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ABSTRACT
Decision makers and stakeholders need high-quality data to manage ecosystem services (ES)
efficiently. Landscape-level data on ES that are of sufficient quality to identify spatial trade-
offs, co-occurrence and hotspots of ES are costly to collect, and it is therefore important to
increase the efficiency of sampling of primary data. We demonstrate how ES could be
assessed more efficiently through image-based point intercept method and determine the
tradeoff between the number of sample points (pins) used per image and the robustness of
the measurements. We performed a permutation study to assess the reliability implications of
reducing the number of pins per image. We present a flexible approach to optimize land-
scape-level assessments of ES that maximizes the information obtained from 1 m2 digital
images. Our results show that 30 pins are sufficient to measure ecosystem service indicators
with a crown cover higher than 5% for landscape scale assessments. Reducing the number of
pins from 100 to 30 reduces the processing time up to a 50% allowing to increase the
number of sampled plots, resulting in more management-relevant ecosystem service maps.
The three criteria presented here provide a flexible approach for optimal design of landscape-
level assessments of ES.
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Introduction

Landscape-level assessment of ecosystem services (ES)
is highly relevant for managing the impact of land-use
change and other drivers on the landscape (Naidoo
et al. 2008; Nelson et al. 2009). Landscape scale assess-
ments allow for identification of spatial tradeoffs, co-
occurrence of multiple ES and locations of high value
for beneficiaries. However, most current ES maps are
not at the relevant scale (Malinga et al. 2015) nor do
they provide fine-scale information for local decision-
making (Martínez-Harms and Balvanera 2012).
Primary data collection for ES supply assessments on
a landscape scale poses cost and logistic challenges
(Kremen 2005), and most landscape assessments there-
fore rely on secondary and coarse data (Martínez-
Harms and Balvanera 2012; Englund et al. 2017).
Although secondary data can inform on coarse patterns
in the landscape (e.g. ecosystem-state shifts), they miss
resolution to assess the gradual changes that may need
to be managed. In order to deliver relevant information
to decision makers, there is a need for time-efficient,
scalable methods for detailed ES supply mapping that
can provide primary data with the relevant resolution
and scalability (Daily et al. 2009), and sufficient

accuracy for making decisions about land use affecting
a specific site (Lavorel et al. 2011; Perrings et al. 2011).

One promising approach to multiple ES assess-
ments is transect sampling using digital photos.
Digital photo analyses have been used for measure-
ments of plant cover (e.g. Chen et al. 2010) or for
ground truthing of high-resolution remote sensing of
vegetation cover (Cagney et al. 2011). Using digital
photos for rapid assessment of ES has the advantage
of maximizing field sampling of an area in a short
period of time (Chen et al. 2010; Getzin et al. 2012),
thus reducing the fieldwork costs, and at the same
time, they can be reanalyzed if needed. The digital
photos are analyzed off-season to detect ES, rare plant
species, wildlife cues, evidence of recreation use, or
other disturbances using specialized software such as
Sample Point (Booth et al. 2006) or VegMeasure
(Johnson et al. 2003). Digital photo sampling reduces
time and costs of fieldwork, but it still requires a
significant amount of office time to process and
accurately estimate the abundance of ES.

Quantitative estimation of ES using point sampling
of digital imagery relies on the same principles as the
point intercept method (PIM) (Jonasson 1988). The
PIM method (both in-field and in images) consists of
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a frame with a certain amount of pins, placed on the
vegetation where the experts count the number of times
a plant species or functional group hits the pins as a
proxy for biomass or vegetation cover. Several studies
(e.g. Floyd and Anderson 1987; Meese and Tomich
1992; Godínez-Alvarez et al. 2009) have shown that
PIM provides reliable and precise estimates of species
richness and vegetation cover.

Depending on the purpose, PIM could be per-
formed with low pin densities (Ravolainen et al.
2011) or high pin densities (Bråthen and Oksanen
2001; Sitters et al. 2017), making PIM a flexible
method for capturing vegetation at different resolu-
tions. Performing in-field PIM is still time demand-
ing and logistically challenging to implement at a
landscape scale: there may be a time lag between
different PIM-measurements (i.e. early season and
late season), resulting in vegetation changes due to
time in the season, rather than in relation to the land-
use or climate change. Imagery-based PIM, on the
other hand, only requires a few days of training of
field workers who will be able to move rapidly in the
terrain to take pictures over a large area. A disadvan-
tage of using imagery-based PIM is the underestima-
tion of ES where there are multiple vegetation layers,
such as high shrubs and woodland, covering the
ground vegetation layer. Image-based PIM is there-
fore best suited for ecosystems with a limited vertical
structure such as grasslands, tundra, deserts, coastal
habitats, croplands or forest understory.

The amount of pins used in PIM (either in field, or
image-based) varies largely among studies. It is common
practice to use 25, 50 or 100 (and up to 500) pins as a rule
of thumb (Fisser and Dyne 1966), but other authors have
used different amount of pins (e.g. Speed et al. 2014).
However, the decision on the number of pins applied is
often based on financial and logistic constraints, with
limited empirical assessment of how reducing number
of pins affects the quality of the data. Bråthen and
Hagberg (2004) assessed to what extent it is possible to
reduce the number of pins per plot in field assessments
withminimal loss in precision. They concluded, agreeing
with Meese and Tomich (1992), that it is preferable to
maximize the number of plots taken at a larger scale to
obtain management relevant, time-efficient biomass
measurements by reducing the effort per plot. However,
field assessments of ES indicators, expressed as plant
functional groups or species to record biomass, species
richness, rare plants, vegetation cover or phenology (e.g.
flowers and berries), will need different number of pins to
produce data at the appropriate resolution and scale. For
some ES indicators, it may suffice to record presence/
absence in plots (e.g. mushrooms, wildlife cues, recrea-
tional use and/or impacts). Furthermore, number of pins
or pictures/plots needed to quantify ES on landscape scale
depends on the ecosystems, as high variation within and

among plots may require higher sampling efforts. In
order to more efficiently measure ES on images, there is
a need for an empirical examination of the tradeoff
between the number of pins, the reliability and the time
required for each image. Such knowledge will help man-
agers to establish guidelines on the amount of pins
needed to measure ES within a target accuracy.

In this study, we performed a permutation study to
find the tradeoffs between the reliability and the time
needed to achieve it. Our research objective was to exam-
ine how three criteria could be used to optimize the
number of pins needed to detect the ES indicators in
the digital photos. The first criterion assessed is the 95%
confidence interval (CI) of the measurements to ensure
sufficient reliability of the detection within certain con-
fidencemargins. The second criterion is the coefficient of
variation that measures the variability within each mea-
surement and the third is an optimized learning rate
based on how much the CV is reduced when adding
pins. The combination of these three criteria will help
identify the optimal number of pins necessary to detect
ES indicators relevant for landscape assessments. The
three criteria allow researchers to determine the amount
of effort needed to gain sufficient accuracy for a specific
ecosystem prior to designing a full-scale landscape
assessment.

Material and methods

Study area

The study area is located on the Varanger penin-
sula in northern Norway (Figure 1). The dominat-
ing vegetation is tundra, but with rich meadows
along the river catchments and birch forests along
the south and southwest coastline (see Henden
et al. 2010). Varanger is sparsely populated and
about 2090 km2 of the peninsula consists of pro-
tected areas. Due to the remoteness, the low
population density and the protected areas, there
is minimal human impact and ES indicators can
be measured at a landscape scale with a minimal
effect of human disturbances such as garbage,
trails or infrastructure. The tundra areas host
important ES supply for the residents such as
wild food, wood and peat for fuel, and fodder
and pastures for sheep and semidomesticated
reindeer. The supply of such ES may change in
the coming decades as the arctic tundra is warm-
ing rapidly and tourism is increasing in the area.
Landscape-level assessment could inform decision
makers about the change in ES expected from
climate change, and the potential tradeoffs
between conservation, local needs and qualities
enjoyed by tourists. Landscape-level assessments
could capture the variation in both human
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activities and environmental variation by using
the coastland–inland gradient, which range from
0 m a.s.l. to approximately 600 m a.s.l., to capture
the variation in ES present in the peninsula.

Research design for the landscape-level
assessments

Our research was designed for landscape-level assess-
ment of ES covering the whole Varanger peninsula. A
random location was selected for the first transect
that would follow a coast-to-inland gradient and
then the next transects were regularly spaced 10 km
from the next one. Since rivers were impossible to
cross in some places, we also located additional trans-
ects in the innermost part of the peninsula that could
be accessed from the National Park (Figure 1). We
used a subset of the pictures (see Figure 1) in our
study to assess the needed number of pins for reliable
ES assessments using image-based PIM.

Image acquisition and processing

For each transect, a 20-megapixel photo was taken per-
pendicular to the ground every 100 m with a Sony alpha
5100 by placing a 1 × 1 m quadrat on the ground. We
assessed the surrounding vegetation class in a 5-m

circular buffer around the photographed point
(Table 1) to analyze whether the dominating vegetation
affects the number of pins required. Cropping of images,
lens distortion and highlight/shadow adjustments were

Figure 1. Location of the Varanger Peninsula seen from satellite pictures. Black dots represent the landscape-level sampling,
and white dots represent the images used in this study.

Table 1. Description of the habitat types registered at a 5-m
radius around each photograph.
HABITAT TYPE Description

Deciduous forest Forest dominated by deciduous species, mainly
Betula pubescens

Deciduous shrubs Open landscape dominated by deciduous shrubs
(Salix spp., vaccinium spp.)

Juniper shrubs Open landscape dominated by juniper shrubs
(Juniperus communis)

Dwarf birch Open landscape dominated by dwarf birch (Betula
nana)

Heath Heath, dominated by crowberry (Empetrum
nigrum), heather (Calluna vulgaris) or
blueberries (Vaccinium spp.)

High herbs Ground cover dominated by high herbs (over
30 cm height)

Low herbs Ground cover dominated by low herbs (under
30 cm height)

Ferns Open landscape dominated by ferns
Grass Open landscape dominated by grasses or sedges
Mire Area of saturated soil/lakeshores, dominated by

sedges such as Carex rostrata L.
Moss Ground cover dominated by mosses
Lichen Areas dominated by fruticose lichens
Bog Poorly drained soil with scattered dry soil mounds
Rock Ground cover dominated by naked bedrock or

stones
Snowbed Areas with late snowmelt, dominated by mosses
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performed in Adobe® Lightroom® 5.6. We avoided vege-
tation higher than 50 cm (measured as knee height) due
to the lack of depth in images, which would overestimate
the cover of high vegetation in detriment of the
understory.

Tradeoffs between effort and reliability

For the PIM measurements, we categorized the plant
species into ES indicator categories following the ES
they provide according to the CICES classification
(Haines-Young and Potschin 2018) and performed
PIM in the images using the Sample Point software
(www.samplepoint.org). We used 100 evenly distrib-
uted pins (10 × 10 grid) for each image to measure
the true pin proportion of each ES indicator (Table 2)
and use as reference measurement for the permuta-
tion study.

Permutation study

We estimated the optimal number of pins by means
of a permutation study (Figure 2) using the 100-pin
dataset as a reference measurement: only ES indica-
tors that had a cover higher than 5% were considered
in this study. We selected n pins (ranging from 1 to
99) from the 100-pin dataset at random to measure
the ES indicator frequencies. These measurements
were repeated 1000 times for each pin number, e.g.
for 3 pins we estimated the ES frequencies 1000

times, by combining 3 random pins from the 100
pins contained in the database. Afterward, the opti-
mal number of pins for landscape assessments was
determined based on three parameters: first, a 95% CI
(CI ¼ 1:96 � sd; where CI = confidence interval and
sd = standard deviation) to assess the reliability
related to each ES indicator/pin combination.
Second, we measured the coefficient of variation
(CV ¼ sd=μ, where CV = coefficient of variation,
sd = standard deviation and µ = mean ES indicator
cover) to assess the variability associated to each pin
frequency. Finally, we calculated the slope of the CV
for each adjacent pin frequency to measure how
much information was retrieved when adding more
pins (i.e. learning rate based on slope). We smoothed
the slope with a moving average (window size w = 3)
to mitigate the effect of local peaks. Finally, we estab-
lished a landscape-scale threshold for the three cri-
teria as follows: we estimated number of pins for each
ES indicator within a 95% confidence ensuring that
the lower end of the CI always remained positive; we
set CV at 0.5 (or 50%) as an acceptable variability
threshold, and a learning rate (slope) of 1% to assess
the number of pins after which adding a new pin
does not add new information.

The combination of the CI, CV and slope aims to set
guidelines to find the tradeoff between intensive sam-
pling (i.e. 100 pins per image) in fewer images and a
more extensive sampling with fewer pins. We assessed
these parameters given by the number of pins needed in

Table 2. Description of ES indicators mapped in this study according to the CICES framework.
Category Category description CICES division CICES codes ES description

Woody Shrubs (e.g. Salix spp., Betula nana) Provisioning,
regulation,
cultural

1.1.5.1/1.1.5.2/2.2.1.1/
2.2.1.2/2.2.2.X/2.2.4.
X/3.1.1.1/3.1.2.4

Habitat for wildlife, preservation of
ecosystem functioning, carbon
capture, erosion control

Crowberry Vegetative and flowering structures of crowberry
(Empetrum nigrum)

Provisioning,
regulation,
cultural

1.1.5.1/2.2.1.1/2.2.4.X/
3.1.2.3/3.1.2.4

Long-term berries supply, erosion
control, traditional use, local
culture

Blueberry Vegetative and flowering structures of blueberry
(Vaccinium myrtillus)

Provisioning,
regulation,
cultural

1.1.5.1/2.2.1.1/2.2.4.X/
3.1.2.3/3.1.2.4

Long-term berries supply, local
culture, aesthetics

Lingonberry Vegetative and flowering structures of lingonberry
(Vaccinium vitis-idaea)

Provisioning,
regulation,
cultural

1.1.5.1/2.2.1.1/2.2.4.X/
3.1.2.3/3.1.2.4

Long-term berries supply, local
culture, aesthetics

Cloudberry Vegetative and flowering structures of cloudberry
(Rubus chamaemorus)

Provisioning,
regulation,
cultural

1.1.5.1/2.2.1.1/2.2.4.X/
3.1.2.3/3.1.2.4

Long-term berries supply, local
culture, aesthetics

Bilberry Vegetative and flowering structures of bilberry
(Vaccinium uliginosum)

Provisioning,
regulation,
cultural

1.1.5.1/2.2.1.1/2.2.4.X/
3.1.2.3/3.1.2.4

Long-term berries supply, local
culture, aesthetics

Grass Graminoids, sedges and rushes Provisioning,
regulation

1.1.5.1/2.2.1.1 Summer pastures for reindeer or
sheep, erosion control

Herbs Herbaceous dicotyledons Provisioning,
regulation,
cultural

1.1.5.1/2.2.1.1/3.2.1.1 Summer pastures for reindeer or
sheep, erosion control, symbolic
meaning

Lichen Lichens Provisioning 1.1.5.1 Winter pastures for grazers
(reindeer)

Moss Mosses Provisioning 1.1.5.1 Winter pastures for grazers
(reindeer)

Flowers Reproductive structures of plants (with exception of
crowberry, blueberry, lingonberry, cloudberry and
bilberry)

Provisioning,
regulation,
cultural

1.1.5.1/2.2.2.1/3.1.2.4 High productive conditions
(nutrients and climate),
pollination, aesthetics

Others Non-vegetation categories (stones, litter, bare soil)

We selected the specific ES Indicator groups based on interviews with local communities, literature reviews and the features that are possible to detect
using image-based PIM.
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relation to (a) the surrounding habitat type to each plot
to unravel potential confounding habitat-specific
trends. For instance, herb-rich vegetation that has
higher diversity surrounding the plot may influence
the number of pins needed; (b) the likelihood of detect-
ing different ES indicators. For example, flowering
plants could require more pins to detect because they
have rare occurrences; (c) vegetation cover as higher %
cover makes ES easier to detect.

Results

A total of 454 images were analyzed in a total of 15
habitat types. A total of 1925 ES indicators with frequen-
cies higher than 5% were registered in the photos, with
an average of 4.25 ES indicators present at each image.

Tradeoffs between effort and reliability

There is a clear tradeoff between the number of pins
and the reliability (Figure 3(a)), where higher number
of pins results in higher reliability with longer time
needed to analyze each image. A similar trend can be
seen with the coefficient of variation (Figure 3(b))
and the slope (Figure 3(c)): both parameters reach a
plateau where the improvement given by the addition
of pins is marginal. ES indicator detection based on
the CI resulted in an optimal number of 18 pins and
shows a semi-linear increase in reliability where the
addition of a pin decreases the uncertainty between
1% and 2% (Figure 3(a)). The CV analyses show that
there is an exponential decrease in need of pins to
reduce the CV: there is a threshold between 10 and 20

pins, indicating that the addition of pins has a strong
effect on the CV up to 20 pins and is less influential
afterward (Figure 3(b)). The slope analyses indicate
that the addition of pins after 13 pins does not result
in an improvement of the learning rate, meaning that
the information added with subsequent pins is below
1% (Figure 3(c)). When comparing the landscape-
level assessment criteria (i.e. ensuring detection of
ES indicators based on the 95% CI, stability of the
measurements based on the CV and maximizing the
learning rate based on the slope) to the vegetation
cover (Figure 3(d)), a threshold around 20 pins can
be found. After 20 pins, the 3 parameters stagnate:
detecting ES indicators with a cover higher than 80%
require 1–2 pins, and ES with a cover of 5% require
up to 38 pins, with a shoulder between 10 and 15 pins
(Figure 3(d)).

Landscape-level assessments

Analyses of the habitat type surrounding the plot at a
5-m radius show that the number of pins required for
landscape-level assessments is similar for all classes
(Figure 4), within 15–20 pins per image. Therefore,
we assessed amount of pins needed for landscape-
level assessments independently of the habitat types
surrounding the images.

The average number of pins split by ES type shows
that the pin number necessary for landscape-level
assessments of the studied ES lies within 20–30
pins: this indicates that robust detection of multiple
ES indicators requires approximately 30 pins per
image (Figure 5).

Figure 2. Conceptual map of the permutation process applied to the 453 images in the database. sd: Standard deviation,
µ: mean; CI: confidence interval; CV: coefficient of variation.
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Discussion

Our study shows that image-based PIM is a method
that is not constrained by the habitat type surround-
ing the plot, rather the cover (in percentage) and the
desired measurement reliability when assessing ES
indicators or other habitat types. Studies focusing
on rare plants, phenology or plant community
dynamics on a fine scale may require a high number
of pins per plot. However, estimations of the abun-
dance of multiple ES indicators at landscape scale will
benefit from increasing the number of plots and
decreasing the number of pins per plot, rather than
having fewer plots with very high resolution (Meese
and Tomich 1992; Southwood and Henderson 2000).
Once an accuracy threshold has been met, adding
more pins only helps increase fine-detail accuracy
and not landscape-level information (Fisser and
Dyne 1966; Bråthen and Hagberg 2004).

Our flexible approach of using three criteria to
measure optimal number of pins provides guidelines
for research designs to achieve high-quality primary
data that can reveal landscape patterns. We suggest
our results to be applicable to any ES indicator or

vegetation type with a cover higher than 5% inside
the quadrat area for any ecosystem with short vegeta-
tion (i.e. under 50 cm height), when the interest is the
crown cover (i.e. the horizontal structure of the
vegetation).

Reliable landscape assessment of multiple ES indi-
cators required approximately 30 pins, while cate-
gories that do not reflect ES such as stones or bare
soil (Figure 5, grey area) required a number close to
20 pins, as opposed to the widely used 100-pin den-
sity (Kaarlejärvi et al. 2017). Applying 30 pins ensures
robust measurements for all ES indicators considered
in this study and provides high-quality primary data
for landscape-level ES indicator assessment, while
reducing data processing time up to a 50% compared
to a 100-pin analyses. The saved time can be allocated
toward analyzing more plots to assess landscape-scale
distribution of ES indicators (Nelson et al. 2009). For
example, Speed et al. (2014) used 16 pins in
50 × 50 cm quadrats, which could be translated into
64 pins/m2 (to be comparable to our study), a sam-
pling effort that measures ES indicators with a very

Figure 3. (a) Number of pins required to achieve a given reliability with a 95% confidence (reliability 0 indicates detection), and
the time required to achieve the reliability; (b) number of pins required to achieve a given coefficient of variation; (c) number of
pins required to achieve a given learning rate (slope); and (d) number of pins required to fulfill the reliability (based on the CI),
variability (based on the CV) and the learning rate (based on the slope) requirements for landscape-scale assessment of ES
indicators at different habitat types.
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high reliability. This and other studies using 100 pins
(or higher densities) are likely to benefit from redu-
cing the amount of pins and increasing the number
of plots analyzed, achieving higher spatial resolution
while maintaining high quality on their data.

However, this method is constrained to low vege-
tation (lower than 50 cm). Since digital images detect
only the crown cover of the vegetation, multiple
layered vegetation types will result in an overrepre-
sentation of the highest plants detrimental to the
lower, more conspicuous plants. Complex vegetation
types and high plants may benefit from other

approaches, such as in-field PIM (complex vegetation
types such as bushes) or aerial imagery (forests, tall
shrubs). Also, if the focus is on rare plant species
(with crown cover less than 5%), the approach to
analyze the pictures might need to be different. In
addition, the images need to be of sufficient quality:
detection of some plant species further than func-
tional groupings (e.g. grasses) in digital images can
be challenging, or even impossible, due to the limited
resolution of the images.

In conclusion, landscape-scale assessment of ES
supply can be effectively performed by applying 30

Figure 5. Optimal number of pins needed for landscape-scale ES indicator assessment in images based on three criteria: 95%
confidence interval – CI – (black dots), coefficient of variation – CV – (gray dots) and slope (hollow dots). Points with gray
background represent categories that do not reflect ES.

Figure 4. Optimal number of pins needed for landscape scale ES indicator assessment in the different habitat types surrounding
the images based on three criteria: 95% confidence interval – CI – (black dots), coefficient of variation – CV – (gray dots) and
slope (hollow dots). The value in brackets corresponds to the amount of pictures analyzed for each habitat type. The number of
pins was decided to fulfill landscape-level requirements (consistent detection based on the 95% CI, variability (CV) of 0.5 and a
slope lower than 1%).
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pins per 1 m2 image over a larger amount of images.
The resulting ES indicator cover measurements will
be robust in reliability (consistently detecting ES indi-
cators present in the image), variability (CV is lower
than 0.5) and learning rate (slope is lower than 1%),
reducing sampling costs and enhancing access to
primary data to managers. Our study contributes to
landscape-scale ES indicator assessment by use of
imagery-based PIM, which reduces field cost and
time compared to field-PIM, and by proposing the
lowest optimal number of pins compared to the ones
used traditionally, which reduces time in image ana-
lysis. We present our results (see Figure 3) as a tool to
optimize the design of landscape-level PIM assess-
ment of ES.
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