137 research outputs found

    Transitions of social-ecological subsistence systems in the Arctic

    Get PDF
    Transitions of social-ecological systems (SES) expose governance systems to new challenges. This is particularly so in the Arctic where resource systems are increasingly subjected to global warming, industrial development and globalization which subsequently alter the local SES dynamics. Based on common-pool resource theory, we developed a dynamic conceptual model explaining how exogenous drivers might alter a traditional subsistence system from a provisioning to an appropriation actions situation. In a provisioning action situation the resource users do not control the resource level but adapt to the fluctuating availability of resources, and the collective challenge revolve around securing the subsistence in the community. An increased harvest pressure enabled by exogenous drivers could transform the SES to an appropriation action situation where the collective challenge has changed to avoid overuse of a common-pool resource. The model was used as a focal lens to investigate the premises for broad-scale transitions of subsistence-oriented SESs in Arctic Alaska, Canada and Greenland. We synthesized data from documents, official statistics and grey and scientific literature to explore the different components of our model. Our synthesis suggests that the traditional Arctic subsistence SESs mostly comply with a provisioning action situation. Despite population growth and available technology; urbanization, increased wage labor and importation of food have reduced the resource demand, and we find no evidence for a broad-scale transition to an appropriation action situation throughout the Western Arctic. However, appropriation challenges have emerged in some cases either as a consequence of commercialization of the resource or by severely reduced resource stocks due to various exogenous drivers. Future transitions of SESs could be triggered by the emergence of commercial local food markets and Arctic warming. In particular, Arctic warming is an intensifying exogenous driver that is threatening many important Arctic wildlife resources inflicting increased appropriation challenges to the governance of local harvest.Ye

    Poleward shifts in marine fisheries under Arctic warming

    Get PDF
    As global warming makes the Arctic Ocean more accessible, concerns have been raised about the environmental consequences of a possible expansion of commercial fisheries into pristine marine ecosystems. Using a recently released global dataset, we quantify for the first time how fishing activities are responding to diminishing sea ice and a warmer Arctic Ocean. We show that trawling dominates Arctic fisheries and that this activity penetrates rapidly into Arctic shelf areas previously protected by extensive ice-cover as a response to interannual sea ice loss. We model the development of trawling activity under a climate change scenario and use the model to identify areas with high risk of increased trawling activity and estimate the amount of trawling avoided in recently established fishery protection zones. Stronger responsibility must be undertaken by Arctic coastal states to regulate increased fishing pressure and protect vulnerable Arctic shelf ecosystems.publishedVersio

    Environmental variation as a driver of predator-prey interactions

    Get PDF
    Animals often face the trade-off of optimizing foraging while limiting predation. In variable and seasonal environments the availability of resources changes spatially and temporally, forcing animals to adapt their spatial foraging patterns over time and, thus, to modify their exposure to predation. Previous research has mostly dealt with the causes and consequences of animal spatial patterns separately, with studies either examining how changes in the environment influence habitat selection, or determining the effects of habitat use on vulnerability to predation. Here we combine these aspects through an examination of how weather conditions affect predation risk by modifying the spatial behavior of the prey. We used reindeer calves (Rangifer tarandus) in Norway to investigate (1) the environmental causes and (2) the survival consequences of habitat use. We further examined how those relationships varied temporally and according to the body mass of calves. We found that deep snow and ice conditions led reindeer to shift from their usually preferred high-elevation pastures to lowland forested areas. This increase in forest use was associated with lower calf survival, mostly due to elevated lynx (Lynx lynx) predation rates. Golden eagles (Aquila chrysaetos) and wolverines (Gulo gulo) also preyed on calves but their effect was much smaller and not associated with a specific habitat type. The link between climatic conditions, habitat use, and predation changed over the winter season and depended on the body weights of the calves. The effect of harsh weather conditions on reindeer use of forested habitats was stronger towards the end of the winter, which coincides with more deteriorated body conditions and lower food availability on high-elevation pastures, and predation probabilities were higher for smaller individuals. Our study demonstrates that environmental variation importantly affects predator-prey interactions. Key words: ecological trade-off; habitat use; Norwegian semidomestic reindeer; predation rates; predator-prey dynamics; Rangifer tarandus; seasonal environments; ungulate foraging ecology; weather variability.publishedVersio

    Efficient Sampling for Ecosystem Service Supply Assessment at a Landscape Scale

    Get PDF
    Decision makers and stakeholders need high-quality data to manage ecosystem services (ES) efficiently. Landscape-level data on ES that are of sufficient quality to identify spatial tradeoffs, co-occurrence and hotspots of ES are costly to collect, and it is therefore important to increase the efficiency of sampling of primary data. We demonstrate how ES could be assessed more efficiently through image-based point intercept method and determine the tradeoff between the number of sample points (pins) used per image and the robustness of the measurements. We performed a permutation study to assess the reliability implications of reducing the number of pins per image. We present a flexible approach to optimize landscape-level assessments of ES that maximizes the information obtained from 1 m2 digital images. Our results show that 30 pins are sufficient to measure ecosystem service indicators with a crown cover higher than 5% for landscape scale assessments. Reducing the number of pins from 100 to 30 reduces the processing time up to a 50% allowing to increase the number of sampled plots, resulting in more management-relevant ecosystem service maps. The three criteria presented here provide a flexible approach for optimal design of landscape-level assessments of ES

    Multiple stakeholders’ perspectives of marine social ecological systems, a case study on the Barents Sea

    Get PDF
    The Barents Sea ecosystem components and services are under pressure from climate change and other anthropogenic impacts. Following an Ecosystem-based management approach, multiple simultaneous pressures are addressed by using integrative strategies, but regular prioritization of key issues is needed. Identification of such priorities is typically done in a ‘scoping’ phase, where the characterization of the social-ecological system is defined and discussed. We performed a scoping exercise using an open and flexible multi-stakeholder approach to build conceptual models of the Barents Sea social-ecological system. After standardizing vocabulary, a com plex hierarchical model structure containing 155 elements was condensed to a simpler model structure con taining a maximum of 36 elements. To capture a common understanding across stakeholder groups, inputs from the individual group models were compiled into a collective model. Stakeholders’ representation of the Barents Sea social-ecological system is complex and often group specific, emphasizing the need to include social scientific methods to ensure the identification and inclusion of key stakeholders in the process. Any summary or simpli fication of the stakeholders’ representation neglects important information. Some commonalities are highlighted in the collective model, and additional information from the hierarchical model is provided by multicriteria analysis. The collective conceptual stakeholder model provides input to an integrated overview and strengthens prioritization in Ecosystem-based management by supporting the development of qualitative network models. Such models allow for exploration of perturbations and can inform cross-sectoral management trade-offs and prioritiespublishedVersio

    Seafood production in Northern Norway: Analyzing variation and co-development in aquaculture and coastal fisheries

    Get PDF
    Norway is one of the leading ocean-based food production nations. Its seafood industry comprises wild-capture fisheries and farmed fish production. Both industries play a provisional role but also contribute to economic development of the country and help sustain coastal communities, particularly, in Northern Norway. Coastal fishery has been the staple industry in Northern Norway for centuries, while aquaculture complemented the seafood production in this region only approximately 40 years ago. To date, there has been limited knowledge on how the two industries co-developed in Northern Norway. While there are controversies regarding the potential cost and benefit of aquaculture to local communities, only a few studies have addressed co-existence of the two seafood industries in Northern Norway on a municipality scale. In this study, we compared the development of coastal fisheries and aquaculture in Northern Norway over a 14-year period (2005–2018) using a Bayesian approach that allowed to fit a model specific to each municipality, accounting also for temporal changes in both industries. A strong stochastic spatial variation characterized both industries, indicating a sizeable gap in the seafood production between the municipalities. Finally, the study showed that the fisheries and aquaculture likely did not affect each other’s production, suggesting that there were no or few discernible conflicts or synergies between these two industries in Northern Norway. This study featured an advanced method for analyzing variation of seafood production per administrative unit that can be transferable to assess seafood development in other regions of Norway and beyond

    Spring phenology shapes the spatial foraging behavior of Antarctic petrels

    Get PDF
    In polar seas, the seasonal melting of ice triggers the development of an open-water ecosystem characterized by short-lived algal blooms, the grazing and development of zooplankton, and the influx of avian and mammalian predators. Spatial heterogeneity in the timing of ice melt generates temporal variability in the development of these events across the habitat, offering a natural framework to assess how foraging marine predators respond to the spring phenology. We combined 4 yr of tracking data of Antarctic petrels Thalassoica antarctica with synoptic remote-sensing data on sea ice and chlorophyll a to test how the development of melting ice and primary production drive Antarctic petrel foraging. Cross-correlation analyses of first-passage time revealed that Antarctic petrels utilized foraging areas with a spatial scale of 300 km. These areas changed position or disappeared within 10 to 30 d and showed no spatial consistency among years. Generalized additive model (GAM) analyses suggested that the presence of foraging areas was related to the time since ice melt. Antarctic petrels concentrated their search effort in melting areas and in areas that had reached an age of 50 to 60 d from the date of ice melt. We found no significant relationship between search effort and chlorophyll a concentration. We suggest that these foraging patterns were related to the vertical distribution and profitability of the main prey, the Antarctic krill Euphausia superba. Our study demonstrates that the annual ice melt in the Southern Ocean shapes the development of a highly patchy and elusive food web, underscoring the importance of flexible foraging strategies among top predators

    Panel-based Assessment of Ecosystem Condition of the Norwegian Sea Pelagic Ecosystem

    Get PDF
    The System for Assessment of Ecological Condition, coordinated by the Norwegian Environment Agency, is intended to form the foundation for evidence-based assessments of the ecological condition of Norwegian terrestrial and marine ecosystems not covered by the EU Water Framework Directive. The reference condition is defined as “intact ecosystems”, i.e., a condition that is largely unimpacted by modern industrial activities. An ecosystem in good ecological condition does not deviate substantially from this reference condition in structure, functions or productivity. This report describes the first operational assessment of the ecological condition of the pelagic ecosystem in the Norwegian Sea. The assessment method employed is the Panel-based Assessment of Ecosystem Condition (PAEC1) and the current assessment has considered to what extent the Norwegian Sea pelagic ecosystem deviates from the reference condition2 by evaluating change in trajectories.Panel-based Assessment of Ecosystem Condition of the Norwegian Sea Pelagic EcosystempublishedVersio

    Blue justice : A survey for eliciting perceptions of environmental justice among coastal planners' and small-scale fishers in Northern-Norway

    Get PDF
    Ocean-based economic development arising from an increasing interest in the 'blue economy' is placing ecosystems and small-scale fisheries under pressure. The dominant policy response for dealing with multiple uses is the allocation of coastal space through coastal zone planning (CZP). Recent studies have shown that the rush to develop the blue economy and regulate coastal activity can result in social injustices and the exclusion of less powerful and unrecognized groups (e.g., small-scale fishers, women, Indigenous peoples and youth). To achieve a primary goal of the 2030 sustainable development agenda to "leave no one behind", it is important to understand the implications of coastal planning and development for these groups. Here, we present a social survey protocol for examining perceptions of justice related to small-scale fisheries (SSF) in the context of the blue economy in coastal areas. Specifically, we designed the survey instrument and sampling protocol to assess whether decisions about the use of the coastal zone over the last five years have i) followed principles of good governance, ii) recognized fishers' knowledge, culture and rights and iii) been attentive to impacts of changed coastal zone use on fisheries. The survey will engage coastal planners (N = app. 120) and fishers (N = app. 4300) in all the coastal municipalities (N = 81) in Northern-Norway. The sampling protocol is designed to ensure representation of different sectors of society, including those defined by gender, age, ethnicity and occupation (e.g., small-scale fishers, large-scale fishers, coastal planners).Peer reviewe
    corecore