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Abstract An experimental investigation of the flow inside a rectangular cylinder
with air injected continuously along the wall is performed. This kind of flow is a
two-dimensional approximation of what happens inside a solid rocket motor, where
the lateral grain burns expelling exhaust gas or in processes with air filtration or
devices to attain uniform flows. We propose a brief derivation of some analytical
solutions and a comparison between these solutions and experimental data, which
are obtained using the Particle Image Velocimetry (PIV) technique, in order to
provide a global reconstruction of the flowfield. The flow, which enters orthogonal
to the injecting wall, turns suddenly its direction being pushed towards the exit of
the chamber. Under the incompressible and inviscid flow hypothesis, two analyt-
ical solutions are reported and compared. The first one, known as Hart-McClure
solution, is irrotational and the injection velocity is non-perpendicular to the in-
jecting wall. The other one, due to Taylor and Culick, has non-zero vorticity and
constant, vertical injection velocity. The comparison with laminar solutions is use-
ful to assess whether transition to turbulence is reached and how the disturbance
thrown in by the porous injection influences and modifies those solutions.
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A area of the porous plate; A = 120 cm2

A
0

amplitude of acoustic waves
Bj j-th bin of the histogram representation
H height of the channel; H = 2 cm
I turbulence intensity; I =
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hu0u0i+ hv0v0i
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I
p

turbulence intensity peak; maxy I
L length of the channel; L = 24 cm
N

bin

total number of bins
P divergence of a two-dimensional flow, first invariant of ru; P = @u

@x + @v
@y

Q third invariant of ru; Q = @u
@x

@v
@y � @u

@y
@v
@x

U
inj

injection velocity
� discriminant of the eigenvalues characteristic equation for the two-dimensional

ru; � = P 2 � 4Q
⌦z transversal component of vorticity
·̄ spatial average; i.e. a discrete approximation of the integral 1

L

R L
0

s(x) dx
·0 fluctuation of a variable with respect the mean
·⇤ dimensional variable
ṁ volume flow rate
� wavelength
h·i ensemble average; e.g. hsi = 1

N

PN
i=1

si where N is the number of data
Re

inj

injection Reynolds number; Re
inj

= HU
inj

/⌫
⌫ kinematic viscosity of fluid
 stream function
⌦ vorticity
u velocity vector
hi i-th horizontal acoustic eigenmode; hi = A

0

sin
�
i 2⇡
4Lx

�

k wavenumber
p pressure
u horizontal component of velocity
v vertical component of velocity
vi i-th vertical acoustic eigenmode; vi = A

0

sin
�
i 2⇡
2H x

�

w transversal component of velocity
x horizontal direction. Distance with the head end of the channel
y vertical direction
z transversal direction
HC Hart-McClure solution
PDF probability density function
TC Taylor-Culick solution

1 Introduction

This paper presents an experimental study of the the flow inside a rectangular
cylinder with one of the two long sides injecting air through a porous plate. This
kind of flow represents a two-dimensional approximation of what happens in a solid
or hybrid rocket motor or in the flow of filtered gas in heat exchangers or micro-
mixers. The first study of a wall-injected flow inside a rectangular cylinder is due
to Taylor (1956), who studied injection from the inner wall of a cone and a wedge
that admit respectively as limit cases a cylinder and a parallelepiped. Also Culick
(1966) and Varapaev and Yagodkin (1969) proposed a steady solution, i.e. the
mean flow, of the incompressible and inviscid model, respectively for the cylindrical
and planar configuration. These solutions were found under the same hypotesis
of non-zero vorticity, and we will refer to both as Taylor-Culick (TC). Earlier,
an irrotational solution was proposed by Hart and McClure (1959) and McClure
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An experimental study of wall–injected flows in a rectangular cylinder 3

et al (1963), referred to as Hart-McClure (HC). Both TC and HC models can
be numerically integrated when viscosity is taken into account. More complex
solutions exist for the cylindrical configuration, see Majdalani and Fist (2014),
but they do not have a planar counterpart and therefore they are not discussed
here.

For high injection Reynolds number, Re
inj

= HU
inj

/⌫, with H the height of
the channel, U

inj

the injection velocity and ⌫ the kinematic viscosity, between 675
and 2500, theoretical studies of linear stability were carried out on the TC mean
flow by Casalis et al (1998) and Gri↵ond et al (2000), by superposing a normal
perturbation. Even though a normal perturbation is not consistent with a non-
parallel flow, it fits very well with experimental results obtained by Avalon et al
(1998) and Gri↵ond et al (2000) with the VECLA facility, at the ONERA-Palaiseau
laboratory, by means of hot wire measurements. Also PLIF visualizations of the
hydrodynamic instabilities have been conducted by Avalon et al (2001) with the
VECLA: a rectangular cylinder with optical access on one side and air injected
from the bottom through a porous plate. A feature of this linear stability analysis
is that, for a given unstable mode and position, there is a continuous range of
unstable frequencies. A discrete spectrum is, instead, yielded by a technique that
does not make any assumption on the longitudinal shape of the eigenfunctions
as stated by Féraille and Casalis (2005), Casalis et al (2006), Chedevergne et al
(2006). Anyhow, only temporally damped modes are obtained, but the shape of the
eigenmodes, which show a quasi-exponential growth in space, is thought to be the
cause of hydrodynamic instability. Indeed, according to Culick (1966) and Flandro
(1986), hydrodynamic instability is activated when amplitude of perturbation and
acoustic frequencies of the chamber match, in some sense.

From the theoretical study of Beddini (1986), based on a broad range of
Reynolds numbers, emerges that the relation between injection Reynolds number
and position at which instability or transition occurs, depends on the pseudo-
turbulence parameter

p
hv0v0i, that is the rms of the injection velocity. This is

related to the non-uniformity of the injected velocity from the porous medium, as
shown by Pimenta and Mo↵at (1974) and Perrotta et al (2017). Indeed, the study
performed by Yagodkin (1980) does not predict transition for injection Reynolds
numbers ranging from 4 to 125, which was, instead, observed by Olson and Eckert
(1966) and Huesmann and Eckert (1968). Beddini describes three regimes when
moving downstream into the cylinder: laminar, transitional and fully turbulent. In
the first two regimes, the mean velocity profiles correspond to the one provided by
the laminar theory, but the transitional one is characterized by the presence of pro-
nounced turbulence intensity peaks. The third regime is furthermore characterized
by a change in the shape of the mean velocity profiles.

Herein, we investigate the wall-injected flow, with an injection Reynolds num-
ber around 100, by means of Particle Image Velocimetry (PIV), in order to assess
the relation between disturbances introduced by the injection and transition of the
mean flow from the first to the second regime described above. PIV is particularly
indicated because it is non-intrusive and provides a global and accurate view of
the velocity field in the whole observed region, see also Laboureur et al (2010).
The mean flow is reconstructed and the statistics of the fluctuations around the
mean field is derived, in order to investigate the basic mechanisms leading to de-
partures from the laminar theoretical approximation presented in the next section.
This is the main objective of this work, together with the detailed investigation
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4 A. Perrotta et al.

on the inlet flow behaviour downstream the porous plate. At the present Reynolds
numbers, it is possible to attain very high spatial resolution with Particle Image
Velocimetry, thus allowing a detailed description of the flow features after the grain
section of the porous plate.

The paper is structured as follows. Sect. 2 shows the analytical reference solu-
tions. Then, Sect. 3 describes the experimental set-up and in Sect. 4 experimental
data are analyzed. Finally, conclusions and future works are provided in Sect. 5.

2 Analytical solutions

In order to find an analytical solution of the mean flow, as already stated in the
introduction, we consider the incompressible and inviscid Navier-Stokes equations

r · u = 0 (1)

(u ·r)u = �rp. (2)

The simplest solution, which is due to Hart-McClure, makes the irrotational as-
sumption r ⇥ u = 0. Let us assume a planar, two-dimensional configuration as
shown in Fig. 1 so that the stream function,  , is proved to exist. Here, super-
scripted variables have dimensions while dimensionless variables are defined as
follows

(x, y, z) =
(x⇤, y⇤, z⇤)

H
and u =

u

⇤

U
inj

, (3)

where U
inj

is the injection velocity from the wall and H is the height of the rectan-
gular cylinder as sketched in Fig 1. In this section, each variable is dimensionless,
but in the following we will omit superscripts and it will be clear from the con-
text whether variables have dimensions or not. From the stream function, the two
components of the velocity field are obtained as u = @ /@y and v = �@ /@z. The
conservation of mass implies

Z
0

�1

@ 

@y
dy = x, (4)

then @ /@y should be a linear function of x and can be written as

@ 

@y
= x↵(y) + �(y) =)  (x, y) = x

Z
↵(y) dy +

Z
�(y) dy + �(x) (5)

z⇤

y⇤

H

x⇤

y⇤

L

H U
inj

Fig. 1: Sketch of the planar configuration and reference frame
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An experimental study of wall–injected flows in a rectangular cylinder 5

with ↵(y) and �(y) two unknown functions such that

Z
0

�1

↵(y) dy = 1, (6)

Z
0

�1

�(y) dy = 0. (7)

The zero vorticity hypothesis can be expressed in terms of the stream function

⌦z = r2 = 0 (8)

that, thanks to (5), yields

0 ⌘ @2 

@x2

+
@2 

@y2
= �00(x) + x↵0(y) + �0(y) =) �0(y) = ��00(0) for all y.

Since

�00(x) = �@v
@x

(x,�1) = �@Uinj

@x
⌘ 0, (9)

�0(y) equals zero for all y 2 [�1, 0]. Furthermore, thanks to Eq. (7), � has zero
integral, hence �(y) ⌘ 0. Up to an additive constant, see Eq. (5) and (9), we can
choose the stream function as  (x, y) = xF (y)1. Thus, Equation (8) becomes an
ordinary di↵erential equation in F

xF 00(y) = 0 =) F (y) = Ay +B. (10)

Now, imposing the boundary conditions

(
v(y = 0) = 0

v(y = ±1) = ⌥1
(11)

yields B = 0 and A = 1. Then

u = x and v = �y. (12)

These are the predicted non-dimensional, velocity components under the hypoth-
esis of irrotational flow. Note that this solution has oblique injection velocity at
the wall. This will be referred to as HC solution.

On the other hand, Varapaev and Yagodkin, under the previous hypothesis
on the stream function, did not impose the vorticity to be zero, but solved the
vorticity equation r⇥(u⇥⌦) = 0, which is actually scalar, with constant injection
velocity and impermeability at the upper wall,

8
>>>>><

>>>>>:

x(FF 000 � F 0F 00) = 0

v(x,�1) = �F (�1) = 1

v(x, 0) = �F (0) = 0

u(x,�1) = F 0(�1) = 0,

(13)

1 We proved that this form of  is a consequence of the conservation of mass under the zero
vorticity hypothesis. Without this hypothesis we are not able to prove that � is zero.
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6 A. Perrotta et al.

which admits the non-unique solution

F (y) = (�1)n sin
h⇣⇡

2
+ n⇡

⌘
y
i
. (14)

The only physical solution, which gives a radial velocity vanishing only on the axis,
is the case with n = 0, the other ones being excluded as unphysical. Therefore

u =
⇡x

2
cos

⇣⇡y
2

⌘
and v = � sin

⇣⇡y
2

⌘
. (15)

This is the solution of non-dimensional, velocity components for the rotational
flow condition to be referred as TC solution. Note that r⇥ u 6= 0, in fact

⌦z = r2 = �x⇡2

4
sin

⇣⇡y
2

⌘
. (16)

A third approximation is to consider rotational, viscous conditions so that
Eq. (13) becomes 8

>>>>>>>><

>>>>>>>>:

FF 000 � F 0F 00 = Re�1

inj

F 0000

v(x,�1) = �F (�1) = 1

v(x, 0) = �F (0) = 0

u(x,�1) = F 0(�1) = 0

u(x, 0) = F 0(0) = 0

(17)

when the no-slip condition is imposed at the wall in y = 0. While Eqs. (12) and (15)
are analytical solutions, Equation (17) can be solved numerically.

3 Experimental set-up

In order to reproduce the flow configuration described in Fig. 1, a rectangular
cylinder has been considered. It is mostly made of Plexiglas to allow optical access
and has an injecting-wall made of a porous Polyethylene plate, with a porosity—
i.e. the maximum size of the pores—of 20 µm. Another feature of porous materials
is the void fraction or open-area ratio, i.e. hole-area/total-area, that is not directly
available as in homogenous screens. Anyhow, the structure of a Polyethylene plate
exhibits several homogenous spheres sintered together, therefore the void fraction
should correspond to the empty space between these spheres. Let d

s

be the di-
ameter of one sphere and L ⇥ H the sample dimensions, then a two-dimensional
array of spheres occupies a percentage of the total area equal to H�ds

H
⇡

2

p
3

! 0.9

as H tends to infinity, which is furthermore independent on the diameter of the
sphere. Therefore, the void fraction is about 10% and does not depend on the
porosity. Note that this approximate model of flanked spheres, overestimates the
nominal porosity, in fact the biggest sphere able to pass through the empty space
between three spheres has radius equal to (

p
3/2 � 1

2

tan(⇡/6) � 1/2)d
s

. Taking
d
s

= 0.2mm, i.e. the average diameter of spheres into a 20 µm-porosity plate, this
yields a porosity of around 30 µm.

The flow is injected by four inlets into a pre-chamber to allow uniform spatial
distribution before passing through the porous plate. A compressor feeds this pre-
chamber with premixed air and oil droplets working as seeding particles for PIV.
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An experimental study of wall–injected flows in a rectangular cylinder 7

The diameters of such particles varying between 1 to 5 µm, as generated by a Laskin
nozzle. The flow rate injected into the chamber is imposed by the exit pressure
from the compressor, equal to 1 bar, which corresponds to a volume flow rate of
ṁ = 1.117⇥ 10�3 m3s�1 at the feeding tube. Thanks to conservation of mass, an
injection velocity U

inj

= ṁ/A ⇡ 9.30 cm s�1 is achieved, where A = 120 cm2 is the
area of the the porous plate, and hence an injection Reynolds number

Re
inj

=
HU

inj

⌫
=

0.02⇥ 0.093
1.568⇥ 10�5

⇡ 114.

A cross-correlation camera acquires a couple of images each 0.2 s, which is the
acquisition rate of the whole system. Each frame is illuminated by a 1 to 2mm
wide laser sheet, which is generated by a Nd:Yag Laser and synchronized with the
camera by a pulse generator. The laser sheet goes into the chamber from the closed
side (which corresponds to z = 0 cm in Fig. 1) and such a plane is orthogonal to the
camera, which records a region inside the chamber of 8.2 cm by 2 cm (i.e. the height
of the chamber). Each image has a resolution of around 300 dpi (118 pixel per cm).
A detailed scheme of the experimental set-up is shown in Fig. 2, where the location
of the adopted devices is shown. Non-perfect alignment between camera and laser
sheet would lead to blurred images, non-perfect alignment between optical system
and injection direction would cause loss of tracers, yielding spurious vectors during
the analysis. Therefore, orthogonality is a fundamental issue and has been ensured
by the optical bench on which all the devices are fastened. As the width of the
laser sheet is 1-2mm and the dimensions of an image are 2-8 cm, the maximum
angle that a velocity vector can have with respect to the (x, y)-plane is 2.8� leading
to an error of 1� cos(2.8�) ⇡ 10�3 that is largely below the intrinsic error due to
PIV algorithm.

In order to cover the whole length of the chamber, which equals 24 cm, three
partially overlapped sections are acquired, as indicated in Fig. 2 by the three num-
bered rectangles. For PIV processing, we used the Open-source software PIVlab
devoloped by Thielicke and Stamhuis (2014), being these specific results almost
coincident with those obtained with a commercial software. For each section, a se-
quence of 1000 couples is analyzed with decreasing window size, i.e. from 128⇥128
pixels to 16⇥ 16 pixels with a 50% overlapping, thus giving a velocity vector res-
olution of one vector each 8 pixels, corresponding to one vector each 0.5mm. A
representation of the data grid is given in Fig. 3.

A preliminary analysis is carried out in order to characterize the injection pro-
file of velocity near the porous plate also in view of a proper numerical simulation
of inlet conditions. In order to minimize the e↵ects on the velocity distribution at
the outlet of the porous plate, during this preliminary test, the upper wall was
removed and the exit on the right, at x = 24 cm, was closed. For such a prelimi-
nary test, the time interval between frames, �t, is equal to 6000 µs. For the test
with the closed upper section, instead, �t has been changed accordingly to the
expected linear increment of the axial velocity with x (Eq. (12)) and its values are
summarized in Table 1. A typical estimation of the error for PIV measurements
is given by displacements of a tenth of a pixel per frame. Since values of this error
in meter per second depend on �t, they are reported in Tab. 1 too.
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Double pulsed 
Nd:YAG laser

BNC Pulse/Delay 
Generator

PC Air compressor

Exhaust air

pco.pixelfly

Nikon 50mm f/1.2

Bifurcation
Laskin nozzle

LTS 300mm

Laser sheet

x y

z

1

2

3

Air inlet

Fig. 2: Scheme of the experimental set-up
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0

x[cm]

y
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m
]

(a) (b) (c)
(d) (e) (f)
(g) (h) (i)

L

H

Fig. 3: Mesh obtained with the PIV software with highlighted nine points at which
PDFs are calculated (Fig. 13 and 14)

Section �t [µs] Error [mm/s]

1 3000 1.9
2 2000 2.9
3 1000 5.8

Table 1: Values of �t and error on velocity for each section in the closed-open
configuration

4 Results

4.1 Inlet conditions on the plate

The porous plate is made of Polyethylene and has a porosity of 20 µm. Since tracer
particles have diameters smaller than 5 µm, they easily pass through the filter as
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(a) 20 µm (b) 10 µm

Spanwise location[mm]

h
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m
]
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0
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v [cm/s]

2.4 4.5 6.5 8.5 10

(c) 20 µm
Spanwise location[mm]

h
[m

m
]

 

 

−5 0 5
0

1

2

3

4

v [cm/s]

7.4 8 8.5 9 9.4

(d) 10 µm

Fig. 4: Raw images used for the PIV analysis (top) and their corresponding vertical
velocity fields (bottom) obtained with two di↵erent porosities: 20 µm (left) and
10 µm (right)

clearly shown in Fig. 4, where two raw images (top) of the injected flow through
two samples of di↵erent porosity, 20 µm and 10 µm, are reported together with their
corresponding vertical velocity fields (bottom). The preliminary characterization
of the inlet flow indicates the presence of jet-like structures near the plate and of a
mostly laminar flow far from it, as reported in Fig. 5. Since the filter has a junction
at x = 12 cm, around that abscissa, we note a region where the vertical velocity
component is very small and the horizontal one is much higher because of such an
obstacle. In the whole field, excluding the borders where the flow is much more
influenced by external disturbances, the horizontal velocity component is small.
However, jet-like structures are clearly visible in both velocity components, in
the form of alternating high-speed and low-speed streaks down to a scale which is
smaller than 1 cm. In Fig. 6 the parallel jet configuration is highlighted by plotting
the average cross product among the two velocity fluctuations, i.e. the tangential
Reynolds stress. Clearly, the e↵ects of such jets propagates downstream of the
porous plate. We can estimate, with this analysis, the spatial organization of the
perturbation yielded by this porous plate. In Fig. 7a, some profiles of the vertical
component, along the plate, at di↵erent distances from it are plotted. It is possible
to point out how those structures smoothly merge together moving far from the
porous plate, loosing the highest wavenumber mode, ei

2⇡
L

kx. The corresponding
wavelength, � = L/k where k is the wavenumber, instead, provides an estimation
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Fig. 5: Mean velocity field in the analysis of the inlet conditions at the exit of the
porous plate, horizontal component (a) and vertical component (b)
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Fig. 6: Jet-like structures highlighted by the Reynolds stress hu0v0i in the inlet
conditions analysis

of the initial size of those jet-like structures. Fig. 7b shows that these dimensions
vary between 5mm and 3 cm.

4.2 Closed-open configuration

In this section, a comparison between the solutions of the models described in
Sect. 2 and experimental data is reported. In order to do that, experimental data
must be made dimensionless, so that the experimental injection velocity U

inj

is
required. Since the experimental vertical velocity v is not perfectly uniform (see
Fig. 8b) as in the mathematical model, we derive the experimental U

inj

by the
mass conservation law between the inlet from the plate, ṁ = U

inj

L, and a vertical
line at the outlet chamber section, ṁ =

R
0

�H u dy, that reads

U
inj

=
1
L

Z
0

�H
u dy ⇡ 9.28 cm s�1. (18)

Actually, due to light reflections, u is not available in a thin region near the
upper and lower boundary, therefore in Eq. (18) the actual interval of integration
is smaller than the whole height, but its contribute to the integral is negligible.
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Fig. 7: Profiles of v at several distances from the filter (a) and their Fourier trans-
forms as functions of wavelength � (b)

x[cm]

y
[c
m
]

 
 

0 2 4 6 8 10 12 14 16 18 20 21.4
−1.7

−1
−0.5

0

u [m/s]

0

0.8

1.5

(a)

x[cm]

y
[c
m
]

 
 

0 2 4 6 8 10 12 14 16 18 20 21.4
−1.7

−1
−0.5

0

v [cm/s]

0

5

10

(b)

Fig. 8: Mean velocity field in the closed-open configuration

As reported from Eq. (18), the estimated value of U
inj

is 9.28 cm s�1, whereas the
injection velocity derived from direct measurements at the inlet was 9.30 cm s�1.
These values are very close, thus the system seems to be well controlled and the
input condition is fully established.
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Fig. 9: Profiles of mean non-dimensional velocity at several positions along x-axis.
Blue lines are the velocity profiles between the two green edges

Mean values The behavior of the two velocity components in the whole chamber
is reported in Fig. 8a and 8b. In the first one, it is clear as the horizontal velocity
increases when moving towards the right, as a consequence of the air inlet from the
bottom and of the deviation due to the upper wall. Regarding the vertical velocity
components, reported in Fig. 8b, little structures due to the porosity of the filter
are still visible, even in this closed configuration. Note that the vertical velocity also
increases when moving from left to right and that there is a lower layer in which
the vertical component is predominant over the horizontal component and an
upper layer where the opposite takes place. Note also that the order of magnitude
is similar to the one obtained during the analysis of the inlet conditions in the
previous section. We are not able to assess if the increase of the vertical velocity
along the channel is related to the pressure drop, which is due to the development
of u and hence to the di↵erent pressure gradients across the filter experienced
by the flow, or it is a consequence of the hydrodynamic instability as described
in Chedevergne et al (2006).

Once data are made dimensionless2 with respect to U
inj

, we can compare them
with (12), (15) and the numerical solution of (17). In Fig. 9 we reported some
profile of velocity at several x positions, in particular in Fig. 9a we plotted u/x
because analytical models are linear in x, while, in Fig. 9b, v is independent of
x. The solution of (17) has been obtained with Re

inj

= 114. From Fig. 9a, it is
clearly visible how the measured horizontal velocity profiles approach the viscous
numerical solution much better than the inviscid ones. Indeed, as the Reynolds
number is low, the no-slip boundary condition at the upper wall is not negligible
and a thick boundary layer is obtained. This means that in such kind of flow
configurations, the e↵ect of viscosity cannot be neglected due to the presence of the
upper wall. On the other hand, the vertical velocity component is less dependent
on viscous e↵ects being the highest values confined to the lower porous plate.
In dimensionless variables, there is only a minor increase of the vertical velocity
when moving towards the outlet cylinder section. In Fig. 9a, it is also possible to
notice that near the closed head end of the cylinder, the horizontal profile is almost

2 Also the error should be scaled by U
inj

. Then we obtain a maximum error, the one relative
to the third section, of the order of 0.06.
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Fig. 10: Standard deviations of u0, (a), and v0, (b)

symmetric, evolving in around a centimeter towards the non-symmetric behavior,
which also results from analytical and numerical solutions. As in Yagodkin (1980)’s
measurements, the present mean velocity profile does not seems to experience any
transition to the turbulent shape, observed instead by Olson and Eckert (1966)
and Huesmann and Eckert (1968) at the present Reynolds number. A possible
explanation can reside in the level of pseudo-turbulence injected from the porous
wall and the relative length of the channel, see also Beddini (1986). The pseudo-
turbulence is related to the level of spatial fluctuations introduced by the injection
and can be estimated as follows

PTI =

vuut 1

N

PN
j=1

⇣
vsj � v̄s

⌘
2

v̄s2
, (19)

where the superscript s indicates the velocity at the porous surface and N is the
number of data along the surface. The level of PTI in the present experiment is
around 0.003 and, according to Beddini’s results, it is too small to activate the
transition to turbulence at the present Reynolds number.

Fluctuations The two standard deviations
p
hu0u0i and

p
hv0v0i, which are the

square root of the normal Reynolds stresses, are a statistical indication of how
much each component of velocity fluctuates with respect to its mean value. Here,
we obtained fluctuations of the order of millimeters per second for the velocity
component u and tenths of a millimeter per second for the v, as reported in Fig. 10.
The amplitude of fluctuations is also increasing when moving towards the right
part of the field, i.e. the outlet section. This means that the mean flow configuration
reported in Fig. 8 is fluctuating or vertically (flapping) or horizontally (pressure
waves) or both. It is important to understand if these fluctuations are related to
vortices generated close to the plate and then convected towards the outlet. To this
end, the detection of the mean vorticity field and of instantaneous flow structures
is performed. In the mean vorticity field, reported in Fig. 11b, and furthermore in
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Fig. 11: Vorticity field of: TC solution (Eq. 16) (a), experimental data (b). Being
⌦ linear with x, spatial oscillations are highlighted by the ⌦/x field in (c). The
black solid line is an isoline of ⌦/x = �610

the ⌦/x field reported in Fig. 11c, a spatially oscillating pattern, in the form of
an array of crossflow jets, due to the jet-like structures generated by the porous
plate is clearly visible. These structures are bigger than the single jets observed
earlier, as they merge together when they are bended by the horizontal flow. They
also become narrower as we go far from the head end of the rectangular cylinder.

It is plausible that the relatively high amplitude oscillations of u are related
more to these large scale structures rather than to the small vortical ones reported
in Fig. 12. These small structures have been detected with the �-criterion

� = P 2 � 4Q < 0, (20)

where

P =
@u

@x
+
@v

@y
and Q =

@u

@x

@v

@y
� @u

@y

@v

@x

as prescribed by Jeong and Hussain (1995). Looking at Fig. 12, it is clear that
vortical structures are mainly generated at the lower porous plate, presumably
due to the jet-like structures interactions. These vortices grow in number, size
and intensity when moving towards the right outlet part and contribute to the
increasing of fluctuations levels mostly on the outlet part of the chamber.

In order to establish whether flow transition to turbulence appears, Yamada
and Ishikawa (1976) compared turbulence intensity peak, i.e. I

p

= maxy I =
maxy

p
hu0u0i+ hv0v0i, with an horizontal velocity reference, e.g. maxy u. Since
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Fig. 12: Instantaneous vortical structures highlighted with values of � < 0. Dark
red is greater than zero, while lighter colors are negative values

they adopted injection velocities higher than 0.5m s�1, their results are not com-
parable with the one presented herein and no significant intensity peak has been
found. However, the turbulence intensity of the present data is almost equal to the
rms of u0,

p
hu0u0i. Indeed, as it will be shown below with the analysis of u0 and

v0, the main contribution to fluctuation is the linear increase of horizontal velocity
that, as a consequence, enlarges its fluctuations too.

Given a time series {u
0

n}Nim
n=1

, where n denotes the n-th instantaneous field of
N

im

, its Probability Density Function (PDF) is defined as

PDF(u0)i =
hist(u0)i

max

n

u0�min

n

u0

Nbin

PNbin
j=1

hist(u0)j
, for j = 1, . . . , N

bin

, (21)

where hist(u0)j = #{u0
i 2 Bj for i = 1, . . . , N

im

} is the number of velocity data
that lies into the j-th bin and N

bin

is the total number of bins. The PDF of both
velocity components have been computed at di↵erent locations of the rectangular
cylinder. For the horizontal component, u0, the PDFs in the upper region of the
chamber are barely comparable with a normal distribution, unlike in the region
closer to the porous plate, as shown in Fig. 13. The vertical component, v0, instead,
follows the Gaussian law everywhere

N (µ,�) ⇠ 1

�
p
2⇡

e�
1
2 (

x�µ

�

)2 , (22)

as reported in Fig. 14. This indicates that, where the velocity magnitude is small,
fluctuations look like white noise on both velocity components. The vertical com-
ponent fluctuations are everywhere of the same order of magnitude of the error
(⇡ 5mms�1), therefore it is plausible that the observed gaussian distribution is
the distribution of the error. On the other hand, the bimodal behavior of the u-
component in the upper region shows, with longitudinal oscillations of one order of
magnitude greater than transversal ones, that incoherent (Gaussian) fluctuations
feed longitudinal, coherent fluctuations. Moreover, the spatial distributions of u0

and v0 have been reported in Fig. 15 and compared respectively with the first
acoustic horizontal eigenmode, h

1

= A
0

sin( 2⇡
4Lx) and the fourth vertical eigen-

mode, v
4

= A
0

sin(4 2⇡
2Lx), where A

0

is an amplitude comparable with the exper-
imental data. The horizontal perturbation, even though it fluctuates periodically
as stated by the PDF, has a linear profile along x instead of sinusoidal. Despite the
vertical perturbations are of the order of the error, its profile shows the oscillatory
behavior as a combination of the first four modes, even if it is not evident with
how many nodes.
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Fig. 13: Probability density function of u0 at the nine positions indicated by letters
(a, b, c etc.) in Fig. 3. In particular, subfigure (a) corresponds to data at the point
labels with (a) and so on

Transversal planes In order to assess how much three-dimensionality can a↵ect
PIV measurements on the two-dimensional plane, we analyzed three transversal
planes (z, y) at x = 41mm, x = 90mm and x = 144mm. Since the orthogonal
velocity, u, is linear with the x, it had been impossible to measure planes for higher
values of x, because particles escaped from the light sheet too fast.

The vertical component of velocity, v, except for the left and right end, has
the same behavior obtained in the (x, y) plane, i.e. it shows jet-like structures, see
Fig. 16a–16e. Note that because of particles easily escaping from the measuring
plane, we had been forced to reduce the delay between two consecutive images,
consequently reducing the maximum displacement of each particle. This enlarges
the uncertainty on the experimental data, which is inversely proportional to the
�t used. Fig. 16b–16f show that the flow does not cross the main plane (x, y)
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Fig. 14: Probability density function of v0 at the nine positions indicated by letters
(a, b, c etc.) in Fig. 3. In particular, subfigure (a) corresponds to data at the point
labels with (a) and so on

at z = 0, but the contribution of w, which is due somehow to the two lateral
boundaries, becomes larger moving downstream.

5 Remarks and conclusions

In this paper, a characterization of the flow inside a rectangular cylinder, in which
the flow enters from a bottom porous plate and exits from one side, has been
presented. The velocity field was obtained by means of Particle Image Velocime-
try, in order to get instantaneous and averaged flow field spatial configurations.
Samples made up of 1000 image couples were used to compute statistical mo-
ments. Preliminarily, the flow generated by pressure di↵erence between two side
of a porous material with porosity of 20 µm has been characterized. A pattern of
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Fig. 15: Superposition of the instantaneous u0(x) at y = �0.9 cm (a) and of v0(y)
at x = 0.4 cm (b)
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Fig. 16: Velocity v (first column) and w (second column) on transversal planes at
several positions along x: (a) and (b) at 4.1 cm, (c) and (d) at 9.0 cm and (e) and
(f) at 14.4 cm

jet-like structures with dimensions of roughly 5mm at a distance from the filter
of approximately 2mm has been found, which must be considered as the inlet
condition in the test section. The same structures were found in the closed config-

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



An experimental study of wall–injected flows in a rectangular cylinder 19

uration, but are only visible in the y-component of the velocity, which is normal
to the porous plate and must be considered as the primary flow.

Mean values, standard deviations and probability density functions of both
u and v have been computed. The increment of velocity magnitude, especially
due to the horizontal component, as also the increasing values of fluctuations,
when moving towards the outlet section, suggests that a relevant contribution to
unsteadiness is due to turbulence generated by parallel jets and boundary layer,
respectively on the lower and upper surfaces. Moreover, we have shown a snapshot
of vortical structures captured in one of the instantaneous field, pointing out how
these structures are growing in number, size and intensity when moving towards
the outlet. These are the spatial traces of the developing turbulence on the lower
and upper surfaces. Anyhow, according to the experiments of Yagodkin (1980) but
in contrast with Olson and Eckert (1966) and Huesmann and Eckert (1968), no
transition of the mean velocity profile has been found. This could be explained by
taking into account the levels of pseudo-turbulence intensity of the injected flow
as explained by Beddini (1986).

We compared the mean values obtained from the experimental data with an-
alytical models. Since the injection Reynolds number is low, Re ⇡ 110, the most
accurate model is the one that takes into account the boundary layer at the top
wall. In any case, all models are not able to predict the amount of fluctuations or
the parallel jet flow configuration derived from the measurements. As a result of
the analysis of the probability density functions of u0 and v0, we found two kind
of oscillations, one on the u near the exit and another, similar to Gaussian noise,
elsewhere. We do not believe that this Gaussian noise is due the to the sprouting
of the little vortices observed, because it is present also beforehand the onset of
these vortices. It is more plausible that it is due to the error, which is in addition
of the same order of magnitude.

We must observe that the primary obstacle of this kind of measurements is
the extremely high di↵erence between the order of magnitude of the vertical and
horizontal component. In any case, the developing vortices contribute to the en-
hanced level of fluctuations must be considered in proper modeling of this type of
flow. In particular, coherent horizontal fluctuations should be obtained.

References

Avalon G, Casalis G, Gri↵ond J (1998) Flow instabilities and acoustic resonance of chan-
nels with wall injection, American Institute of Aeronautics and Astronautics. DOI
doi:10.2514/6.1998-3218, URL http://dx.doi.org/10.2514/6.1998-3218

Avalon G, Ugurtas B, Grisch F, Bresson A (2001) Numerical computations and visualization
tests of the flow inside a cold gas simulation with characterization of a parietal vortex
shedding. Tiré à part – O�ce national d’études et de recherches aerospatiales

Beddini RA (1986) Injection-induced flows in porous-walled ducts. AIAA Journal 24(11):1766–
1773, DOI 10.2514/3.9522, URL http://dx.doi.org/10.2514/3.9522

Casalis G, Avalon G, Pineau JP (1998) Spatial instability of planar channel flow with fluid
injection through porous walls. Physics of Fluids (1994-present) 10(10):2558–2568

Casalis G, Chedevergne F, Feraille T, Avalon G (2006) A new stability approach for the flow
induced by wall injection. Springer

Chedevergne F, Casalis G, Feraille T (2006) Biglobal linear stability analysis of the flow induced
by wall injection. Physics of Fluids (1994-present) 18(1):14–103

Culick F (1966) Rotational axisymmetric mean flow and damping of acoustic waves in asolid
propellant rocket. AIAA Journal 4(8):1462–1464

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



20 A. Perrotta et al.
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