93 research outputs found

    Quantifying Fluvial Topography Using UAS Imagery and SfM-Photogrammetry.

    Get PDF
    The measurement and monitoring of fluvial topography at high spatial and temporal resolutions is in increasing demand for a range of river science and management applications, including change detection, hydraulic models, habitat assessments, river restorations and sediment budgets. Existing approaches are yet to provide a single technique for rapidly quantifying fluvial topography in both exposed and submerged areas, with high spatial resolution, reach-scale continuous coverage, high accuracy and reasonable cost. In this paper, we explore the potential of using imagery acquired from a small unmanned aerial system (UAS) and processed using Structure-from-Motion (SfM) photogrammetry for filling this gap. We use a rotary winged hexacopter known as the Draganflyer X6, a consumer grade digital camera (Panasonic Lumix DMC-LX3) and the commercially available PhotoScan Pro SfM software (Agisoft LLC). We test the approach on three contrasting river systems; a shallow margin of the San Pedro River in the Valdivia region of south-central Chile, the lowland River Arrow in Warwickshire, UK, and the upland Coledale Beck in Cumbria, UK. Digital elevation models (DEMs) and orthophotos of hyperspatial resolution (0.01-0.02m) are produced. Mean elevation errors are found to vary somewhat between sites, dependent on vegetation coverage and the spatial arrangement of ground control points (GCPs) used to georeference the data. Mean errors are in the range 4-44mm for exposed areas and 17-89mm for submerged areas. Errors in submerged areas can be improved to 4-56mm with the application of a simple refraction correction procedure. Multiple surveys of the River Arrow site show consistently high quality results, indicating the repeatability of the approach. This work therefore demonstrates the potential of a UAS-SfM approach for quantifying fluvial topography

    Surviving historical Patagonian landscapes and climate: molecular insights from Galaxias maculatus

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The dynamic geological and climatic histories of temperate South America have played important roles in shaping the contemporary distributions and genetic diversity of endemic freshwater species. We use mitochondria and nuclear sequence variation to investigate the consequences of mountain barriers and Quaternary glacial cycles for patterns of genetic diversity in the diadromous fish <it>Galaxias maculatus </it>in Patagonia (~300 individuals from 36 locations).</p> <p>Results</p> <p>Contemporary populations of <it>G. maculatus</it>, east and west of the Andes in Patagonia, represent a single monophyletic lineage comprising several well supported groups. Mantel tests using control region data revealed a strong positive relationship when geographic distance was modeled according to a scenario of marine dispersal. (<it>r </it>= 0.69, <it>P = 0.055</it>). By contrast, direct distance between regions was poorly correlated with genetic distance (<it>r </it>= -0.05, <it>P </it>= 0.463). Hierarchical AMOVAs using mtDNA revealed that pooling samples according to historical (pre-LGM) oceanic drainage (Pacific vs. Atlantic) explained approximately four times more variance than pooling them into present-day drainage (15.6% vs. 3.7%). Further <it>post-hoc </it>AMOVA tests revealed additional genetic structure between populations east and west of the Chilean Coastal Cordillera (coastal vs. interior). Overall female effective population size appears to have remained relatively constant until roughly 0.5 Ma when population size rapidly increased several orders of magnitude [100× (60×-190×)] to reach contemporary levels. Maximum likelihood analysis of nuclear alleles revealed a poorly supported gene tree which was paraphyletic with respect to mitochondrial-defined haplogroups.</p> <p>Conclusions</p> <p>First diversifying in the central/north-west region of Patagonia, <it>G. maculatus </it>extended its range into Argentina via the southern coastal regions that join the Pacific and Atlantic oceans. More recent gene flow between northern populations involved the most ancient and most derived lineages, and was likely facilitated by drainage reversal(s) during one or more cooling events of the late Pleistocene. Overall female effective population size represents the end result of a widespread and several hundred-fold increase over approximately 0.5 Ma, spanning several climatic fluctuations of the Pleistocene. The minor influence of glacial cycles on the genetic structure and diversity of <it>G. maculatus </it>likely reflects the access to marine refugia during repeated bouts of global cooling. Evidence of genetic structure that was detected on a finer scale between lakes/rivers is most likely the result of both biological attributes (i.e., resident non-migratory behavior and/or landlocking and natal homing in diadromous populations), and the Coastal Cordillera as a dispersal barrier.</p

    Biogeography, habitat transitions and hybridization in a radiation of South American silverside fishes revealed by mitochondrial and genomic RAD data

    Get PDF
    Rivers and lake systems in the southern cone of South America have been widely influenced by historic glaciations events, carrying important implications on the evolution of aquatic organisms including prompting transitions between marine and freshwater habitats and by triggering hybridization among incipient species via waterway connectivity and stream capture events. Silverside fishes (Odontesthes) in the region comprise a radiation of 19 marine and freshwater species that have been hypothesized on the basis of morphological or mitochondrial DNA data to have either transitioned repeatedly into continental waters from the sea or colonized marine habitats following freshwater diversification. New ddRAD data presented here provide a robust framework to investigate biogeographic history and habitat transitions in Odontesthes. We show that Odontesthes silversides originally diversified in the Pacific but independently colonized the Atlantic three times, producing three independent marine-to-freshwater transitions. Our results also indicate recent introgression of marine mitochondrial haplotypes into two freshwater clades, with more recurring instances of hybridization among Atlantic- vs. Pacific-slope species. In Pacific freshwater drainages, hybridization with a marine species appears to be geographically isolated and may be related to glaciation events. Substantial structural differences of estuarine gradients between these two geographic areas may have influenced the frequency, intensity, and evolutionary effects of hybridization events.Laboratorio de Sistemática y Biología EvolutivaFacultad de Ciencias Naturales y Muse

    Phytotherapeutic effects of Echinacea purpurea in gamma-irradiated mice

    Get PDF
    Echinacea (E.) purpurea herb is commonly known as the purple coneflower, red sunflower and rudbeckia. In this paper, we report the curative efficacy of an Echinacea extract in γ-irradiated mice. E. purpurea was given to male mice that were divided into five groups (control, treated, irradiated, treated before irradiation & treated after irradiation) at a dose of 30 mg/kg body weight for 2 weeks before and after irradiation with 3 Gy of γ-rays. The results reflected the detrimental reduction effects of γ-rays on peripheral blood hemoglobin and the levels of red blood cells, differential white blood cells, and bone marrow cells. The thiobarbituric acid-reactive substances (TBARs) level, Superoxide dismutase (SOD) and glutathione peroxidase (GSPx) activities and DNA fragmentation were also investigated. FT-Raman spectroscopy was used to explore the structural changes in liver tissues. Significant changes were observed in the microenvironment of the major constituents, including tyrosine and protein secondary structures. E. purpurea administration significantly ameliorated all estimated parameters. The radio-protection effectiveness was similar to the radio-recovery curativeness in comparison to the control group in most of the tested parameters. The radio-protection efficiency was greater than the radio-recovery in hemoglobin level during the first two weeks, in lymphoid cell count and TBARs level at the fourth week and in SOD activity during the first two weeks, as compared to the levels of these parameters in the control group

    Evidence of niche partitioning under ontogenetic influences among three morphologically similar siluriformes in small subtropical streams

    Get PDF
    Ontogenetic influences in patterns of niche breadth and feeding overlap were investigated in three species of Siluriformes (Heptapterus sp., Rhamdia quelen and Trichomycterus poikilos) aiming at understanding the species coexistence. Samplings were conducted bimonthly by electrofishing technique from June/2012 to June/2013 in ten streams of the northwestern state of Rio Grande do Sul, Brazil. The stomach contents of 1,948 individuals were analyzed by volumetric method, with 59 food items identified. In general Heptapterus sp. consumed a high proportion of Aegla sp., terrestrial plant remains and Megaloptera; R. quelen consumed fish, and Oligochaeta, followed by Aegla sp.; while the diet of T. poikilos was based on Simuliidae, Ephemeroptera and Trichoptera. Specie segregation was observed in the NMDS. Through PERMANOVA analysis feeding differences among species, and between a combination of species plus size classes were observed. IndVal showed which items were indicators of these differences. Niche breadth values were high for all species. The niche breadth values were low only for the larger size of R. quelen and Heptapterus sp. while T. poikilos values were more similar. Overall the species were a low feeding overlap values. The higher frequency of high feeding overlap was observed for interaction between Heptapterus sp. and T. poikilos. The null model confirmed the niche partitioning between the species. The higher frequency of high and intermediate feeding overlap values were reported to smaller size classes. The null model showed resource sharing between the species/size class. Therefore, overall species showed a resource partitioning because of the use of occasional items. However, these species share resources mainly in the early ontogenetic stages until the emphasized change of morphological characteristics leading to trophic niche expansion and the apparent segregation observed
    corecore