4.32) for all t ∈ T. We say that
(4.32) is F sp,q-well-posed if for each f ∈ F sp,q(T, X), there exists a unique strong F sp,q-solution of
(4.32).

Using a similar argument as the one in the proof of Theorem 4.32, we obtain the following
characterization of the F sp,q- well posedness of equation (4.32). In order to prove this result we
use the operator-valued Fourier multiplier theorem proved in [16]. We omit the details.

Theorem 4.35. Let 1 ≤ p < ∞, 1 ≤ q ≤ ∞, s > 0 and α, β, γ ∈ R. Assume A,B and M are
closed linear operators defined on a Banach space X such that D(A) ∩D(B) ⊂ D(M) ∩D(N)
and 0 ∈ ρ(M). Assume that {kGk : k ∈ Z} is uniformly bounded. The following assertions are
equivalent:

(i) The equation

α(Mu′)′′(t) + (Nu′)′(t) = βAu(t) + γBu′(t) +Gu′t + Fut + f(t), t ∈ [0, 2π]

is F sp,q-well posed;

(ii) Z ⊂ ρM (A,B) and the sets {iαk3MNk : k ∈ Z}, {k2NNk : k ∈ Z}, {γkBNk : k ∈ Z}
are uniformly bounded.

Similarly to Corollary 4.33 we obtain the following result.

Corollary 4.36. Let X be a Banach space and let A,B and M,N be closed linear operators
defined on a Banach space X such that D(A) ∩D(B) ⊂ D(M) ∩D(N) and α, β, γ ∈ R. Then
equation (4.32) is F sp,q-well-posed for some 1 ≤ p < ∞, 1 ≤ q ≤ ∞, s > 0 if and only if it is
F sp,q-well-posed for all 1 ≤ p <∞, 1 ≤ q ≤ ∞, s > 0.

5. Applications

We first consider the following inverse problem:

(5.43) α(Mu′)′′(t) + (Nu′)′(t) = βAu(t) + γBu′(t) + f(t)z, t ∈ [0, 2π],

with the additional information

(5.44) Φ[Mu′(t)] = g(t) Φ[Nu′(t)] = h(t),

where z ∈ X,Φ ∈ X∗ and the unknown (u, f) is to be determined.
This kind of inverse problems was recently studied by Al Horani and Favini [3] when A is

the generator of a semigroup in X in case B = I,M = N = 0 [3, Theorem 2.1] and under
the assumption that B is dissipative defined on a Hilbert space in case M = 0, N = I [3,
Theorem 4.1]. In this section, we consider existence and uniqueness of solutions for the general
case (5.43)-(5.44) under new hypotheses, as the ones given in our main results in the previous
sections. Observe that we can considerably relax the hypotheses on A,B,M and N thanks to
the remarkable fact that in our main theorems we do not require any assumptions on generation
of semigroups or even cosine operator functions.

Our identification result in case of vector-valued Lebesgue spaces read as follows.
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Theorem 5.37. Suppose that A,B,M and N are closed linear operators defined on a UMD
space X such that D(A) ∩ D(B) ⊂ D(M) ∩ D(N). Suppose that z ∈ X,Φ ∈ X∗,Φ[z] 6= 0, g ∈
W 2,p
per(T,C), h ∈W 1,p

per(T,C). We define the following operators

A1u = −Φ[Au]

Φ[z]
z, u ∈ D(A1) = D(A),

and

B1v = −Φ[Bv]

Φ[z]
z, v ∈ D(B1) = D(B),

and assume that for each k ∈ Z the operator

Nk := [iαk3M + k2N + β(A+A1) + ikγ(B +B1)]−1

exists as a bounded linear operator in X and the sets {iαk3MNk}k∈Z,{k2MNk}k∈Z, {γkBNk}k∈Z
and {kNk}k∈Z are R-bounded. Then, (5.43)-(5.44) admits a unique strong solution

(u, f) ∈W 1,p
per(T, [D(A) ∩D(B)]) ∩ Lpper(T, [D(A) ∩D(B)])× Lp(T,C).

Proof. Applying Φ to (5.43) and taking into account (5.44), we obtain

(5.45) f(t) =
1

Φ[z]

[
αg′′(t) + h′(t)− βΦ[Au(t)]− γΦ[Bu′(t)]

]
.

Therefore, the given inverse problem (5.43)-(5.44) translates into the following direct problem:

α(Mu′)′′(t) + (Nu′)′(t) = βAu(t) + γBu′(t) + [αg′′(t) + h′(t)]
z

Φ[z]
− βΦ[Au(t)]

Φ[z]
z − γΦ[Bu′(t)]

Φ[z]
z

= β(A+A1)u(t) + γ(B +B1)u′(t) + [αg′′(t) + h′(t)]
z

Φ[z]
.(5.46)

Since αg′′+h′ ∈ Lp(T), it follows from the hypothesis and Theorem 3.22 that the inverse problem
(5.43)-(5.44) admits a unique strong solution u ∈ Sp,q,s(A,B,M,N). Hence, the pair (u, f),

where f is given by (5.45), solves the identification problem with regularity u ∈W 1,p
per(T, [D(A)∩

D(B)]) ∩ Lpper(T, [D(A) ∩D(B)]) with u′ ∈ Lp(T, [D(A) ∩D(B)]) and f ∈ Lp(T,C). �

We remark that analogous results can be established using theorems 4.32 and 4.35. Finally,
we provide the following simple example to illustrate the treatment of equations with delay.

Example 5.38. We consider the following integro-differential equation with delay
(5.47)

α
∂3(q(x)u(t, x))

∂t3
+
∂2(q(x)u(t, x))

∂t2
= β

∂2u

∂x2
(t, x) + u(t− τ, x) + f(t, x), t, x ∈ T := [0, 2π],

where α, β ∈ R, τ ∈ (0, 2π), f is a given function on T×T and q is a measurable function such
that the multiplication operator

(Mf)(t) = q(t)f(t)

with domain D(M) := {f ∈ L2(T) | q ·m ∈ L2(T)} has a bounded inverse. This last property
holds if and only if 0 /∈ qess(T), the essential range of q [21, Chapter I, Proposition 4.10]; In
such case, we know that ‖M−1‖ = ‖q−1‖∞ := sup{|λ| : λ ∈ q−1

ess(T)} [21, Proposition 4.10].
We define the operator (A,D(A)) on L2(T) as

Af = f ′′, D(A) = {f ∈ L2(T)| f ′, f ′′ ∈ L2(T), f(0) = f(2π) = 0}.
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It is known that σ(A) = σp(A) = {−n2 : n ∈ N}. We define the operator F : Lp((−2π, 0), L2(T))→
L2(T) by F (ϕ) = ϕ(−τ). It is clear that F is linear and ‖F (ϕ)‖ ≤ ‖ϕ‖p. Then equation (5.47)

labels into the scheme of (3.12) with A = ∆ = ∂2

∂x2
the one-dimensional Dirichlet Laplacian on

L2(T), M = N the multiplication operator by q on L2(T), γ = 0 and G = 0.
By [24] (see also the introduction) it is known that there exists a constant c > 0 such that

(5.48) ‖M(zM −∆)−1‖ ≤ c

1 + |z|
for all z such that <(z) ≥ −c(1 + |Im z|). We will show that for all α, β such that

(5.49) |α| ≥ 1

c
and β > c‖q−1‖∞

equation (5.47) is Lp(T, L2(T))-well posed.

Indeed, let zk = −k2

β − i
αk3

β . From (5.49) it follows that <(zk) ≥ −c(1+ |Im zk|) for all k ∈ Z.
Then we get from estimate (5.48) that

‖M((k2 + iαk3)M + β∆)−1‖ ≤ c

β + |k2 + iαk3|
.

On the other hand, since the multiplication operator M is invertible on L2(T) we have

‖((k2 + iαk3)M + β∆)−1Fk‖ ≤ ‖M−1‖‖M((k2 + iαk3)M + β∆)−1‖‖F‖

≤ ‖M−1‖ c

β + |k2 + iαk3|
≤ c

β
‖q−1‖∞ < 1.

We also get using the Neumann’s series that

‖(I + Fk((k
2 + iαk3)M + β∆)−1)−1‖ < 1

1− c
β‖M−1‖

.

We conclude that Nk = [(k2 + iαk3)M +β∆]−1[I+Fk((k
2 + iαk3)M +β∆)−1]−1 is well defined,

Z ⊂ ρM (∆) and

‖kNk‖ ≤ ‖M−1‖ c|k|
β + |k2 + iαk3|

1

1− c
β‖M−1‖

.

It follows that supk ||kNk|| <∞ and analogously it can be checked that supk ‖k3MNk‖ <∞.
From part (ii) of Theorems 3.22 it follows that equation (5.47) is Lp-well posed for all 1 < p <∞.
Moreover, from theorems 4.32 and 4.35 it is also Bs

p,q and F sp,q-well posed for all 1 ≤ p <∞, 1 ≤
q ≤ ∞, s > 0.
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