93 research outputs found

    Fuel-Stimulated Insulin Secretion Depends upon Mitochondria Activation and the Integration of Mitochondrial and Cytosolic Substrate Cycles

    Get PDF
    The pancreatic islet β-cell is uniquely specialized to couple its metabolism and rates of insulin secretion with the levels of circulating nutrient fuels, with the mitochondrial playing a central regulatory role in this process. In the β-cell, mitochondrial activation generates an integrated signal reflecting rates of oxidativephosphorylation, Kreb's cycle flux, and anaplerosis that ultimately determines the rate of insulin exocytosis. Mitochondrial activation can be regulated by proton leak and mediated by UCP2, and by alkalinization to utilize the pH gradient to drive substrate and ion transport. Converging lines of evidence support the hypothesis that substrate cycles driven by rates of Kreb's cycle flux and by anaplerosis play an integral role in coupling responsive changes in mitochondrial metabolism with insulin secretion. The components and mechanisms that account for the integrated signal of ATP production, substrate cycling, the regulation of cellular redox state, and the production of other secondary signaling intermediates are operative in both rodent and human islet β-cells

    Quercetin and Allopurinol Ameliorate Kidney Injury in STZ-Treated Rats with Regulation of Renal NLRP3 Inflammasome Activation and Lipid Accumulation

    Get PDF
    Hyperuricemia, hyperlipidemia and inflammation are associated with diabetic nephropathy. The NLRP3 inflammasome-mediated inflammation is recently recognized in the development of kidney injury. Urate and lipid are considered as danger signals in the NLRP3 inflammasome activation. Although dietary flavonoid quercetin and allopurinol alleviate hyperuricemia, dyslipidmia and inflammation, their nephroprotective effects are currently unknown. In this study, we used streptozotocin (STZ)-induced diabetic nephropathy model with hyperuricemia and dyslipidemia in rats, and found over-expression of renal inflammasome components NLRP3, apoptosis-associated speck-like protein and Caspase-1, resulting in elevation of IL-1β and IL-18, with subsequently deteriorated renal injury. These findings demonstrated the possible association between renal NLRP3 inflammasome activation and lipid accumulation to superimpose causes of nephrotoxicity in STZ-treated rats. The treatment of quercetin and allopurinol regulated renal urate transport-related proteins to reduce hyperuricemia, and lipid metabolism-related genes to alleviate kidney lipid accumulation in STZ-treated rats. Furthermore, quercetin and allopurinol were found to suppress renal NLRP3 inflammasome activation, at least partly, via their anti-hyperuricemic and anti-dyslipidemic effects, resulting in the amelioration of STZ-induced the superimposed nephrotoxicity in rats. These results may provide a basis for the prevention of diabetes-associated nephrotoxicity with urate-lowering agents such as quercetin and allopurinol

    Dielectrophoretic assembly of insulinoma cells and fluorescent nanosensors into three-dimensional pseudo-islet constructs

    Get PDF
    Dielectrophoretic forces, generated by radio-frequency voltages applied to micromachined, transparent, indium tin oxide electrodes, have been used to condense suspensions of insulinoma cells (BETA-TC-6 and INS-1) into a 10times10 array of three-dimensional cell constructs. Some of these constructs, measuring ~150 mum in diameter, 120 mum in height and containing around 1000 cells, were of the same size and cell density as a typical islet of Langerhans. With the dielectrophoretic force maintained, these engineered cell constructs were able to withstand mechanical shock and fluid flow forces. Reproducibility of the process required knowledge of cellular dielectric properties, in terms of membrane capacitance and membrane conductance, which were obtained by electrorotation measurements. The ability to incorporate fluorescent nanosensors, as probes of cellular oxygen and pH levels, into these 'pseudo-islets' was also demonstrated. The footprint of the 10times10 array of cell constructs was compatible with that of a 1536 microtitre plate, and thus amenable to optical interrogation using automated plate reading equipment

    Metabolic fate of glucose in purified islet cells

    No full text

    (13)C NMR isotopomer analysis reveals a connection between pyruvate cycling and glucose-stimulated insulin secretion (GSIS)

    No full text
    Cellular metabolism of glucose is required for stimulation of insulin secretion from pancreatic β cells, but the precise metabolic coupling factors involved in this process are not known. In an effort to better understand mechanisms of fuel-mediated insulin secretion, we have adapted (13)C NMR and isotopomer methods to measure influx of metabolic fuels into the tricarboxylic acid (TCA) cycle in insulinoma cells. Mitochondrial metabolism of [U-(13)C(3)]pyruvate, derived from [U-(13)C(6)]glucose, was compared in four clonal rat insulinoma cell 1-derived cell lines with varying degrees of glucose responsiveness. A (13)C isotopomer analysis of glutamate isolated from these cells showed that the fraction of acetyl-CoA derived from [U-(13)C(6)]glucose was the same in all four cell lines (44 ± 5%, 70 ± 3%, and 84 ± 4% with 3, 6, or 12 mM glucose, respectively). The (13)C NMR spectra also demonstrated the existence of two compartmental pools of pyruvate, one that exchanges with TCA cycle intermediates and a second pool derived from [U-(13)C(6)]glucose that feeds acetyl-CoA into the TCA cycle. The (13)C NMR spectra were consistent with a metabolic model where the two pyruvate pools do not randomly mix. Flux between the mitochondrial intermediates and the first pool of pyruvate (pyruvate cycling) varied in proportion to glucose responsiveness in the four cell lines. Furthermore, stimulation of pyruvate cycling with dimethylmalate or its inhibition with phenylacetic acid led to proportional changes in insulin secretion. These findings indicate that exchange of pyruvate with TCA cycle intermediates, rather than oxidation of pyruvate via acetyl-CoA, correlates with glucose-stimulated insulin secretion

    Involvement of specific proteins (Sp1/Sp3) and nuclear factor Y in basal transcription of the distal promoter of the rat pyruvate carboxylase gene in beta-cells

    No full text
    Pyruvate carboxylase plays diverse roles in different biosynthetic pathways, including glucose-induced insulin secretion in pancreatic β-cells. We have localized the control region of the P2 promoter by generating a series of 5′-nested deletion constructs, and both 25- and 9-bp internal deletion constructs, as well as by performing site-directed mutagenesis. Transient transfections of these constructs into INS-1 cells identified a CCAAT box and a GC box that are located at −65/−61 and −48/−41, respectively, as the important determinants. Disruption of the GC box resulted in a 4-fold reduction of the reporter activity, while disruption of the proximal CCAAT box (−65/−61) but not the distal CCAAT box (−95/−91) increased the reporter activity by 3-fold. Simultaneous disruptions of both the GC box and the CCAAT box reduced the reporter activity to a level that was close to that of the single GC box mutation. Electrophoretic mobility shift assays (EMSAs) and supershift EMSAs using nuclear extract from INS-1 cells demonstrated that Sp1 and Sp3 bind a GC box while the nuclear factor Y was shown to bind the proximal but not the distal CCAAT box.Piyanate Sunyakumthorn, Thirajit Boonsaen, Vichai Boonsaeng, John C. Wallace and Sarawut Jitrapakde
    • …
    corecore