1,068 research outputs found
Long-term, multiwavelength light curves of ultra-cool dwarfs: II. The evolving light curves of the T2. 5 SIMP 0136 & the uncorrelated light curves of the M9 TVLM 513
We present multiwavelength, multi-telescope, ground-based follow-up photometry of the white dwarf WD 1145+017, that has recently been suggested to be orbited by up to six or more, short-period, low- mass, disintegrating planetesimals. We detect 9 significant dips in flux of between 10% and 30% of the stellar flux from our ground-based photometry. We observe transits deeper than 10% on average every ∼3.6 hr in our photometry. This suggests that WD 1145+017 is indeed being orbited by multiple, short-period objects. Through fits to the multiple asymmetric transits that we observe, we confirm that the transit egress timescale is usually longer than the ingress timescale, and that the transit duration is longer than expected for a solid body at these short periods, all suggesting that these objects have cometary tails streaming behind them. The precise orbital periods of the planetesimals in this system are unclear from the transit-times, but at least one object, and likely more, have orbital periods of ∼4.5 hours. We are otherwise unable to confirm the specific periods that have been reported, bringing into question the long-term stability of these periods. Our high precision photometry also displays low amplitude variations suggesting that dusty material is consistently passing in front of the white dwarf, either from discarded material from these disintegrating planetesimals or from the detected dusty debris disk. For the significant transits we observe, we compare the transit depths in the V- and R-bands of our multiwavelength photometry, and find no significant difference; therefore, for likely compositions the radius of single-size particles in the cometary tails streaming behind the planetesimals in this system must be ∼0.15 μm or larger, or ∼0.06 μm or smaller, with 2σ confidence
Oscillators and relaxation phenomena in Pleistocene climate theory
Ice sheets appeared in the northern hemisphere around 3 million years ago and
glacial-interglacial cycles have paced Earth's climate since then. Superimposed
on these long glacial cycles comes an intricate pattern of millennial and
sub-millennial variability, including Dansgaard-Oeschger and Heinrich events.
There are numerous theories about theses oscillations. Here, we review a number
of them in order to draw a parallel between climatic concepts and dynamical
system concepts, including, in particular, the relaxation oscillator,
excitability, slow-fast dynamics and homoclinic orbits. Namely, almost all
theories of ice ages reviewed here feature a phenomenon of synchronisation
between internal climate dynamics and the astronomical forcing. However, these
theories differ in their bifurcation structure and this has an effect on the
way the ice age phenomenon could grow 3 million years ago. All theories on
rapid events reviewed here rely on the concept of a limit cycle in the ocean
circulation, which may be excited by changes in the surface freshwater surface
balance. The article also reviews basic effects of stochastic fluctuations on
these models, including the phenomenon of phase dispersion, shortening of the
limit cycle and stochastic resonance. It concludes with a more personal
statement about the potential for inference with simple stochastic dynamical
systems in palaeoclimate science.
Keywords: palaeoclimates, dynamical systems, limit cycle, ice ages,
Dansgaard-Oeschger eventsComment: Published in the Transactions of the Philosophical Transactions of
the Royal Society (Series A, Physical Mathematical and Engineering Sciences),
as a contribution to the Proceedings of the workshop on Stochastic Methods in
Climate Modelling, Newton Institute (23-27 August). Philosophical
Transactions of the Royal Society (Series A, Physical Mathematical and
Engineering Sciences), vol. 370, pp. xx-xx (2012); Source codes available on
request to author and on http://www.uclouvain.be/ito
First Assessment of Mountains on Northwestern Ellesmere Island, Nunavut, as Potential Astronomical Observing Sites
Ellesmere Island, at the most northerly tip of Canada, possesses the highest
mountain peaks within 10 degrees of the pole. The highest is 2616 m, with many
summits over 1000 m, high enough to place them above a stable low-elevation
thermal inversion that persists through winter darkness. Our group has studied
four mountains along the northwestern coast which have the additional benefit
of smooth onshore airflow from the ice-locked Arctic Ocean. We deployed small
robotic site testing stations at three sites, the highest of which is over 1600
m and within 8 degrees of the pole. Basic weather and sky clarity data for over
three years beginning in 2006 are presented here, and compared with available
nearby sea-level data and one manned mid-elevation site. Our results point to
coastal mountain sites experiencing good weather: low median wind speed, high
clear-sky fraction and the expectation of excellent seeing. Some practical
aspects of access to these remote locations and operation and maintenance of
equipment there are also discussed.Comment: 21 pages, 2 tables, 15 figures; accepted for publication in PAS
The GROUSE project II: Detection of the Ks-band secondary eclipse of exoplanet HAT-P-1b
Context: Only recently it has become possible to measure the thermal emission
from hot-Jupiters at near-Infrared wavelengths using ground-based telescopes,
by secondary eclipse observations. This allows the planet flux to be probed
around the peak of its spectral energy distribution, which is vital for the
understanding of its energy budget. Aims: The aim of the reported work is to
measure the eclipse depth of the planet HAT-P-1b at 2.2micron. This planet is
an interesting case, since the amount of stellar irradiation it receives falls
in between that of the two best studied systems (HD209458 and HD189733), and it
has been suggested to have a weak thermal inversion layer. Methods: We have
used the LIRIS instrument on the William Herschel Telescope (WHT) to observe
the secondary eclipse of HATP-1b in the Ks-band, as part of our Ground-based
secondary eclipse (GROUSE) project. The observations were done in staring mode,
while significantly defocusing the telescope to avoid saturation on the K=8.4
star. With an average cadence of 2.5 seconds, we collected 6520 frames during
one night. Results: The eclipse is detected at the 4sigma level, the measured
depth being 0.109+/-0.025%. The uncertainties are dominated by residual
systematic effects, as estimated from different reduction/analysis procedures.
The measured depth corresponds to a brightness temperature of 2136+150-170K.
This brightness temperature is significantly higher than those derived from
longer wavelengths, making it difficult to fit all available data points with a
plausible atmospheric model. However, it may be that we underestimate the true
uncertainties of our measurements, since it is notoriously difficult to assign
precise statistical significance to a result when systematic effects are
important.Comment: 7 pages, 10 figures, Accepted for publication in A&
Genome-scale phylogenies reveal relationships among Parastagonospora species infecting domesticated and wild grasses
Several plant pathogenic Parastagonospora species have been identified infecting wheat and other cereals over the past 50 years. As new lineages were discovered, naming conventions grew unwieldy and the relationships with previously recognized species remained unclear. We used genome sequencing to clarify relation-ships among these species and provided new names for most of these species. Six of the nine described Parastagonospora species were recovered from wheat, with five of these species coming from Iran. Genome sequences revealed that three strains thought to be hybrids between P. nodorum and P. pseudonodorum were not actually hybrids, but rather represented rare gene introgressions between those species. Our data are consistent with the hypothesis that P. nodorum originated as a pathogen of wild grasses in the Fertile Crescent, then emerged as a wheat pathogen via host-tracking during the domestication of wheat in the same region. The discovery of a diverse array of Parastagonospora species infecting wheat in Iran suggests that new wheat pathogens could emerge from this region in the future
Disciplining the Sex Ratio:Exploring the Governmentality of Female Feticide in India
The ‘girl child’ has attracted a considerable amount of attention in India as an
object of policy addressing gender discrimination. This article examines the field of campaigns seeking to address female foeticide and positions the public discourse on the ‘girl child’ and sex selective abortion in India within a broad cultural backdrop of son preference. The article argues that anti-female foeticide campaigns exist within a disciplinary domain of female foeticide which both generates a discourse of saving the ‘girl child’ and also shows attempts to utilise both incentives and punitive measures in carving out a female foeticide carceral space
The puzzling atmospheres of low-mass stars, brown dwarfs and exoplanets revealed by the Discovery Channel Telescope
The Large Monolithic Imager (LMI) on the Discovery Channel Telescope (DCT) enables high-precision photometry with a scriptable interface and rapid cycling between photometric bands, all while guiding off-axis. Using LMI, scientists at Boston University have undertaken a number of investigations into low-mass stars, brown dwarfs and extrasolar planets. We will report on recent results from these investigations, including (1) measurements of transiting asteroids orbiting a white dwarf, (2) refined ephemerides for long-period transiting exoplanets, (3) investigations revealing biases in space-based exoplanet light curves, (4) investigations of the nature of activity in low-mass stars and brown dwarfs and (5) investigations of low-mass eclipsing binary stars. We will also propose future studies of low-mass stars, brown dwarfs and exoplanets using current and future DCT instrumentation.http://adsabs.harvard.edu/abs/2017AAS...22912607MPublished versio
Transit Detection in the MEarth Survey of Nearby M Dwarfs: Bridging the Clean-First, Search-Later Divide
In the effort to characterize the masses, radii, and atmospheres of
potentially habitable exoplanets, there is an urgent need to find examples of
such planets transiting nearby M dwarfs. The MEarth Project is an ongoing
effort to do so, as a ground-based photometric survey designed to detect
exoplanets as small as 2 Earth radii transiting mid-to-late M dwarfs within 33
pc of the Sun. Unfortunately, identifying transits of such planets in
photometric monitoring is complicated both by the intrinsic stellar variability
that is common among these stars and by the nocturnal cadence, atmospheric
variations, and instrumental systematics that often plague Earth-bound
observatories. Here we summarize the properties of MEarth data gathered so far,
and we present a new framework to detect shallow exoplanet transits in wiggly
and irregularly-spaced light curves. In contrast to previous methods that clean
trends from light curves before searching for transits, this framework assesses
the significance of individual transits simultaneously while modeling
variability, systematics, and the photometric quality of individual nights. Our
Method for Including Starspots and Systematics in the Marginalized Probability
of a Lone Eclipse (MISS MarPLE) uses a computationally efficient semi-Bayesian
approach to explore the vast probability space spanned by the many parameters
of this model, naturally incorporating the uncertainties in these parameters
into its evaluation of candidate events. We show how to combine individual
transits processed by MISS MarPLE into periodic transiting planet candidates
and compare our results to the popular Box-fitting Least Squares (BLS) method
with simulations. By applying MISS MarPLE to observations from the MEarth
Project, we demonstrate the utility of this framework for robustly assessing
the false alarm probability of transit signals in real data. [slightly
abridged]Comment: accepted to the Astronomical Journal, 21 pages, 12 figure
Magnetic activity and differential rotation in the very young star KIC 8429280
We present a spectroscopic/photometric analysis of the rapid rotator
KIC8429280, discovered by ourselves as a very young star and observed by the
Kepler mission. We use spectroscopic/photometric ground-based data to derive
stellar parameters, and we adopt a spectral subtraction technique to highlight
the chromospheric emission in the cores of Halpha, CaII H&K and IRT lines. We
fit a robust spot model to the high-precision Kepler photometry spanning 138
days. Model selection and parameter estimation is performed in a Bayesian
manner using a Markov chain Monte Carlo method. We find that KIC8429280 is a
cool (K2V) star with an age of ~50 Myr, based on its Li content, that has
passed its T Tau phase and is spinning up approaching the ZAMS. Its high level
of chromospheric activity is indicated by the radiative losses in CaII H&K and
IRT, Halpha, and Hbeta lines. Furthermore, its Balmer decrement and the flux
ratio of CaII IRT lines imply that these lines are mainly formed in
optically-thick sources analogue to solar plages. The analysis of the Kepler
data uncovers evidence of at least 7 enduring spots. Since the star's
inclination is rather high, ~70{\deg}, the assignment of the spots to the
northern/southern hemisphere is not unambiguous. We find at least 3 solutions
with nearly the same level of residuals. The distribution of the active regions
is such that the spots are located around 3 latitude belts, i.e. the equator
and +-(50{\deg}-60{\deg}), with the high-latitude spots rotating slower than
the low-latitude ones. The equator-to-pole differential rotation ~0.27 rad/d is
at variance with some recent mean-field models of differential rotation in
rapidly rotating MS stars, which predict a much smaller latitudinal shear. Our
results are consistent with the scenario of a higher differential rotation,
which changes along the magnetic cycle.Comment: 12 pages, 13 figures, 5 tables. Accepted by Astronomy and
Astrophysics. The abstract has been significantly shortene
- …