279 research outputs found

    Nondebtor Releases in Chapter 11 Reorganizations: A Limited Power

    Get PDF
    This note concerns the ability of bankrupt companies to file Chapter 11 reorganization plans that contain provisions releasing the liabilities of parties other than the companies themselves. One such mechanism, used in conjunction with the 2010 BP oil spill in the Gulf of Mexico, is a trust releasing a financially-troubled company from liability to certain types of tort claimants. The author argues that although bankruptcy courts do have the power to approve such plans, such power should be carefully limited when companies seek to grant releases to insiders and insurance companies

    Vehicle routing with arrival time diversification

    Get PDF
    Unpredictable routes may be generated by varying the arrival time at each customer over successive visits. Inspired by a real-life case in cash distribution, this study presents an efficient solution approach for the vehicle routing problem with arrival time diversification by formulating it as a vehicle routing problem with multiple time windows in a rolling horizon framework. Because waiting times are not allowed, a novel algorithm is developed to efficiently determine whether routes or local search operations are time window feasible. To allow infeasible solutions during the heuristic search, four different penalty methods are proposed. The proposed algorithm and penalty methods are evaluated in a simple iterated granular tabu search that obtains new best-known solutions for all benchmark instances from the literature, decreasing average distance by 29% and reducing computation time by 93%. A case study is conducted to illustrate the practical relevance of the proposed model and to examine the trade-off between arrival time diversification and transportation cost

    Editorial Special issue: Managing logistics processes and redesigning logistics networks

    Get PDF
    Transport and logistics are essential to modern societies including Europe. Not only do they enable an unprecedented mobility to individuals, they also offer us a wide variety of products and services affecting our world view and even our portrayal of mankind. The main functions being taken and provided by transport and logistics are geographic and time utility – the former is enhanced by linking scattered locations in a harmonised manner, while the latter is enhanced by offering that what is needed, at the right time. These functions become even more evident as we are now living in an era of globalisation

    Integrating partner objectives in horizontal logistics optimisation models

    Get PDF
    In this paper a general solution framework is presented for optimising decisions in a horizontal logistics cooperation. The framework distinguishes between the objective of the group and the objectives of the individual partners in the coalition. Although the importance of the individual partner interests is often acknowledged in the literature, the proposed solution framework is the first to include these objectives directly into the objective function of the optimisation model. The solution framework is applied to a collaborative variant of the clustered vehicle routing problem, for which we also create a set of benchmark instances. We find that by only considering a global coalition objective, the obtained solution is often suboptimal for some partners in the coalition. Providing a set of high quality alternative solutions that are Pareto efficient with respect to the partner objectives, gives additional insight in the sensitivity of a solution, which can support the decision making process. Our computational results therefore acknowledge the importance of including the individual partner objectives into the optimisation procedure

    Efficient neighborhood evaluations for the vehicle routing problem with multiple time windows

    Get PDF
    In the vehicle routing problem with multiple time windows (VRPMTW), a single time window must be selected for each customer from the multiple time windows provided. Compared with classical vehicle routing problems with only a single time window per customer, multiple time windows increase the complexity of the routing problem. To minimize the duration of any given route, we present an exact polynomial time algorithm to efficiently determine the optimal start time for servicing each customer. The proposed algorithm has a reduced worst-case and average complexity than existing exact algorithms. Furthermore, the proposed exact algorithm can be used to efficiently evaluate neighborhood operations during a local search resulting in significant acceleration. To examine the benefits of exact neighborhood evaluations and to solve the VRPMTW, the proposed algorithm is embedded in a simple metaheuristic framework generating numerous new best known solutions at competitive computation times

    Distribution with Quality of Service Considerations:The Capacitated Routing Problem with Profits and Service Level Requirements

    Get PDF
    Inspired by a problem arising in cash logistics, we propose the Capacitated Routing Problem with Profits and Service Level Requirements (CRPPSLR). The CRPPSLR extends the class of Routing Problems with Profits by considering customers requesting deliveries to their (possibly multiple) service points. Moreover, each customer imposes a service level requirement specifying a minimum-acceptable bound on the fraction of its service points being delivered. A customer-specific financial penalty is incurred by the logistics service provider when this requirement is not met. The CRPPSLR consists in finding vehicle routes maximizing the difference between the collected revenues and the incurred transportation and penalty costs in such a way that vehicle capacity and route duration constraints are met. A fleet of homogeneous vehicles is available for serving the customers. We design a branch-and-cut algorithm and evaluate the usefulness of valid inequalities that have been effectively used for the capacitated vehicle routing problem and, more recently, for other routing problems with profits. A real-life case study taken from the cash supply chain in the Netherlands highlights the relevance of the problem under consideration. Computational results illustrate the performance of the proposed solution approach under different input parameter settings for the synthetic instances. For instances of real-life problems, we distinguish between coin and banknote distribution, as vehicle capacities only matter when considering the former. Finally, we report on the effectiveness of the valid inequalities in closing the optimality gap at the root node for both the synthetic and the real-life instances and conclude with a sensitivity analysis on the most significant input parameters of our model

    An exact solution framework for multitrip vehicle-routing problems with time windows

    Get PDF
    Multitrip vehicle-routing problems (MTVRPs) generalize the well-known VRP by allowing vehicles to perform multiple trips per day. MTVRPs have received a lot of attention lately because of their relevance in real-life applications - for example, in city logistics and last-mile delivery. Several variants of the MTVRP have been investigated in the literature, and a number of exact methods have been proposed. Nevertheless, the computational results currently available suggest that MTVRPs with different side constraints require ad hoc formulations and solution methods to be solved. Moreover, solving instances with just 25 customers can be out of reach for such solution methods. In this paper, we proposed an exact solution framework to address four different MTVRPs proposed in the literature. The exact solution framework is based on a novel formulation that has an exponential number of variables and constraints. It relies on column generation, column enumeration, and cutting plane. We show that this solution framework can solve instances with up to 50 customers of four MTVRP variants and outperforms the state-of-the-art methods from the literature

    The vehicle routing problem with partial outsourcing

    Get PDF
    This paper introduces the vehicle routing problem with partial outsourcing (VRPPO) in which a customer can be served by a single private vehicle, by a common carrier, or by both a single private vehicle and a common carrier. As such, it is a variant of the vehicle routing problem with private fleet and common carrier (VRPPC). The objective of the VRPPO is to minimize fixed and variable costs of the private fleet plus the outsourcing cost. We propose two different path-based formulations for the VRPPO and solve these with a branch-and-price-and-cut solution method. For each path-based formulation, two different pricing procedures are designed and used when solving the linear relaxations by column generation. To assess the quality of the solution methods and gain insight in potential cost improvements compared with the VRPPC, we perform tests on two instance sets with up to 100 customers from the literature

    The role of individual compensation and acceptance decisions in crowdsourced delivery

    Full text link
    High demand, rising customer expectations, and government regulations are forcing companies to increase the efficiency and sustainability of urban (last-mile) distribution. Consequently, several new delivery concepts have been proposed that increase flexibility for customers and other stakeholders. One of these innovations is crowdsourced delivery, where deliveries are made by occasional drivers who wish to utilize their surplus resources (unused transport capacity) by making deliveries in exchange for some compensation. In addition to reducing delivery costs, the potential benefits of crowdsourced delivery include better utilization of transport capacity, a reduction in overall traffic, and increased flexibility (by scaling up and down delivery capacity as needed). The use of occasional drivers poses new challenges because (unlike traditional couriers) neither their availability nor their behavior in accepting delivery offers is certain. The relationship between the compensation offered to occasional drivers and the probability that they will accept a task has been largely neglected in the scientific literature. Therefore, we consider a setting in which compensation-dependent acceptance probabilities are explicitly considered in the process of assigning delivery tasks to occasional drivers. We propose a mixed-integer nonlinear model that minimizes the expected delivery costs while identifying optimal assignments of tasks to a mix of traditional and occasional drivers and their compensation. We propose exact linearization schemes for two practically relevant probability functions and an approximate linearization scheme for the general case. The results of our computational study show clear advantages of our new approach over existing ones
    • …
    corecore