1,238 research outputs found

    Correlations in nano-scale step fluctuations: comparison of simulation and experiments

    Full text link
    We analyze correlations in step-edge fluctuations using the Bortz-Kalos-Lebowitz kinetic Monte Carlo algorithm, with a 2-parameter expression for energy barriers, and compare with our VT-STM line-scan experiments on spiral steps on Pb(111). The scaling of the correlation times gives a dynamic exponent confirming the expected step-edge-diffusion rate-limiting kinetics both in the MC and in the experiments. We both calculate and measure the temperature dependence of (mass) transport properties via the characteristic hopping times and deduce therefrom the notoriously-elusive effective energy barrier for the edge fluctuations. With a careful analysis we point out the necessity of a more complex model to mimic the kinetics of a Pb(111) surface for certain parameter ranges.Comment: 10 pages, 9 figures, submitted to Physical Review

    Effect of seasonal dynamics of vegetation cover on land surface models: a case study of NOAH LSM over a savanna farm land in eastern Burkina Faso, West Africa

    No full text
    International audienceThe sensitivity of the land surface model of the National Centers for Environmental Prediction (NCEP), the Oregon State University, the Air Force and the Hydrologic Research Lab (NOAH LSM) was evaluated with respect to the seasonal dynamics of the vegetation cover in the savanna area under intensive agriculture in the eastern part of Burkina Faso, West Africa. The data collected during the first long-term measurement of the surface fluxes in this mentioned region was used for this purpose. The choice of NOAH LSM was motivated by the fact that it has already been tested in different environments in West Africa, especially in Ghana. The sensitivity was tested by comparing the simulated surfaces fluxes using a fixed values of the roughness length for momentum as a standard in the model and the true seasonal value of this variable. The results show that NOAH LSM was not sensitive to the change of the roughness length for momentum neither on a seasonal basis nor on a daily basis, which was found to be abnormal. The formulation of the coefficient (Bc) coupling the dry canopy transpiration to the atmosphere was found to be the main reason for this. An improved formulation for this coefficient was given to solve this insensitivity and to improve the performance of the model. Recommendations are also given to enhance the performance of the model in the West African savanna environment

    Dynamics of surface steps

    Full text link
    In the framework of SOS models, the dynamics of isolated and pairs of surface steps of monoatomic height is studied, for step--edge diffusion and for evaporation kinetics, using Monte Carlo techniques. In particular, various interesting crossover phenomena are identified. Simulational results are compared, especially, to those of continuum theories and random walk descriptions.Comment: 13 pages in elsart style, 4 eps figures, submitted to Physica

    Fluctuations of steps on crystal surfaces

    Full text link
    Fluctuations of isolated and pairs of ascending steps of monoatomic height are studied in the framework of SOS models, using mainly Monte Carlo techniques. Below the roughening transistion of the surface, the profiles of long steps show the same scaling features for terrace and surface diffusion. For a pair of short steps, their separation distance is found to grow as t1/3t^{1/3} at late stages. Above roughening, simulational data on surface diffusion agree well with the classical continuum theory of Mullins.Comment: 4 pages, 2 eps figure

    Morphology of ledge patterns during step flow growth of metal surfaces vicinal to fcc(001)

    Get PDF
    The morphological development of step edge patterns in the presence of meandering instability during step flow growth is studied by simulations and numerical integration of a continuum model. It is demonstrated that the kink Ehrlich-Schwoebel barrier responsible for the instability leads to an invariant shape of the step profiles. The step morphologies change with increasing coverage from a somewhat triangular shape to a more flat, invariant steady state form. The average pattern shape extracted from the simulations is shown to be in good agreement with that obtained from numerical integration of the continuum theory.Comment: 4 pages, 4 figures, RevTeX 3, submitted to Phys. Rev.

    Detection of a dense clump in a filament interacting with W51e2

    Get PDF
    In the framework of the Herschel/PRISMAS Guaranteed Time Key Program, the line of sight to the distant ultracompact HII region W51e2 has been observed using several selected molecular species. Most of the detected absorption features are not associated with the background high-mass star-forming region and probe the diffuse matter along the line of sight. We present here the detection of an additional narrow absorption feature at ~70 km/s in the observed spectra of HDO, NH3 and C3. The 70 km/s feature is not uniquely identifiable with the dynamic components (the main cloud and the large-scale foreground filament) so-far identified toward this region. The narrow absorption feature is similar to the one found toward low-mass protostars, which is characteristic of the presence of a cold external envelope. The far-infrared spectroscopic data were combined with existing ground-based observations of 12CO, 13CO, CCH, CN, and C3H2 to characterize the 70 km/s component. Using a non-LTE analysis of multiple transitions of NH3 and CN, we estimated the density (n(H2) (1-5)x10^5 cm^-3) and temperature (10-30 K) for this narrow feature. We used a gas-grain warm-up based chemical model with physical parameters derived from the NH3 data to explain the observed abundances of the different chemical species. We propose that the 70 km/s narrow feature arises in a dense and cold clump that probably is undergoing collapse to form a low-mass protostar, formed on the trailing side of the high-velocity filament, which is thought to be interacting with the W51 main cloud. While the fortuitous coincidence of the dense clump along the line of sight with the continuum-bright W51e2 compact HII region has contributed to its non-detection in the continuum images, this same attribute makes it an appropriate source for absorption studies and in particular for ice studies of star-forming regions.Comment: Accepted for publication in A&

    The Effects of Next-Nearest-Neighbor Interactions on the Orientation Dependence of Step Stiffness: Reconciling Theory with Experiment for Cu(001)

    Get PDF
    Within the solid-on-solid (SOS) approximation, we carry out a calculation of the orientational dependence of the step stiffness on a square lattice with nearest and next-nearest neighbor interactions. At low temperature our result reduces to a simple, transparent expression. The effect of the strongest trio (three-site, non pairwise) interaction can easily be incorporated by modifying the interpretation of the two pairwise energies. The work is motivated by a calculation based on nearest neighbors that underestimates the stiffness by a factor of 4 in directions away from close-packed directions, and a subsequent estimate of the stiffness in the two high-symmetry directions alone that suggested that inclusion of next-nearest-neighbor attractions could fully explain the discrepancy. As in these earlier papers, the discussion focuses on Cu(001).Comment: 8 pages, 3 figures, submitted to Phys. Rev.

    Nanoscale Equilibrium Crystal Shapes

    Full text link
    The finite size and interface effects on equilibrium crystal shape (ECS) have been investigated for the case of a surface free energy density including step stiffness and inverse-square step-step interactions. Explicitly including the curvature of a crystallite leads to an extra boundary condition in the solution of the crystal shape, yielding a family of crystal shapes, governed by a shape parameter c. The total crystallite free energy, including interface energy, is minimized for c=0, yielding in all cases the traditional PT shape (z x3/2). Solutions of the crystal shape for c≠0 are presented and discussed in the context of meta-stable states due to the energy barrier for nucleation. Explicit scaled relationships for the ECS and meta-stable states in terms of the measurable step parameters and the interfacial energy are presented.Comment: 35 page

    Rotational spectroscopy of rare iron monoxide isotopologues: A mass-independent analysis

    Get PDF
    We present pure rotational transitions of the rare iron monoxide isotopologues.,andin their lowest spin states. For, the rotational spectrum reveals hyperfine splitting due to the nuclear spin of. We use Dunham-like parameters to analyse the new laboratory data together with data from the literature. In particular, we are able to derive the Born-Oppenheimer breakdown parametersandand the corresponding equilibrium bond length of. With these new accurate molecular parameters line positions on a sub-MHz accuracy level can be calculated, including those of the radioactive isotopologue. The new data allow for an astronomical search for the rareisotopologues using sensitive radio telescopes, like the Atacama Large Millimetre/submillimetre Array
    corecore