36 research outputs found
SCR and GCR exposure ages of plagioclase grains from lunar soil
The concentrations of solar wind implanted Ar-36 in mineral grains extracted from lunar soils show that they were exposed to the solar wind on the lunar surface for an integrated time of 10E4 to 10E5 years. From the bulk soil 61501 plagioclase separates of 8 grain size ranges was prepared. The depletion of the implanted gases was achieved by etching aliquot samples of 4 grain sizes to various degrees. The experimental results pertinent to the present discussion are: The spallogenic Ne is, as in most plagioclases from lunar soils, affected by diffusive losses and of no use. The Ar-36 of solar wind origin amounts to (2030 + or - 100) x 10E-8 ccSTP/g in the 150 to 200 mm size fraction and shows that these grains were exposed to the solar wind for at least 10,000 years. The Ne-21/Ne-22 ratio of the spallogenic Ne is 0.75 + or - 0.01 and in very good agreement with the value of this ratio in a plagioclase separate from rock 76535. This rock has had a simple exposure history and its plagioclases have a chemical composition quite similar to those studied. In addition to the noble gases, the heavy particle tracks in an aliquot of the 150 to 200 mm plagioclase separate were investigated and found 92% of the grains to contain more than 10E8 tracks/sq cm. This corresponds to a mean track density of (5 + or - 1) x 10E8 tracks/sq cm. The exploration of the exposure history of the plagioclase separates from the soil 61501 do not contradict the model for the regolith dynamics but also fail to prove it
Nitrogen and noble gases in the 71501 bulk soil and ilmenite as records of the solar wind exposure: Which is correct?
The N determination in mg sized mineral separates from lunar soils by static mass spectrometry is an experimental break-through likely to contribute to the deciphering of the records left in the mineral grains by the exposure to the solar wind. In this discussion some comparisons of the results of N and noble gas analyses of the 71501 bulk soil and an ilmenite separate thereof are focussed on. Conclusions from noble gas data obtained on mineral separates from some 20 soils are summarized in a companion paper and are also discussed herein
Deficiency in trefoil factor 1 (TFF1) increases tumorigenicity of human breast cancer cells and mammary tumor development in TFF1-knockout mice
Although trefoil factor 1 (TFF1; previously named pS2) is abnormally expressed in about 50% of human breast tumors, its physiopathological role in this disease has been poorly studied. Moreover, controversial data have been reported. TFF1 function in the mammary gland therefore needs to be clarified. In this study, using retroviral vectors, we performed TFF1 gain- or loss-of-function experiments in four human mammary epithelial cell lines: normal immortalized TFF1-negative MCF10A, malignant TFF1-negative MDA-MB-231 and malignant TFF1-positive MCF7 and ZR75.1. The expression of TFF1 stimulated the migration and invasion in the four cell lines. Forced TFF1 expression in MCF10A, MDA-MB-231 and MCF7 cells did not modify anchorage-dependent or -independent cell proliferation. By contrast, TFF1 knockdown in MCF7 enhanced soft-agar colony formation. This increased oncogenic potential of MCF7 cells in the absence of TFF1 was confirmed in vivo in nude mice. Moreover, chemically induced tumorigenesis in TFF1-deficient (TFF1-KO) mice led to higher tumor incidence in the mammary gland and larger tumor size compared with wild-type mice. Similarly, tumor development was increased in the TFF1-KO ovary and lung. Collectively, our results clearly show that TFF1 does not exhibit oncogenic properties, but rather reduces tumor development. This beneficial function of TFF1 is in agreement with many clinical studies reporting a better outcome for patients with TFF1-positive breast primary tumors
Magnetite as a precursor for green rust through the hydrogenotrophic activity of the iron-reducing bacteria Shewanella putrefaciens
International audienceMagnetite ((FeFe2O4)-Fe-II-O-III) is often considered as a stable end product of the bioreduction of Fe-III minerals (e.g., ferrihydrite, lepidocrocite, hematite) or of the biological oxidation of Fe-II compounds (e.g., siderite), with green rust (GR) as a mixed Fe-II-Fe-III hydroxide intermediate. Until now, the biotic transformation of magnetite to GR has not been evidenced. In this study, we investigated the capability of an iron-reducing bacterium, Shewanella putrefaciens, to reduce magnetite at circumneutral pH in the presence of dihydrogen as sole inorganic electron donor. During incubation, GR and/or siderite ((FeCO3)-C-II) formation occurred as secondary iron minerals, resulting from the precipitation of Fe-II species produced via the bacterial reduction of Fe-III species present in magnetite. Taking into account the exact nature of the secondary iron minerals and the electron donor source is necessary to understand the exergonic character of the biotic transformation of magnetite to GR, which had been considered to date as thermodynamically unfavorable at circumneutral pH. This finding reinforces the hypothesis that GR would be the cornerstone of the microbial transformations of iron-bearing minerals in the anoxic biogeochemical cycle of iron and opens up new possibilities for the interpretation of the evolution of Earth's history and for the understanding of biocorrosion processes in the field of applied science
Pseudo-first-order reaction of chemically and biologically formed green rusts with HgII and C15H15N3O2: effects of pH and stabilizing agents (phosphate, silicate, polyacrylic acid, and bacterial cells)
International audienceThe kinetics of Hg(II) and methyl red (MR) reduction by hydroxycarbonate green rust (GR1) and by hydroxysulfate green rust (GR2) were studied in the presence of naturally occurring organic and inorganic ligands (phosphate, polyacrylic acid, bacterial cells, silicate). The reducing ability of biogenic hydroxycarbonate green rust (GR1bio), obtained after microbial reduction of lepidocrocite by Shewanella putrefaciens, was also investigated and compared to those of chemically synthesized GR1 and GR2 (GR1ab and GR2ab). Pseudo first-order rate constants (kobs) of Hg(II) reduction (at pH 7.0, 8.2, and 9.5) and MR reduction (at pH 7.0) were determined and were normalized to the structural Fe(II) content of GRs (kFeII) and to the estimated concentration of surface Fe(II) sites (kS). The kS values ranged from 0.3 L mmol(-1) min(-1) to 43 L mmol(-1) min(-1) for the Hg reduction, and from 0.007 L mmol(-1) min(-1) to 3.4 L mmol(-1) min(-1) for the MR reduction. No significant discrepancy between GRab and GRbio was observed in term of reactivity. However, the reduction kinetics of MR was generally slower than the Hg(II) reduction kinetics for all tested GRs. While a slight difference in Hg(II) reduction rate was noted whatever the pH values (7.0, 8.2, or 9.5), the reduction of MR was significantly affected in the presence of ligands. A decrease by a factor of 2-200, depending on the type of ligand used, was observed. These data give new insights into the reactivity of GRs in the presence of co-occurring organic and inorganic ligands, and have major implications in the characterization of contaminated systems as well as water treatment processes.[on SciFinder (R)
New photodynamic molecular beacons (PMB) as potential cancer-targeted agents in PDT.
International audienc