36 research outputs found

    Expression patterns of cell wall-modifying genes from banana during fruit ripening and in relationship with finger drop

    Get PDF
    Few molecular studies have been devoted to the finger drop process that occurs during banana fruit ripening. Recent studies revealed the involvement of changes in the properties of cell wall polysaccharides in the pedicel rupture area. In this study, the expression of cell-wall modifying genes was monitored in peel tissue during post-harvest ripening of Cavendish banana fruit, at median area (control zone) and compared with that in the pedicel rupture area (drop zone). To this end, three pectin methylesterase (PME) and seven xyloglucan endotransglycosylase/hydrolase (XTH) genes were isolated. The accumulation of their mRNAs and those of polygalaturonase, expansin, and pectate lyase genes already isolated from banana were examined. During post-harvest ripening, transcripts of all genes were detected in both zones, but accumulated differentially. MaPME1, MaPG1, and MaXTH4 mRNA levels did not change in either zone. Levels of MaPME3 and MaPG3 mRNAs increased greatly only in the control zone and at the late ripening stages. For other genes, the main molecular changes occurred 1–4 d after ripening induction. MaPME2, MaPEL1, MaPEL2, MaPG4, MaXTH6, MaXTH8, MaXTH9, MaEXP1, MaEXP4, and MaEXP5 accumulated highly in the drop zone, contrary to MaXTH3 and MaXTH5, and MaEXP2 throughout ripening. For MaPG2, MaXET1, and MaXET2 genes, high accumulation in the drop zone was transient. The transcriptional data obtained from all genes examined suggested that finger drop and peel softening involved similar mechanisms. These findings also led to the proposal of a sequence of molecular events leading to finger drop and to suggest some candidates

    Analysis of non-TIR NBS-LRR resistance gene analogs in Musa acuminata Colla: Isolation, RFLP marker development, and physical mapping

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Many commercial banana varieties lack sources of resistance to pests and diseases, as a consequence of sterility and narrow genetic background. Fertile wild relatives, by contrast, possess greater variability and represent potential sources of disease resistance genes (R-genes). The largest known family of plant R-genes encode proteins with nucleotide-binding site (NBS) and C-terminal leucine-rich repeat (LRR) domains. Conserved motifs in such genes in diverse plant species offer a means for isolation of candidate genes in banana which may be involved in plant defence.</p> <p>Results</p> <p>A computational strategy was developed for unbiased conserved motif discovery in NBS and LRR domains in R-genes and homologues in monocotyledonous plant species. Degenerate PCR primers targeting conserved motifs were tested on the wild cultivar <it>Musa acuminata </it>subsp. <it>burmannicoides</it>, var. Calcutta 4, which is resistant to a number of fungal pathogens and nematodes. One hundred and seventy four resistance gene analogs (RGAs) were amplified and assembled into 52 contiguous sequences. Motifs present were typical of the non-TIR NBS-LRR RGA subfamily. A phylogenetic analysis of deduced amino-acid sequences for 33 RGAs with contiguous open reading frames (ORFs), together with RGAs from <it>Arabidopsis thaliana </it>and <it>Oryza sativa</it>, grouped most <it>Musa </it>RGAs within monocotyledon-specific clades. RFLP-RGA markers were developed, with 12 displaying distinct polymorphisms in parentals and F1 progeny of a diploid <it>M. acuminata </it>mapping population. Eighty eight BAC clones were identified in <it>M. acuminata </it>Calcutta 4, <it>M. acuminata </it>Grande Naine, and <it>M. balbisiana </it>Pisang Klutuk Wulung BAC libraries when hybridized to two RGA probes. Multiple copy RGAs were common within BAC clones, potentially representing variation reservoirs for evolution of new R-gene specificities.</p> <p>Conclusion</p> <p>This is the first large scale analysis of NBS-LRR RGAs in <it>M. acuminata </it>Calcutta 4. Contig sequences were deposited in GenBank and assigned numbers <ext-link ext-link-type="gen" ext-link-id="ER935972">ER935972</ext-link> – <ext-link ext-link-type="gen" ext-link-id="ER936023">ER936023</ext-link>. RGA sequences and isolated BACs are a valuable resource for R-gene discovery, and in future applications will provide insight into the organization and evolution of NBS-LRR R-genes in the <it>Musa </it>A and B genome. The developed RFLP-RGA markers are applicable for genetic map development and marker assisted selection for defined traits such as pest and disease resistance.</p

    Genome structure and chromosome segregation in triploid interspecific plantain bananas (AAB) and breeding accessions (AAAB)

    Get PDF
    Many banana cultivars are triploid interspecific hybrids between M. acuminata (Genome A, 2n=22) and M. balbisiana (Genome B, 2n=22). They included the important group of Plantain cooking bananas classified as AAB that account for almost 20% of the bananas produced worldwide. Previous molecular analysis suggested that this group is genetically homogeneous but diversified phenotypically through somatic variations. To progress on the understanding of chromosome composition and segregation of the breeding material used to improve plantain bananas, we performed several analysis based on Genotyping By Sequencing (GBS) technologies. We analyzed the A/B chromosomes composition of a few plantain cultivars and discovered chromosome segments with AAA composition and one entire chromosome with ABB composition instead of the supposed general 'AAB' composition. We compared the global chromosome structure of A and B genomes through the construction a high density M. balbisiana genetic map and its comparison with the M. acuminata reference sequence assembly. We identified a large reciprocal translocation between a region of 0.6Mb at the beginning of chromosome 1 and a 8 Mb region at the end of chromosome 3. We also identified a large inversion of 9Mb within chromosome 5. We analyzed the A/B chromosomes segregation in a progeny from an 'AAAB' tetraploid breeding accession derived from a plantain. We revealed frequent recombination between A and B all along the genomes with a few exceptions. The exceptions consisted in the absence of recombination recorded in the inverted segment between A and B on chromosome 5 and a reduced recombination rate near the translocated regions on chromosome 1 and 3. We also observed 62% of aneuploids in the progeny involving mainly the three chromosomes that differed in their global structure between A and B genomes. Implication of these results on the origin of plantain banana cultivars and on breeding of allopolyploid bananas will be discussed based on the patterns of recombination revealed

    Development of expressed sequence tag and expressed sequence tag-simple sequence repeat marker resources for Musa acuminata.

    Get PDF
    Banana (Musa acuminata) is a crop contributing to global food security. Many varieties lack resistance to biotic stresses, due to sterility and narrow genetic background. The objective of this study was to develop an expressed sequence tag (EST) database of transcripts expressed during compatible and incompatible banana-Mycosphaerella fijiensis (Mf) interactions. Black leaf streak disease (BLSD), caused by Mf, is a destructive disease of banana. Microsatellite markers were developed as a resource for crop improvement

    Musa balbisiana genome reveals subgenome evolution and functional divergence

    Get PDF
    Banana cultivars (Musa ssp.) are diploid, triploid and tetraploid hybrids derived from Musa acuminata and Musa balbisiana. We presented a high-quality draft genome assembly of M. balbisiana with 430 Mb (87%) assembled into 11 chromosomes. We identified that the recent divergence of M. acuminata (A-genome) and M. balbisiana (B-genome) occurred after lineage-specific whole-genome duplication, and that the B-genome may be more sensitive to the fractionation process compared to the A-genome. Homoeologous exchanges occurred frequently between A- and B-subgenomes in allopolyploids. Genomic variation within progenitors resulted in functional divergence of subgenomes. Global homoeologue expression dominance occurred between subgenomes of the allotriploid. Gene families related to ethylene biosynthesis and starch metabolism exhibited significant expansion at the pathway level and wide homoeologue expression dominance in the B-subgenome of the allotriploid. The independent origin of 1-aminocyclopropane-1-carboxylic acid oxidase (ACO) homoeologue gene pairs and tandem duplication-driven expansion of ACO genes in the B-subgenome contributed to rapid and major ethylene production post-harvest in allotriploid banana fruits. The findings of this study provide greater context for understanding fruit biology, and aid the development of tools for breeding optimal banana cultivars

    Insights into the Musa genome: Syntenic relationships to rice and between Musa species

    Get PDF
    <p>Abstract</p> <p>Background</p> <p><it>Musa </it>species (Zingiberaceae, Zingiberales) including bananas and plantains are collectively the fourth most important crop in developing countries. Knowledge concerning <it>Musa </it>genome structure and the origin of distinct cultivars has greatly increased over the last few years. Until now, however, no large-scale analyses of <it>Musa </it>genomic sequence have been conducted. This study compares genomic sequence in two <it>Musa </it>species with orthologous regions in the rice genome.</p> <p>Results</p> <p>We produced 1.4 Mb of <it>Musa </it>sequence from 13 BAC clones, annotated and analyzed them along with 4 previously sequenced BACs. The 443 predicted genes revealed that Zingiberales genes share GC content and distribution characteristics with eudicot and Poaceae genomes. Comparison with rice revealed microsynteny regions that have persisted since the divergence of the Commelinid orders Poales and Zingiberales at least 117 Mya. The previously hypothesized large-scale duplication event in the common ancestor of major cereal lineages within the Poaceae was verified. The divergence time distributions for <it>Musa</it>-Zingiber (Zingiberaceae, Zingiberales) orthologs and paralogs provide strong evidence for a large-scale duplication event in the <it>Musa </it>lineage after its divergence from the Zingiberaceae approximately 61 Mya. Comparisons of genomic regions from <it>M. acuminata </it>and <it>M. balbisiana </it>revealed highly conserved genome structure, and indicated that these genomes diverged circa 4.6 Mya.</p> <p>Conclusion</p> <p>These results point to the utility of comparative analyses between distantly-related monocot species such as rice and <it>Musa </it>for improving our understanding of monocot genome evolution. Sequencing the genome of <it>M. acuminata </it>would provide a strong foundation for comparative genomics in the monocots. In addition a genome sequence would aid genomic and genetic analyses of cultivated <it>Musa </it>polyploid genotypes in research aimed at localizing and cloning genes controlling important agronomic traits for breeding purposes.</p

    Characteristics of Acacia mangium shoot apical meristems in natural and in vitro conditions in relation to heteroblasty

    Get PDF
    PDF version of the authors can be published in January 2013International audienceMorphological and histocytological characteristics of Acacia mangium shoot apical meristems (SAMs) were assessed in natural and in vitro conditions in relation to heteroblasty. In the natural environment, SAMs with a mature-phyllode morphology were much bigger, contained more cells with larger vacuolated area, or vacuome, and lower nucleoplasmic ratios than those from the juvenile type (Juv). In these latter, nuclei appeared more voluminous, evenly and lightly stained, with clearly distinguishable nucleolei and less abundant chromocenters. In vitro, where reversions from mature to juvenile morphological traits do occur unpredictably, heteroblasty was less obvious in the SAM characteristics examined. In vitro SAMs corresponding to the juvenile and mature types showed similarities with outdoor Juv SAMs, but could be distinguished from these latter by a much larger vacuome that might be induced by the culture conditions. These findings encourage pursuing the investigations at the chromatin and nucleolus level in SAM zones where heteroblasty-related differences have been detected

    Assessment of a species-specific element (Brep 1) in banana

    No full text
    corecore