
VU Research Portal

Efficient neighborhood evaluations for the vehicle routing problem with multiple time
windows
Hoogeboom, Maaike; Dullaert, Wout; Lai, David; Vigoa, Daniele

published in
Transportation Science
2020

DOI (link to publisher)
10.1287/trsc.2019.0912

document version
Publisher's PDF, also known as Version of record

document license
Article 25fa Dutch Copyright Act

Link to publication in VU Research Portal

citation for published version (APA)
Hoogeboom, M., Dullaert, W., Lai, D., & Vigoa, D. (2020). Efficient neighborhood evaluations for the vehicle
routing problem with multiple time windows. Transportation Science, 54(2), 400-416.
https://doi.org/10.1287/trsc.2019.0912

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal ?

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

E-mail address:
vuresearchportal.ub@vu.nl

Download date: 13. Sep. 2021

https://doi.org/10.1287/trsc.2019.0912
https://research.vu.nl/en/publications/52549100-6ffe-45fb-978f-6e58725980dc
https://doi.org/10.1287/trsc.2019.0912

This article was downloaded by: [145.108.246.185] On: 20 May 2021, At: 03:58
Publisher: Institute for Operations Research and the Management Sciences (INFORMS)
INFORMS is located in Maryland, USA

Transportation Science

Publication details, including instructions for authors and subscription information:
http://pubsonline.informs.org

Efficient Neighborhood Evaluations for the Vehicle
Routing Problem with Multiple Time Windows
Maaike Hoogeboom, Wout Dullaert, David Lai, Daniele Vigo

To cite this article:
Maaike Hoogeboom, Wout Dullaert, David Lai, Daniele Vigo (2020) Efficient Neighborhood Evaluations for the Vehicle Routing
Problem with Multiple Time Windows. Transportation Science 54(2):400-416. https://doi.org/10.1287/trsc.2019.0912

Full terms and conditions of use: https://pubsonline.informs.org/Publications/Librarians-Portal/PubsOnLine-Terms-and-
Conditions

This article may be used only for the purposes of research, teaching, and/or private study. Commercial use
or systematic downloading (by robots or other automatic processes) is prohibited without explicit Publisher
approval, unless otherwise noted. For more information, contact permissions@informs.org.

The Publisher does not warrant or guarantee the article’s accuracy, completeness, merchantability, fitness
for a particular purpose, or non-infringement. Descriptions of, or references to, products or publications, or
inclusion of an advertisement in this article, neither constitutes nor implies a guarantee, endorsement, or
support of claims made of that product, publication, or service.

Copyright © 2020, INFORMS

Please scroll down for article—it is on subsequent pages

With 12,500 members from nearly 90 countries, INFORMS is the largest international association of operations research (O.R.)
and analytics professionals and students. INFORMS provides unique networking and learning opportunities for individual
professionals, and organizations of all types and sizes, to better understand and use O.R. and analytics tools and methods to
transform strategic visions and achieve better outcomes.
For more information on INFORMS, its publications, membership, or meetings visit http://www.informs.org

http://pubsonline.informs.org
https://doi.org/10.1287/trsc.2019.0912
https://pubsonline.informs.org/Publications/Librarians-Portal/PubsOnLine-Terms-and-Conditions
https://pubsonline.informs.org/Publications/Librarians-Portal/PubsOnLine-Terms-and-Conditions
http://www.informs.org

TRANSPORTATION SCIENCE
Vol. 54, No. 2, March–April 2020, pp. 400–416

http://pubsonline.informs.org/journal/trsc ISSN 0041-1655 (print), ISSN 1526-5447 (online)

Efficient Neighborhood Evaluations for the Vehicle Routing
Problem with Multiple Time Windows
Maaike Hoogeboom,a Wout Dullaert,a David Lai,a Daniele Vigoa,b

aDepartment of Supply Chain Analytics, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, Netherlands; bDepartment of Electrical,
Electronic and Information Engineering “Guglielmo Marconi,” University of Bologna, 40136 Bologna, Italy
Contact: m.hoogeboom@vu.nl, https://orcid.org/0000-0001-8512-0762 (MH); w.e.h.dullaert@vu.nl,

https://orcid.org/0000-0002-9416-211X (WD); david.lai@vu.nl (DL); daniele.vigo@unibo.it, https://orcid.org/0000-0002-1499-8452 (DV)

Received: March 1, 2018
Revised: October 5, 2018; March 8, 2019
Accepted: March 13, 2019
Published Online in Articles in Advance:
January 6, 2020

https://doi.org/10.1287/trsc.2019.0912

Copyright: © 2020 INFORMS

Abstract. In the vehicle routing problemwithmultiple timewindows (VRPMTW), a single
time window must be selected for each customer from the multiple time windows pro-
vided. Compared with classical vehicle routing problems with only a single time window
per customer, multiple time windows increase the complexity of the routing problem. To
minimize the duration of any given route, we present an exact polynomial time algorithm
to efficiently determine the optimal start time for servicing each customer. The proposed
algorithm has a reducedworst-case and average complexity than existing exact algorithms.
Furthermore, the proposed exact algorithm can be used to efficiently evaluate neigh-
borhood operations during a local search resulting in significant acceleration. To examine
the benefits of exact neighborhood evaluations and to solve the VRPMTW, the proposed
algorithm is embedded in a simple metaheuristic framework generating numerous new
best known solutions at competitive computation times.

Funding: This work was partially supported by The Netherlands Organisation for Scientific Research
(NWO) [Grant 407-13-050].

Supplemental Material: The online appendix is available at https://doi.org/10.1287/trsc.2019.0912.

Key words: vehicle routing • multiple time windows • metaheuristics

The vehicle routing problem with multiple time windows
(VRPMTW) arises naturally in delivery operations
where customers provide multiple time windows for
service. Examples include the distribution of in-
dustrial gases (Pesant et al. 1999), long-haul transport
(Goel and Kok 2012; Rancourt, Cordeau, and Laporte
2013), and city tourist trips to different tourist at-
tractions (Souffriau et al. 2013). The VRPMTW de-
termines the minimum-cost vehicle routes that serve
each customer in one of their specified time windows
and satisfy vehicle capacity constraints.

The existing metaheuristics developed for the vehicle
routing problem with time windows (VRPTW) frequently
involve the insertion and removal of customers from
existing vehicle routes (see, e.g., Bräysy and Gendreau
2005, Toth and Vigo 2014). However, applying such
local search operators to the scenario of multiple time
windows becomes challenging. For a fixed vehicle
route of m customers where each customer has a max-
imum of t time windows, there are, in the worst case, tm

possible combinations of time windows to be consid-
ered for evaluation. Therefore, multiple time windows
are portrayed as a difficult extension in the literature.

Multiple time windows are addressed in differ-
ent routing problems such as the traveling salesman
problem (TSP), truck driver scheduling problem, and

team orienteering problem. Favaretto, Moretti, and
Pellegrini (2007) were the first to address the VRPMTW.
Their objective was to minimize the total duration by
designing the routes and selecting the service time win-
dows of the customers. Belhaiza, Hansen, and Laporte
(2014) (BHL14) improved the results of Favaretto,
Moretti, and Pellegrini (2007) using an exact algo-
rithm to determine the optimal departure time from the
depot for a given route. Belhaiza, Hansen, and Laporte
(2014) used the same route duration minimization al-
gorithm to evaluate local search moves. This implied
that although only a small part of the routewas changed,
the entire route was reevaluated. Tricoire et al. (2010)
(TRDH10) presented another exact route duration
minimization algorithm for the related multiperiod
orienteering problem with multiple time windows.
Their proposed algorithm determines the optimal
departure time for every customer in a given route.
Because of its computational complexity, the route
duration minimization algorithm of Tricoire et al.
(2010) is used only when the most promising move
is performed. Promising moves are obtained by ap-
proximating the route duration when evaluating
moves during the local search.
Research on the VRPTW has identified the benefits

of exactly recalculating the route duration for local

400

http://pubsonline.informs.org/journal/trsc
mailto:m.hoogeboom@vu.nl
https://orcid.org/0000-0001-8512-0762
https://orcid.org/0000-0001-8512-0762
mailto:w.e.h.dullaert@vu.nl
https://orcid.org/0000-0002-9416-211X
https://orcid.org/0000-0002-9416-211X
mailto:david.lai@vu.nl
mailto:daniele.vigo@unibo.it
https://orcid.org/0000-0002-1499-8452
https://orcid.org/0000-0002-1499-8452
https://doi.org/10.1287/trsc.2019.0912
https://doi.org/10.1287/trsc.2019.0912

search moves. To recalculate the minimal route du-
ration when neighborhood operators are applied,
Savelsbergh (1992b) presented an efficient algorithm
based on the forward and backward time slack of the
departure time per customer. We consider this al-
gorithm efficient because the cost of a neighborhood
operation can be calculated without reevaluating
the entire route. However, as indicated by Tricoire
et al. (2010) and Belhaiza,Hansen, and Laporte (2014),
this approach to minimizing the duration of a route
cannot be easily extended to multiple time windows.
To the best of our knowledge, there is no approach
available to efficiently recalculate the minimal route
duration when neighborhood operations are per-
formed in multiple time window routing problems.
Therefore, we have developed an exact polynomial
time algorithm to both efficiently check the solution
feasibility and determine the minimal route duration
whenever a neighborhood operation is applied.

The proposed algorithm determines the optimal
start time at each customer based on forward and
backward start intervals and is inspired by the for-
ward and backward algorithm of Savelsbergh (1992b).
These forward (backward) intervals at any given
customer represent the start times of servicing this
customer such that all preceding (succeeding) cus-
tomers in the route are served in an available time
window. The complexity of the proposed algorithm
is formally demonstrated, and its performance is
examined by embedding the algorithm in a simple
metaheuristic framework.

The contribution of this paper is threefold. First,
we present a new exact polynomial time algorithm to
calculate the minimal duration of a given route with
an improved worst-case complexity compared with
the algorithms proposed in the literature. Further-
more, we demonstrate that the average computa-
tional speed of the proposed algorithm is at least
twice as fast as the existing algorithms. Second,we are
the first to efficiently recalculate the minimum du-
ration in local search operations (i.e., when customers
are removed from or inserted into a route). Compu-
tational experiments indicate an acceleration by a
factor of four compared with existing exact route
duration minimization algorithms. Therefore, the pro-
posed algorithm can provide computational benefits
for numerous metaheuristic approaches. Last, we ex-
perimentally demonstrate that efficient exact neighbor-
hood evaluations improve solution quality compared
with an approximate evaluation method. By incor-
porating the proposed exact algorithm in a simple
metaheuristic, we could identify 22 new best known
solutions to VRPMTW instances from the literature at
competitive computation times.

The remainder of this paper is organized as follows.
In Section 1, the literature on duration minimization

inmultiple timewindow routing problems is reviewed.
In Section 2, the VRPMTW is defined and the sub-
problem of calculating the optimal departure time to
minimize route duration is discussed. An exact
polynomial algorithm to solve this subproblem is
presented inSection 3. In Section 4, themetaheuristic is
described, and in Section 5, the computational results
are presented and discussed. Conclusions are pre-
sented in the last section.

1. Literature Review
Compared with the VRPTW, the VRPMTW has re-
ceived minimal attention in the literature. Problems
with multiple time windows are frequently addressed
within related problems such as the traveling sales-
man problem, truck driver scheduling problem, and
team orienteering problem.
Pesant et al. (1999) presented a constraint pro-

gramming formulation for the TSPwithmultiple time
windows. They illustrated that multiple time win-
dows result in discontinuities in the domain of the
variable representing the start time of servicing cus-
tomer i and that these discontinuities can be used to
sharpen the lower and upper bounds of this variable.
As the goal is to minimize the total travel cost of the
tour, waiting time is not considered; thus, the dura-
tion of a tour is not minimized. Recently, Paulsen,
Diedrich, and Jansen (2015) presented a dynamic
programming approach to minimize the tour dura-
tion for a TSP with multiple time windows. Their
proposed dynamic programming algorithm solves
the subproblem of determining the path of minimum
duration from the depot to a final customer through a
given subset of nodes. To solve the TSP, the algorithm
uses labels of dominant arrival intervals withminimal
duration until the final customer. The drawback of
this method is that it is computationally intensive for
large tours, and the customers must be assigned to a
vehicle before deploying the algorithm.
In the truck driver scheduling problem with mul-

tiple timewindows, the goal is to determine a schedule
with minimal duration for a fixed route that satisfies
the regulations concerning hours of service (Goel 2012,
Goel and Kok 2012). The main decision to be made is
when to place the rest periods; therefore, the design of
the algorithm is focused on rest periods. The algo-
rithm can also be used for problems without rest
periods, where the algorithm becomes similar to the
approach of Belhaiza, Hansen, and Laporte (2014).
However, the dominance criterion used by Belhaiza,
Hansen, and Laporte (2014) to eliminate dominated
solutions is stronger than the dominance criteria used
by Goel and Kok (2012) and Goel (2012) when rest
periods are not considered.
Souffriau et al. (2013) presented a metaheuristic

for the multiconstraint team orienteering problem

Hoogeboom et al: Efficient Neighborhood Evaluations for the VRPMTW
Transportation Science, 2020, vol. 54, no. 2, pp. 400–416, © 2020 INFORMS 401

withmultiple timewindows. To addressmultiple time
windows, every vertex with more than one time
window is replaced by a set of vertices with only one
time window. An extra constraint is included to allow
only one visit per vertex set. The goal is tomaximize the
score of the visited customers, and no approach is
provided for minimizing the duration of a route.
However, if there are duration limits, then it is profit-
able to minimize the route duration such that more
customers can be visited in one trip. Therefore, Tricoire
et al. (2010) presented an algorithm to minimize the
duration of a given route to address the multiperiod
orienteering problem with multiple time windows.
They tightened the time windows for each customer
by exploiting the fact that the service at any given
customer cannot start before the end of the service
at the previous customer. Their algorithm uses the
concept of dominant solutions, which are solutions
for which no other solution exists with the same
finishing time and a later departure time. The polyno-
mial algorithm of Tricoire et al. (2010) enumerates all
the promising dominant solutions of an entire route in
order of increasing finishing time and selects the solu-
tion with the shortest duration. However, as the al-
gorithm does not identify the optimal solution for por-
tions of a route, such as tails, it is not suited to quickly
evaluating neighborhood operations in a local search.

Hurkała (2015) presented the TSPwithmultiple time
windows and time-dependent travel times. Their min-
imum route duration algorithm is based on, and there-
fore similar to, the algorithm of Tricoire et al. (2010).

The first paper on the VRPMTW was published by
Favaretto, Moretti, and Pellegrini (2007). They con-
sider the VRPMTW in a periodic setting where cus-
tomers can require service multiple times during the
schedule horizon. Customers that are serviced mul-
tiple times must be visited in different time windows;
hence, no timewindow can be used twice for the same
customer. The objective is to minimize the total du-
ration, and the problem is solved using ant colony
systems. The focus in the paper by Favaretto, Moretti,
and Pellegrini (2007) is to divide the time windows
over multiple visit days; therefore, no algorithm is
offered to minimize the duration of a given route.

Belhaiza, Hansen, and Laporte (2014) minimized
the total duration and proposed a hybrid variable
neighborhood tabu search heuristic to solve the
VRPMTW. The duration of a route is minimized by
calculating the optimal departure time at the depot.
Their proposed exact algorithm calculates the time
delay interval of each time window at each customer
when departing from the depot at time zero, that is,
the time that can be added to the arrival time to ensure
the feasibility of each time window. Using these time
delay intervals, the algorithm enumerates all possi-
ble combinations of time windows and records the

minimumwaiting time and corresponding departure
time from the depot. When waiting time occurs at a
customer, the subsequent time windows of this cus-
tomer are skipped. The enumeration is terminated
when a solution with zero waiting time is identi-
fied. Belhaiza, M’Hallah, and Brahim (2017) (BMB17)
proposed a new hybrid genetic variable neighbor-
hood search heuristic for the VRPMTW that im-
proves virtually all the results of Belhaiza, Hansen,
and Laporte (2014).
Beheshti, Hejazi, and Alinaghian (2015) and

Belhaiza (2018) solve a multiobjective VRPMTW.
Beheshti, Hejazi, and Alinaghian (2015) solve the
vehicle routing problem with multiple prioritized
time windows where customers can prioritize the
multiple available time windows and the customers
are grouped based on their importance to the dis-
tributor. The multiobjective problem of minimizing
the traveling cost and maximizing the customer’s
satisfaction is solved. Belhaiza (2018) considers the
multiple criteria of minimizing the total travel time
and maximizing the utility of the customers and
drivers. Both approaches search for Pareto optimal
solutions and do not minimize the total duration.
The exact algorithms of Tricoire et al. (2010) and

Belhaiza,Hansen, and Laporte (2014)were developed
to minimize the duration of a given route. Tricoire
et al. (2010) used the exact algorithm only to calculate
the minimal duration of a local optimum solution,
and used an approximation of the route duration to
evaluate the moves during the local search. Belhaiza,
Hansen, and Laporte (2014) also used the exact al-
gorithm to evaluate neighborhood operations during
the local search. However, they used the same algo-
rithm for a given route as for evaluating a neigh-
borhood operation where only a small part of a route
changes. Therefore, we developed an approach that is
efficient for evaluating neighborhood operations.
Savelsbergh (1992a) presented an efficient method

to check whether a move is feasible and profitable for
the TSP with multiple time windows. He considers a
move profitable if the completion time of the result-
ing route is earlier, while the departure time from the
depot remains the same. Hence, the profitability of
moves is calculated only for the current fixed departure
time from the depot. Because the optimal departure
time from the depot is not selected, the resulting route
duration of a move is not necessarily minimized.
For the VRPTW, Savelsbergh (1992b) developed a

route-duration minimization algorithm with variable
departure times at the depot to recalculate the min-
imal waiting time when local search operations are
applied. In this algorithm, forward time slack is in-
troduced,which indicates how far forward in time the
departure time at any given customer can be shifted
without causing the route to become infeasible. To

Hoogeboom et al: Efficient Neighborhood Evaluations for the VRPMTW
402 Transportation Science, 2020, vol. 54, no. 2, pp. 400–416, © 2020 INFORMS

measure the profitability of a move, backward time
slack is also calculated; this indicates how far the
departure time at a customer can be shifted backward
in time without introducing waiting time. To the best
of our knowledge, this approach has not been ex-
tended to a setting with multiple time windows.
Therefore, we propose a new efficient algorithm based
on forward and backward start intervals to recalculate
the minimal waiting time of a route when customers
are inserted or removed. The proposed algorithm can
also be used to calculate the minimal duration of a
given route, like those of Tricoire et al. (2010) and
Belhaiza, Hansen, and Laporte (2014), but at a re-
duced computational complexity.

2. Problem Description
The VRPMTW is defined on a complete directed
graph G � (V,A)with nodes V � {0, 1, . . . , n} and arcs
A � {(i, j) ∈ V × V : i �� j}. Node 0 represents the depot,
and nodes V′ � {1, . . . ,n} correspond to the set of
customers. Each arc (i, j) ∈ A is associated with a non-
negative travel time τij of the shortest path from node i
to j. Each node i ∈ V is associated with a demand di
and a service time si, where di and si are nonnegative
numbers. Let {[e1i , l1i], [e2i , l2i], . . . , [e|Ti |

i , l|Ti |
i]} be the time

windows on node i ∈ V, with Ti � {1, . . . , |Ti|}, the in-
dex set of the timewindows.We assume that the time
windows associated with node i ∈ V are nonoverlap-
ping, with 0 ≤ e1i ≤ l1i < e2i ≤ l2i < · · · < l|Ti |

i . A prepro-
cessing procedure is applied to remove or adapt the
customer time windows that conflict with the time
window of the depot; the details of this preprocessing
can be found in Online Appendix A. If a vehicle ar-
rives at a customer within one of the time windows,
the service starts immediately upon arrival; otherwise,
the vehicle waits until the opening time of the next time
windowand then starts the service. Servicing a customer
after its last timewindow is not permitted. Furthermore,
we set s0 � 0 and d0 � 0, and define [e0, l0] as the single
time window of the depot.

Consider a fleet of identical vehicles (denoted by set
K), with capacity Q and fixed vehicle cost F when a
vehicle is used. The objective value of a solution
consists of the fixed vehicle cost and the total dura-
tion. The goal of the VRPMTW is to determine the
vehicle routes with minimum objective value satis-
fying the following requirements:

1. Every customer is serviced exactly once by a
single vehicle.

2. The service of every customer must start within
one of their given time windows.

3. The total demand of a vehicle route cannot ex-
ceed the vehicle capacity, Q.

This paper focuses on determining the minimal
route duration, hereafter referred to as the subproblem
of the VRPMTW.

2.1. Subproblem: Minimum Route Duration
A route satisfies time window constraints if the ser-
vice of each customer in the route starts in one of its
time windows. Different departure times from the
depot can correspond to different time window se-
lections and different durations. Hence, the sub-
problem is to select the optimal departure time such
that service to all customers starts within one of its
time windows and the route duration is minimized.
Let σ be a given route of m customers. For sim-

plicity, suppose σ � {0, 1, . . . ,m,m + 1}, with 0 andm +
1 representing the depot, and where the customers
are named σ′ � {1, . . . ,m}, which can always be
achieved by renumbering the customers. For all i ∈ σ
and t ∈ Ti, let zit be a binary decision variable, where zit
equals 1 if the time window t of customer i is selected
and 0 otherwise. Furthermore, let ai be the arrival time
andwi be thewaiting time at customer i ∈ σ; hence, the
service time at customer i starts at time ai + wi. The
subproblem is formulated as the following mixed
integer linear programming model:

min
∑m
i�1

wi, (1)

s.t. ai + wi + si + τi,i+1 � ai+1, ∀i ∈ σ, (2)
ai + wi ≤

∑
t∈Ti

ltizit, ∀i ∈ σ, (3)

ai + wi ≥
∑
t∈Ti

etizit, ∀i ∈ σ, (4)

∑
t∈Ti

zit � 1, ∀i ∈ σ, (5)

ai,wi ≥ 0, ∀i ∈ σ, (6)
zit ∈ {0, 1}, ∀i ∈ σ, t ∈ Ti. (7)

The objective function (1) is to minimize the total
waiting time of the route, which corresponds to
minimizing the duration because the travel time and
service time are fixed. Constraints (2) prevent sub-
tours and make the arrival times consistent. Con-
straints (3)–(5) ensure that the start time of servicing a
customer is within one of the given time windows. In
an optimal solution, wi � 0; hence, a0 represents the
optimal departure time.
Belhaiza, Hansen, and Laporte (2014) and Tricoire

et al. (2010) both presented an algorithm for this sub-
problem. In the worst case, the approach of Belhaiza,
Hansen, and Laporte (2014) must check all possible
combinations of the time windows resulting in a com-
plexity of O(∏m

i�1|Ti|). The algorithm of Tricoire et al.
(2010) has a better complexity ofO(m(1+∑m

i�1(|Ti| −1))).
The proposed exact polynomial algorithm, described
in the following section, has the least complexity of
O(∑m

i�1(1+∑i
j�1(|Tj| −1))). Moreover, the proposed al-

gorithm can be used efficiently with local search oper-
ations in the metaheuristic search, as will be demonstrated
in Section 3.3.2.

Hoogeboom et al: Efficient Neighborhood Evaluations for the VRPMTW
Transportation Science, 2020, vol. 54, no. 2, pp. 400–416, © 2020 INFORMS 403

Note that the approach of Belhaiza, Hansen, and
Laporte (2014) can process overlapping time win-
dows, whereas the approach of Tricoire et al. (2010)
and the proposed algorithm cannot. In practice, there
is no distinction between these cases, because over-
lapping time windows can easily be merged into
nonoverlapping time windows. If a decision regard-
ing the start time at a customer has been made, then
the corresponding original time window is commu-
nicated to the customer. For example, two overlapping
timewindows [3, 5] and [4, 6] at a customer aremerged
to the single time window [3, 6]. Suppose that in the
final solution the start time is 5; then the second time
window is communicated to the customer.

3. Efficient Methods for the Duration
Minimization Subproblem

In this section, we introduce a novel approach to solve
the route duration minimization subproblem defined
in Section 2.1. In Section 3.1, the proposed solution
algorithm based on forward start intervals is de-
scribed. The complexity of this algorithm is deter-
mined in Section 3.2. The generation of the forward
start intervals is sufficient to efficiently calculate the
minimal route duration of a given route. In Section 3.3,
we present a method to efficiently recalculate the
minimal duration of a route when local search op-
erations are performed.

3.1. Route Duration Minimization Algorithm:
Forward Start Intervals

In this section, we propose a new exact polynomial
time algorithm based on forward start intervals to
solve subproblem (1)–(7). The forward start intervals of
customer i ∈ σ′ represent the start times of servicing
customer i such that the preceding customers can
feasibly be serviced.

Let [EF
i (q), LFi (q)] be the forward start interval q of

customer i ∈ σ′, where EF
i (q) and LFi (q) are the end

points of the interval. For all nodes i ∈ σ′, let Fi be
the index set of the forward start intervals associated
with node i. The forward start intervals are sorted
in increasing order, that is, EF

i (1) ≤ LFi (1) ≤ EF
i (2) ≤

LFi (2) ≤ · · · ≤ EF
i (|Fi|) ≤ LFi (|Fi|). The forward start in-

tervals are recursively computed, from the first to the
last customer in σ′. The forward start intervals of the
first customer are equal to the time windows T1, and
the sets of forward start intervals of the other cus-
tomers are initially empty. The forward start intervals
of customer i are recursively computed based on the
forward start intervals of customer i − 1 and the time
windows of customer i. If a vehicle starts servicing
customer i − 1 during forward start interval q and
arrives at customer i before or during time window
t ∈ Ti, that is, EF

i−1(q) + si−1 + τi−1,i ≤ lti , then a forward
start interval within time window t of node i is

created. This new forward start interval p of customer
i can be determined by

EF
i (p) � max EF

i−1 q
() + si−1 + τi−1,i, eti

{ }
,

LFi (p) � min max LFi−1 q
() + si−1 + τi−1,i, eti

{ }
, lti

{ }
. (8)

Waiting time occurs at customer i if the customer is
serviced in time window t ∈ Ti and the vehicle arrives
before this time window, that is, if LFi−1(q) + si−1+
τi−1,i < eti . Hence, if the service of customer i starts in
[EF

i (p),LFi (p)], then theminimal total waiting time until
this customer is serviced is given by

wF
i (p) �

wF
i−1 q

()+ eti − LFi−1 q
()− si−1 − τi−1,i if LFi p

() � eti ,

wF
i−1 q

()
otherwise.

{

(9)

Let WF
i � {wF

i (1), . . . ,wF
i (|Fi|)} be the set of minimal

total waiting times until customer i, corresponding
to the forward start intervals. As initialization, we set
wF

1(p) � 0 for all p ∈ F1 � T1. Note that if wF
i (p)> 0,

then EF
i (p) � LFi (p).

In Figure 1, the forward start intervals and corre-
sponding waiting times of a small route of three
customers are given. Note that every forward start
interval corresponds to a different selection of time
windows.
In Figure 1, Customer 2 has forward start interval

[6, 6] with waiting time 2 and forward start interval
[6, 7] with zero waiting time. In this case, the first
forward start interval will never be used because it is
dominated by the second forward start interval.

Definition 1. A forward start interval q ∈ Fi dominates
forward start intervals q′ ∈ Fi at customer i if all fea-
sible arrival times ai+1 at customer i + 1 for q′ are also
feasible for q with less or equal minimum total waiting
time. A forward start interval q ∈ Fi is dominant if it is
not dominated by another forward start interval.

Figure 1. Time Windows and Forward Start Intervals, with
Corresponding Waiting Times of Three Customers in a
Route

Notes. Let all travel times be one time unit, and let all service times be
zero. The arrows represent the feasible connections between time
windows, where the bold arrows represent dominant combinations.

Hoogeboom et al: Efficient Neighborhood Evaluations for the VRPMTW
404 Transportation Science, 2020, vol. 54, no. 2, pp. 400–416, © 2020 INFORMS

The dominance criteria used in the proposed al-
gorithm are given by the following proposition.

Proposition 1. Forward start interval q ∈ Fi dominates
forward start intervals q′ ∈ Fi at customer i if EF

i (q) ≤ EF
i (q′)

and wF
i (q′) − wF

i (q) ≥ LFi (q′) − LFi (q) hold.
In Online Appendix B, it is proved that these

dominance criteria are sufficient to demonstrate that
a forward start interval is dominated. In Figure 1, all
dominant forward start intervals and corresponding
waiting times are given in bold. In the remainder of
this paper, we consider only the dominant forward
start intervals. Let Fi be the index set of the dominant
forward start intervals, which are also sorted in in-
creasing order.

To calculate all dominant forward start intervals
from the first to the last customer in a given route σ,
we present the dominant forward start interval (DFSI)
algorithm. The pseudocode for the DFSI is given in
Algorithm 1. In this algorithm, the time windows of
customer i ∈ {2, . . . ,m} are compared with the domi-
nant forward start intervals of the previous customer,
i − 1, to construct the dominant forward start intervals
of customer i.

If EF
i−1(q) + si−1 + τi−1,i ≤ lti , then customer i − 1 is

serviced at time EF
i−1(q), and the vehicle arrives before

or during time window t ∈ Ti at customer i. Hence,
time window t at customer i is feasible, and the
corresponding forward start interval and total wait-
ing time at customer i are calculated.
If LFi−1(q) + si−1 + τi−1,i ≤ lti , then forward start in-

terval q ∈ Fi−1 will not result in a dominant forward
start interval within the next time windows t′ ∈ Ti

with t′ > t. This follows from the fact that the time
windows are nonoverlapping; hence, the extra wait-
ing time obtained at customer i will be et

′
i − LFi−1(q) −

si−1 − τi−1,i, which is equal to the difference in time
with the previous forward start intervals. Hence, in
this case, wemove to the next dominant forward start
interval of customer i − 1. At this dominant forward
start interval q + 1 of customer i − 1, we do not start
comparing with the first time window of customer i;
rather, we start with the last checked time window θ.
The optimality of this approach is proved in Lemma 2
in the next subsection. Accordingly, not all combi-
nations of dominant forward start intervals and time
windows need to be checked. This results in an ef-
ficient generation of the dominant forward start

Algorithm 1 (Dominant Forward Start Interval)

Input: F1 � T1, wF
1(p) � 0 ∀p ∈ F1, Fi � WF

i � ∅ ∀i ∈ {2, . . . ,m}, and θ � 1
1. for i ∈ {2, . . . ,m} do
2. for q ∈ Fi−1 do
3. for t ∈ {θ, . . . , |Ti|} do
4. if EF

i−1(q) + si−1 + τi−1,i ≤ lti then
5. p � |Fi| + 1
6. if LFi−1(q) + si−1 + τi−1,i ≥ eti then ⊳ Arrival in time window t at customer i
7. EF

i (p) � max{EF
i−1(q) + si−1 + τi−1,i, eti} ⊳ Create a new forward start interval

8. LFi (p) � min{LFi−1(q) + si−1 + τi−1,i, lti}
9. wF

i (p) � wF
i−1(q)

10. else ⊳Arrival before time window t at customer i
11. EF

i (p) � LFi (p) � eti
12. wF

i (p) � wF
i−1(q) + eti − LFi−1(q) − si−1 − τi−1,i

13. end if
14. Check for dominance by comparing the last two start intervals p and p − 1, adjust p if needed.
15. if LFi−1(q) + si + τi−1,i ≤ lti then
16. θ � t ⊳ Set last visited time window
17. break ⊳ Go to the next forward start interval
18. end if
19. end if
20. end for t
21. end for q
22. end for i

Output: Fi and WF
i ∀i ∈ {1, . . . ,m}

Hoogeboom et al: Efficient Neighborhood Evaluations for the VRPMTW
Transportation Science, 2020, vol. 54, no. 2, pp. 400–416, © 2020 INFORMS 405

intervals. The details of the complexity are provided
in Section 3.2.

The DFSI algorithm calculates all dominant for-
ward start intervals of all customers i ∈ σ′. In Online
Appendix C, it is proved that for the optimal solu-
tion, the start time of servicing customer i ∈ σ′ is in-
cluded in a dominant forward start interval. The
dominant forward start interval at customer iwith the
least total waiting time provides the minimal waiting
time for subsequence {1, . . . , i}. From this optimal
forward start interval, the optimal start times of
servicing the other customers can be determined.

The DFSI algorithm presented in this section is a
breadth-first algorithm, which first calculates all for-
ward start intervals of customer 1, then of customer 2,
and so on. A breadth-first algorithm ismost suitable if
all dominant forward start intervals are necessary, for
example, for the evaluation of local search opera-
tions as described in Section 3.3. If we wish to cal-
culate only theminimal total duration of a given route,
then the search should terminate as soon as a solution
without waiting time is identified. In this case, a depth-
first implementation as presented in Online Appendix D
is more appropriate. Note, however, that both imple-
mentations have the same worst-case complexity.

3.2. Complexity Analysis
In this section, we formally demonstrate that the
DFSI algorithm has a polynomial time computational
complexity of O(∑m

i�1(1 +∑i
j�1(|Tj| − 1)). To prove this

complexity, we require the following three lemmas.
The first lemma states that the dominant forward

start intervals at every customer i ∈ σ′ are nonover-
lapping and increasing in q ∈ Fi. The proof can be
found in Online Appendix E.

Lemma 1. EF
i (q) ≤ LFi (q)<EF

i (q + 1) ≤ LFi (q + 1) holds for
all i ∈ σ′ and q ∈ Fi.

The next lemma states that owing to the dominance
criteria, we are not required to check all combinations
of time windows explicitly.

Lemma 2. For all j ∈ σ′ and q ∈ Fj−1, if dominant forward
start interval q of customer j − 1 results in a dominant
forward start interval within time window t ∈ Tj at customer
j, then dominant forward start interval q′ ∈ Fj−1 with q′ < q
cannot result in a dominant forward start interval within
time window t′ ∈ Tj with t′ > t at customer j.

Proof. Let [EF
j (p), LFj (p)] be a dominant forward start

interval within time window t ∈ Tj at customer j orig-
inating from dominant forward start interval q of
customer j − 1. Suppose that dominant forward start
interval q′ ∈ Fj−1 with q′ < q results in forward start
interval [EF

j (p′),LFj (p′)] at customer j within time

window t′ ∈ Tj with t′ > t. Using Proposition 1, we
demonstrate that forward start interval p dominates p′:

wF
j p′
() − wF

j p
()

� wF
j−1 q′

() +max 0, et
′
j − LFj−1 q′

() − sj−1 − τj−1,j
{ }

− wF
j−1 q

() +max 0, etj − LFj−1 q
() − sj−1 − τj−1,j

{ }()
(10)

� wF
j−1 q′

() − wF
j−1 q

() + et
′
j − LFj−1 q′

() − sj−1 − τj−1,j

−max 0, etj − LFj−1 q
() − sj−1 − τj−1,j

{ }
(11)

>LFj−1 q′
() − LFj−1 q

() + et
′
j − LFj−1 q′

() − sj−1 − τj−1,j

−max 0, etj − LFj−1 q
() − sj−1 − τj−1,j

){ }
(12)

� et
′
j − LFj−1 q

() − sj−1 − τj−1,j

−max 0, etj − LFj−1 q
() − sj−1 − τj−1,j

){ }
(13)

� et
′
j − LFj p

() � LFj p′
() − LFj p

()
. (14)

Line (10) follows from the definition given in (9). By
Lemma 1, LFj−1(q′) + sj−1 + τj−1,j <EF

j−1(q) + sj−1 + τj−1,j ≤
ltj < et

′
j holds, and by rearranging the terms, line (11) is

obtained. Because forward start intervals q′ and q are
both dominant, we obtainwF

j−1(q′) − wF
j−1(q)>LFj−1(q′) −

LFj−1(q), which is used to deduce (12) from (11). Line
(14) follows from the fact that LFj (p) �LFj−1(q) + sj−1+
τj−1,j+max{0,etj −LFj−1(q) − sj−1−τj−1,j

)} and LFj (p′) � et
′
j .

We have demonstrated that because EF
j (p)<EF

j (p′) and
wF

j (p′) −wF
j (p)>LFj (p′) −LFj (p), [EF

j (p′),LFj (p′)] is not a
dominant forward start interval. □

Following Paulsen, Diedrich, and Jansen (2015), we
formally demonstrate the upper bound on the num-
ber of dominant forward start intervals per customer
in a route. Because every forward start interval cor-
responds to a different selection of time windows, it
offers an upper bound to the maximum number of
time window combinations that must be checked.

Lemma 3. For a given route of m customers, at most, 1 +∑m
j�1(|Tj| − 1) selections of time windows must be checked,

that is, |Fm| ≤ 1 +∑m
j�1(|Tj| − 1).

Proof. By induction over the number of customers m,
we prove that this lemma holds for all m. For m � 1,
there is only one customer with |T1| time windows;
hence, there are at most |T1| dominant forward start
intervals. Suppose that the lemma is true for m � i. We
prove that it is also true for m � i + 1. Define a bipar-
tite graph G � (Fi,Ti+1) with Fi the index set of domi-
nant forward start intervals at customer i and Ti+1 the
index set of the timewindows of customer i + 1. An edge
(q, t) exists if dominant forward start interval q ∈ Fi

Hoogeboom et al: Efficient Neighborhood Evaluations for the VRPMTW
406 Transportation Science, 2020, vol. 54, no. 2, pp. 400–416, © 2020 INFORMS

results in a dominant forward start interval within time
window t ∈ Ti+1. Hence, the edge set of graph G cor-
responds to the number of dominant forward start in-
tervals at customer i + 1, |Fi+1|. With Lemma 1, we know
that the dominant forward start intervals are non-
overlapping and increasing. By setting both the index set
of the dominant forward start intervals Fi and the time
windows Ti+1 in increasing order, the bipartite graph G
can be drawn without crossings following Lemma 2.
Because G is a bipartite graph without crossings, it
does not contain cycles. This implies that G is a for-
est, a union of disjoint trees, which has at most |Fi| +
|Ti+1| − 1 edges. By the induction hypothesis, we ob-
tain |Fi+1| � |Fi| + |Ti+1| − 1 � 1 +∑i+1

j�1(|Tj| − 1). □

Theorem 1. The computational complexity of the DFSI
algorithm is O(∑m

i�1(1 +∑i
j�1(|Tj| − 1)).

Proof. With Lemma 3, we know that the maximum
number of dominant forward start intervals at cus-
tomer i is bounded from above by 1 +∑i

j�1(|Tj| − 1).
Hence, the complexity of identifying all dominant
forward start intervals of all m customers in a route is∑m

i�1(1 +∑i
j�1(|Tj| − 1)). □

3.3. Extension to Local Search
In local search, neighborhood operations are used to
insert and remove customers from a route σ. To ef-
ficiently check the time window feasibility, both
forward and backward start time intervals are re-
quired. In Section 3.3.1, the backward start intervals
are described, and Section 3.3.2 illustrates how the
forward and backward start intervals are used to
efficiently recalculate the minimum route duration
when local search operations are applied.

3.3.1. Backward Start Intervals. The backward start
intervals of customer i represent the start times of
servicing customer i such that all subsequent cus-
tomers are served in one of their time windows.
Similar to the forward start intervals, we associate a
set of backward start intervals with each node i ∈ σ′.
Let Bi � {1, . . . , |Bi|} be the index set of the backward
start intervals of customer i, with [EB

i (q), LBi (q)] rep-
resenting backward start interval q ∈ Bi. The back-
ward start intervals are presented in increasing or-
der, and every backward start interval of node
i ∈ σ′ corresponds to a different selection of time win-
dows. The backward start intervals are computed in
a backward recursion from the last customer to the
first customer in σ′, with initialization Bm � Tm and
wB

m(p) � 0 ∀p ∈ Bm. If a vehicle starts servicing cus-
tomer i in time window t ∈ Ti and the vehicle ar-
rives before or during the backward start interval q
at customer i + 1, that is, if eti + τi,i+1 + si ≤ LBi+1(q)

(⇒LBi+1(q) − τi,i+1 − si ≥ eti), then the new backward
start interval p of customer i can be calculated by

EB
i p
() � max min EB

i+1 q
() − τi,i+1 − si, lti

{ }
, eti

{ }
,

LBi p
() � min LBi+1 q

() − τi,i+1 − si, lti
{ }

. (15)

The total waiting time of customer sequence {i, i +
1, . . . ,m} when service at customer i starts within
backward start interval [EB

i (p), LBi (p)] is given by

wB
i (p) �

wB
i+1 q

() + EB
i+1 q

() − τi,i+1 − si − lti if EB
i p
() � lti ,

wB
i+1 q

()
otherwise.

{

Let WB
i � {wB

i (1), . . . ,wB
i (|Bi|)} be the set of minimal

total waiting times corresponding to the backward
start intervals of customer i.
Similar to Definition 1, backward start interval q

dominates backward start interval q′ at customer i if
all feasible start times at customer i − 1 for q′ are also
feasible for q with less or equal waiting time. To check
whether an interval is dominated, the following dom-
inance criteria are used.

Proposition 2. Backward start interval q ∈ Bi domi-
nates backward start interval q′ ∈ Bi if LBi (q) ≥ LBi (q′) and
wB

i (q′) − wB
i (q) ≥ EB

i (q) − EB
i (q′).

That these criteria imply dominance can be proved
similarly to Proposition 1. Intuitively, the difference
in waiting time of the two backward start intervals is
greater than the time difference between the lower
bounds of the intervals. Therefore, backward start
interval q can identify the same arrival times at cus-
tomer i − 1, because LBi (q) ≥ LBi (q′), with less or equal
total waiting time. Let Bi be the index set of the
dominant backward start intervals of customer i,
which are presented in increasing order. To deter-
mine the solution with minimal duration, we must
consider only the dominant backward start intervals.
The dominant backward start intervals of the customers
in the example route are given in Figure 2.
As with the DFSI algorithm, we can calculate all the

dominant backward start intervals from the last to the
first customer in a given route σ. Lemmas 1 and 3 also

Figure 2. Dominant Backward Start Intervals and
Corresponding Waiting Times of Customers {1, 2, 3}

Hoogeboom et al: Efficient Neighborhood Evaluations for the VRPMTW
Transportation Science, 2020, vol. 54, no. 2, pp. 400–416, © 2020 INFORMS 407

hold for the dominant backward start intervals;
therefore, the calculation of all backward start in-
tervals also has a polynomial time computational
complexity of O(∑m

i�1(1 +∑i
j�1(|Tj| − 1)).

3.3.2. Efficient Evaluation of Local Search Moves. For
all customers in a route i ∈ σ′, the dominant forward
start intervals f ∈ Fi and the dominant backward start
intervals b ∈ Bi, with corresponding waiting timesWF

i
and WB

i , can be calculated in polynomial time. These
sets are used to efficiently recompute the minimal
total waiting time of a route when local search op-
erators are applied. Because the majority of operators
divide a route into two or more sections, the minimal
route duration of a move connecting customers i and j
is recalculated by comparing the forward and back-
ward start intervals of customers i and j, respectively.
We illustrate this for a deletion and insertion of a
customer in a route because these approaches can be
easily extended to more complex operations.

Deletion. Supposewehavea routeσ� {0,1, . . . ,m,m+1}
and we want to remove customer i. Then, we must
check whether the new route σ̃� {0,1, . . . , i−1, i+1, . . . ,
m+1} is feasible and, if so, compute the minimal
total waiting time. To accomplish this, we compare
the dominant forward start intervals of customer i−1
with the dominant backward start intervals of cus-
tomer i+1. The route is feasible if there exist f ∈ Fi−1
and b∈Bi+1 such that EF

i−1(f) + si−1+τi−1,i+1 ≤LBi+1(b).
The corresponding total waiting time for this feasible
combination is given by wR(f ,b) �wF

i−1(f) +wB
i+1(b)+

max{0,EB
i+1(b) −LFi−1(f) − si−1−τi−1,i+1}, that is, the sum

of the waiting time of sequence {1, . . . , i−1}, waiting
time of sequence {i+1, . . . ,m}, and waiting time be-
tween customers i−1 and i+1. The minimumwaiting
time of the new route σ̃ is given by min{wR(f ,b)| f ∈
Fi−1,b∈Bi+1with EF

i−1(f) + si−1+τi−1,i+1 ≤ LBi+1(b)}.
If the new route σ̃ is accepted, then the new dom-

inant start intervals must be calculated. Because a
part of the route remains the same, only the domi-
nant forward start intervals of customers i + 1, . . . ,m
and dominant backward start intervals of customers
1, . . . , i − 1 require recalculation.

Theworst-case computational complexity of checking
whether the removal of customer i results in a feasible
solution and to calculate the new minimal total wait-
ing time is |Fi−1| + |Bi+1| − 1 � 2 − |Ti| +∑m

j�1(|Tj| − 1).
Note that if route σ is feasible, then the customer
deletion is always timewindow feasible if the triangle
inequality holds.

Insertion. Suppose we have a route σ and we wish
to insert customer α between i and i + 1. To check
whether the new route σ̃ � {0, 1, . . . , i, α, i + 1, . . . ,m,
m + 1} is feasible and to calculate the minimal total

waiting time, we calculate the forward start intervals
and corresponding waiting times at customer α by
the forward recursion given in (8) and (9). These for-
wards start intervals Fα are compared with the dom-
inant backward start intervals of customer i + 1 and
route σ̃ is feasible if there exists f ∈ Fα and b ∈ Bi+1 such
thatEF

α(f) + sα + tα,i+1 ≤ LBi+1(b). The corresponding total
waiting time for this combination is wF

α(f) +wB
i+1(b)+

max{0,EB
i+1(b) −LFα(f) − sα−τα,i+1}. The minimum wait-

ing time of the new route σ̃ is given by min{wR(f , b)| f ∈
Fα, b ∈ Bi+1with EF

α(f) + sα + τα,i+1 ≤ LBi+1(b)}.
The computational complexity to check whether an

insertion is feasible and to calculate the new minimal
total waiting time is O(|Tα| +∑m

j�1 |Tj − 1|).
The same approach can be used for the removal and

insertion of a sequence of customers and for more
complex operators such as 2-opt∗ or cross exchanges.

4. Metaheuristic
Metaheuristics based on (large) variable neighbor-
hood search (VNS, see Mladenović and Hansen 1997)
are simple and effective algorithms that have been
successful in solving numerous variants of the vehicle
routing problem. Stenger et al. (2013) proposed an
adaptive mechanism that was inspired by the work
of Ropke and Pisinger (2006) on large neighborhood
search. It combined different alternative components
of a VNS that led to an overall adaptive VNS (AVNS)
that outperformed the standard VNS both in terms of
solution quality and convergence speed. Therefore,
we propose an AVNS algorithm to solve the VRPMTW.
In Section 5, the proposed AVNS algorithm is used to
compare the average performance of the route du-
rationminimization algorithms. This section presents
the structure of the proposed metaheuristic frame-
work (presented in Algorithm 2) and discusses its
components.
The heuristic is initialized with a feasible solution

determined by applying the route minimization (RM)
heuristic of Nagata and Braysy (2009) that is de-
scribed in Section 4.1. This solution is the start of the
AVNS, where local search and shaking are iteratively
called. A granular local search with multiple opera-
tors is used to identify a new local optimum x′ (Line 4)
as described in Section 4.2. The new local optimum
x′ is always accepted if it improves the incumbent
x′′. Inspired by the simulated annealing approach
(Kirkpatrick, Gelatt, and Vecchi 1983), we attempt to
diversify the search by accepting nonimproving
solutions with probability exp(−(V(x′′) − V(x′))/θ),
whereV(x) is the objective value defined in Section 4.2.
The temperature θ is initially set to θ0 and updated
after every shake with factor θupdate. After Iθ non-
improving main AVNS iterations, θ is reset to θ0. In
the shaking phase, a set of kmax neighborhood struc-
tures is used. When a solution is accepted (Line 7),

Hoogeboom et al: Efficient Neighborhood Evaluations for the VRPMTW
408 Transportation Science, 2020, vol. 54, no. 2, pp. 400–416, © 2020 INFORMS

the search restarts at the first neighborhood k � 1,
otherwise it continues with the next neighborhood
k � k + 1. In the shaking phase (Line 13), a new so-
lution x is generated from the kth neighborhood of the
current local optimum x′′; that is, x ∈ 1k(x′′). Instead
of using a random shaking, three shakingmethods are
proposed, and the weights of these methods are
adaptively adjusted over time. The details of this
shaking procedure are described in Section 4.3. When
the incumbent is not improved in S iterations, a large
shaking isperformed,andthe localoptimumx′′ is reset to
restart the search (see Lines 14–17 and Section 4.3).

4.1. Initial Solution
To minimize the number of vehicles, we use the RM
heuristic of Nagata and Braysy (2009). This algorithm
beginswith an initial solutionwhere each customer is
serviced by a separate vehicle. The RM heuristic
attempts to reduce the number of routes by re-
moving one route from the solution. The unserviced
customers are placed in the ejection pool. At each
iteration, a customer from the ejection pool is inserted
in the position that minimizes the penalized objective
function V(x) defined in the next section. If the new
solution is infeasible, we attempt to restore the so-
lution by local search moves that minimize the ca-
pacity and time window violations. If this fails, up
to three customers are removed from the existing
routes and are placed in the ejection pool. The ejected

customers are selected using the concept of guided
local search (Voudouris and Tsang 2003), which es-
timates the difficulty of reinserting the ejected cus-
tomers. After customers are ejected from a route, the
search is diversified by 20 local search moves (de-
scribed in the next section). This process is repeated
until the ejection pool is empty. Then, the next route is
selected for removal. The RM heuristic terminates if
the number of vehicles is equal to the lower bound
�∑N

i�1
qi
Q or if the maximum execution time Tmax is

reached.

4.2. Local Search
A local search is performed to determine the local
optimum solution. In the local search, seven different
neighborhoods are explored in increasing order of
complexity. If an improving solution is identified,
the search restarts at the first neighborhood. First,
intraroute neighborhood operations on a single route
are applied. This includes the relocate neighborhood,
where a customer is placed in a new best position in
the same route; exchange, where two customers ex-
change positions; and the relocate sequence neigh-
borhood, where a sequence of at least two and at most
four customers is relocated to a new best position.
Second, interroute neighborhood operations on two
routes are applied. This includes the relocate neigh-
borhood, which repositions a customer to the best
position of another route; exchange, which exchanges
the positions of two customers; 2-opt*, which ex-
changes the tails of two routes; and cross, which ex-
changes two sequences of at most four customers of
two routes.
To accelerate the local search, a granular neigh-

borhood is used where the arc set is restricted. Our
restricted arc set consists of the arcs from each cus-
tomer to its c% closest customers. All depot arcs are
included because Schneider, Schwahn, and Vigo
(2017) demonstrated that this improves the solution
quality. As described by Toth and Vigo (2003), in the
local search, only the moves with a generator arc in
the restricted arc set are performed. The generator arc
is the newly inserted arc connecting a nonmoved
customer with a moved customer. After choosing
the generator arc (i, j), the other arcs involved in a
neighborhood move are uniquely specified. Arcs that
do not belong to the restricted arc set can be inserted,
because only the generator arc is checked. The search
starts with c � c0%, and if the local optimum does not
improve for Ic iterations, the granular neighborhood
increases by cupdate% up to a maximum of cmax%. If the
local optimum solution is improved, c is decreased
to c � c0.
During the search, we allow for the violation of the

capacity and time window constraints at the expense
of a penalty to reach different areas of the solution

Algorithm 2 (Adaptive Variable Neighborhood Search)

1. Initialization: Create an initial feasible solution x
by the RM heuristic, x∗ � x′′ � x
2. Initialize kth neighborhood k � 1
3. while number of iterations ≤ I AND elapsed

time ≤ T do
4. local search: perform local search on x to

determine local optimum x′
5. acceptance criteria:
6. if x′ improves x′′ or x′ is accepted then
7. x′′ � x′ and k � 1
8. if current best solution x′′ improves best

solution x∗ then
9. x∗ � x′′

10. end if
11. else k � k + 1
12. end if
13. adaptive shaking: generate solution x ∈ 1k(x′′)
using selected shaking method
14. if large shaking condition holds then
15. generate new solution x by removing and
reinserting r% of the customers
16. x′′ � x
17. end if
18. end while

Hoogeboom et al: Efficient Neighborhood Evaluations for the VRPMTW
Transportation Science, 2020, vol. 54, no. 2, pp. 400–416, © 2020 INFORMS 409

space. Let x be a solution. Then, the overload q(x) is
calculated by q(x) � ∑|K|

k�1 max{∑(i,j)∈A qixkij −Q, 0}, and
the time window violation is given by t(x) � ∑n

i�1 ·
max{ai − l|Ti |

i , 0}. Let F ×m be the total vehicle cost,
with F the cost per used vehicle and m the number of
vehicles used in solution x. The total duration of all m
routes is denoted by d(x). Therefore, the penalized
objective function of solution x is given by V(x) � F ×
m + d(x) + β1q(x) + β2t(x), where β1 and β2 are self-
adjusting parameters that are updated every μ iter-
ations. If, in the last μ iterations, the capacity con-
straint is violated in at least one route, then parameter
β1 is multiplied by δ> 1. Otherwise, β1 is divided by δ.
The same update rule is applied to parameter β2.

4.3. Shaking
An adaptive shaking approach based on Stenger
et al. (2013) is used to determine a new starting point
for the local search. In this shaking approach, one move
of the kth neighborhood is performed. The kmax � 18
neighborhoods used in the shaking are all based on
interroute cross exchanges that exchange sequences
of at most L customers. For neighborhoods with
length L< 4, the sequence length is a random value
between one and the maximum length L. For neigh-
borhoods with L ≥ 4, the sequence lengths are fixed to
L. For neighborhoods k � 1 until k � 6, one sequence
has length zero and the other has length L � 1 until
L � 6, respectively. Therefore, these neighborhoods’
operations are relocations of a sequence with L cus-
tomers. For the next neighborhoods k � 7 until k � 12,
exchange two sequences of length L � 1 until L � 6,
respectively. In the last neighborhoods (k � 13 until
k � 18), three routes are involved in exchanging se-
quences of length L � 1 until k � 6. When the shaking
approach of neighborhood k is called, first, the routes
involved are selected. Then, the length of the se-
quences are fixed (if L< 4). Finally, the customer se-
quences involved in the move are selected.

The first route r1 involved in the shaking operation
is randomly selected. To avoid unpromising moves,
the other routes in the shaking operation must be
located close to route r1. Therefore, the probability of
selecting a route r �� r1 is determined by the number of
arcs in the restricted arc set of the granular neigh-
borhood that connect a customer in route r to a
customer in route r1.

The selection of the customer sequences is achieved
by one of these three methods:

1. All sequences involved are randomly selected.
2. The sequence of the first route is randomly se-

lected and the sequences of the other routes are se-
lected such that the objective of the resulting solution
is minimized.

3. All sequences are selected such that the objective
of the resulting solution is minimized. As in Stenger

et al. (2013), the weight of selecting one of these
methods is updated by an adaptive mechanism.
During the search, the number of times a shaking
method i is selected (denoted by ci) is counted. When
shakingmethod i leads to an improvement of the local
best solution (x′′), a value of two is added to the
performance score si. If the overall best solution (x∗) is
improved, six additional points are added to si. After
z shaking rounds, the weights of the shaking types
are updated based on the newly determined scores:
wi � ρwn

i + (1 − ρ)wi, withwn
i � �sici/

∑
i�sici and 1 ≤ i ≤ 3

and 0 ≤ ρ ≤ 1.
A large shaking is called if the local optimum x′′ does

not improve for S iterations, that is, if the adaptive
shaking proves to be insufficient to escape froma local
optimum. In that case, r% of the customers are deleted
from the routes and reinserted in random order into
the best position. The search is restarted from this
solution by resetting the local optimum x′′ as de-
scribed in Line 16 of Algorithm 2. This larger shaking
procedure is also called s iterations after the last re-
start if the current solution is not within v% of the
overall best solution x∗. The search terminates after η
restarts, if I iterations are performed, or if the time
limit of T seconds is reached.

5. Computational Results
In this section, we compare the proposed exact al-
gorithm with other route duration minimization al-
gorithms presented in the literature. Furthermore, we
incorporate the proposed algorithm into a new and
effective AVNS algorithm, which is successfully used
to solve the VRPMTW instances from the literature.
The algorithms were implemented in C++ and exe-
cuted on a single core of aWindows 10 computer with
a 4.0 GHz Intel Core i7 processor and 24 GB of
memory.
To tune the parameters of the AVNS, the strategy

described by Ropke and Pisinger (2006) is used.
During the tuning, one parameter value is changed
while the other parameters remain fixed. For each
parameter, three executions on a randomly selected
subset of the instance set are conducted (with two
instances out of each set C1, C2, R1, R2, RC1, and
RC2). The parameter value with the best average
results is selected, and this process is repeated for
all parameters, resulting in the following parame-
ter setting. The granular neighborhood begins at c0 �
10% and increases by cupdate � 10% after Ic � 200
nonimproving iterations until a maximum of cmax �
40%. The simulated annealing components are set
to θ0 � 20, θupdate � 0.85, and Iθ � 20. The penalty pa-
rameters are adjusted every μ� 20 iterations with
factor δ� 1.2, and the parameters are initialized at
β1 � β2 � β3 � 100. After z� 20 main AVNS iterations,
the weights of the different shaking methods are

Hoogeboom et al: Efficient Neighborhood Evaluations for the VRPMTW
410 Transportation Science, 2020, vol. 54, no. 2, pp. 400–416, © 2020 INFORMS

updated with ρ� 0.3. In the large shaking, r� 30% of
the customers are relocated. The large shaking phase
is called after S� 5,000 nonimproving iterations or
if after s� 2,000 iterations, the current solution is
not within v� 10% of the overall best solution. The
search is terminated after η� 10 large shakes, after I �
100,000 iterations, or if the time limit of T� 150 sec-
onds is reached. The RM heuristics executes for Tmax �
8 seconds.

5.1. Data Set
Belhaiza, Hansen, and Laporte (2014) generated
VRPMTW instances from the Solomon (1987) VRPTW
instances, all of which contain 100 customers. Only
the first eight instances of every Solomon (1987) set
are used. The vehicle cost is set equal to the vehicle
capacity; that is, the vehicle costs F are 200, 700, 200,
1,000, 200, and 1,000 for instance sets CM1, CM2,
RCM1, RCM2, RM1, and RM2, respectively. The in-
stances have from 1 to 10 nonoverlapping time
windows per customer, and the optimal solutions of
the instances are unknown. The specific details of the
instances are displayed in Table 1.

The published objective values of Belhaiza,Hansen,
and Laporte (2014) include travel time, waiting time,
service time, and vehicle cost. Because service time
is a constant and can represent a large part of the
objective value, we do not include it when reporting

the duration and objective value to avoid distorting
the calculation of savings. For example, for instance
set CM, the fixed total service time is 9,000, whereas
the total travel time plus waiting time is between 820
and 1,500.
As in Tricoire et al. (2010), the preprocessing steps

described in Online Appendix A are performed be-
fore running the benchmark heuristic. In these steps,
the time windows that conflict with the time window
of the depot are adjusted or eliminated.

5.2. Comparison of the Different Exact Algorithms
Section 3.2 demonstrates that our start interval al-
gorithm has a reduced worst-case complexity than
the existing exact route duration minimization algo-
rithms of Tricoire et al. (2010) and Belhaiza, Hansen,
and Laporte (2014). In this section, we compare the
average performance of the proposed route duration
minimization algorithm to the existing algorithms. To
do this, we implemented the exact algorithms de-
scribed in Tricoire et al. (2010) and Belhaiza, Hansen,
and Laporte (2014). In Belhaiza, Hansen, and Laporte
(2014) and in the proposed algorithm, the service
must start within a time window. However, in
Tricoire et al. (2010), the service of a customer must
both start and end in a single selected time window.
To align the settings of the algorithms, we were
required to make a small and straightforward

Table 1. Average Computational Times in Seconds of Different Route Duration Minimization Algorithms

Instance m nTW Width TW TRDH10 BHL14 DFSI Instance m nTW Width TW TRDH10 BHL14 DFSI

RM101 10 5–9 10–30 14.0 21.1 9.4 RM201 2 5–8 50–100 25.0 515.4 8.9
RM102 9 5–7 10–30 12.9 20.9 9.4 RM202 2 3–5 50–100 19.8 755.2 4.8
RM103 9 4–7 10–30 14.3 23.5 9.5 RM203 2 2–5 50–100 15.5 306.1 3.7
RM104 9 3–6 10–30 13.6 17.5 9.2 RM204 2 2–4 50–100 21.6 186.5 4.3
RM105 9 2–6 10–30 13.7 16.6 9.2 RM205 2 1–4 50–100 17.6 87.7 3.7
RM106 9 2–3 30–50 12.4 14.9 9.0 RM206 2 1–3 100–200 19.9 45.3 3.8
RM107 9 1–3 30–50 12.0 13.1 8.9 RM207 2 1–3 100–200 19.4 33.5 3.0
RM108 9 1–2 50–100 13.4 13.9 9.2 RM208 2 1–5 100–200 19.7 32.6 3.2
Average 9.13 13.3 17.7 9.2 Average 2 19.8 245.3 4.4
CM101 10 5–10 50–100 6.7 14.8 2.2 CM201 5 5–10 50–100 14.9 48.3 10.1
CM102 11 5–7 50–100 14.7 23.7 9.9 CM202 6 5–7 50–100 13.3 37.2 9.6
CM103 11 3–7 50–100 13.9 17.1 9.5 CM203 5 3–7 50–100 15.6 24.9 9.5
CM104 13 3–5 50–100 14.1 16.9 9.4 CM204 5 3–5 50–100 13.8 25.5 9.5
CM105 10 2–5 50–100 4.5 7.2 1.2 CM205 4 2–5 100–200 21.2 25.0 9.8
CM106 10 2–4 100–200 4.0 5.5 1.0 CM206 4 2–4 100–200 14.4 17.2 9.3
CM107 10 1–3 100–200 4.0 4.6 0.9 CM207 4 1–3 100–300 13.7 16.0 9.1
CM108 10 1–3 100–500 3.6 4.0 0.8 CM208 4 1–3 100–500 13.7 15.1 9.1
Average 10.63 8.2 11.7 4.4 Average 4.63 15.1 26.2 9.5
RCM101 10 5–10 10–30 12.3 17.9 9.2 RCM201 2 5–10 50–100 26.1 1250.8 7.2
RCM102 10 5–7 10–30 12.3 15.7 9.1 RCM202 2 5–7 50–100 20.6 281.1 11.7
RCM103 10 3–7 10–50 12.0 15.8 9.0 RCM203 2 3–7 50–100 18.8 268.0 4.2
RCM104 10 3–5 10–50 12.1 14.4 9.0 RCM204 2 3–5 50–100 18.2 181.3 4.3
RCM105 10 2–5 10–70 12.7 14.9 9.1 RCM205 2 2–5 100–200 17.5 35.2 5.3
RCM106 10 2–4 30–70 11.7 13.3 8.8 RCM206 2 2–4 100–200 27.1 51.0 5.7
RCM107 11 1–3 30–70 11.0 11.3 8.7 RCM207 3 1–3 100–300 16.9 18.3 9.3
RCM108 11 1–3 30–100 12.5 13.7 9.0 RCM208 2 1–3 100–500 14.9 16.1 2.1
Average 10.25 12.1 14.6 9.0 Average 2.13 20.0 262.7 6.2

Note. nTW represents the number of time windows and Width TW the width of the time windows.

Hoogeboom et al: Efficient Neighborhood Evaluations for the VRPMTW
Transportation Science, 2020, vol. 54, no. 2, pp. 400–416, © 2020 INFORMS 411

adjustment to the input for the algorithmofTricoire et al.
(2010). The upper bound of the time window of each
customer was increased by its service time, allowing
the time windows to overlap. However, this did not
influence the Tricoire et al. (2010) algorithm as it
continued to schedule the start of service within the
original time windows.

The proposed start interval algorithm was imple-
mented in two different manners. First, it used a
depth-first implementation that terminated when a
solution with zero waiting time was identified (see
Online Appendix D). This implementation used only
the forward start intervals and was useful for com-
paring the proposed method with existing methods
that calculate the minimum duration of a given route.
Second, it applied an embedded start interval (ESI)
algorithm that used both the backward and forward
start intervals, as described in Section 3.3.2.

In the first experiment, the running times of the
exact route duration minimization algorithms are
compared. In the second experiment, we demonstrate
the benefits of using the embedded start interval al-
gorithm where the local search moves are efficiently
evaluated compared with using a standard route
duration minimization algorithm. Furthermore, the
influence of using exact and approximate evalua-
tions for local search moves is tested.

5.2.1. Average Case Analysis of Exact Evaluations. In
this section, we compare the average running times
of the newly proposed depth-first start interval algo-
rithm (DFSI) to the existing route duration minimiza-
tion algorithms of Tricoire et al. (2010) (TRDH10) and
Belhaiza, Hansen, and Laporte (2014) (BHL14). To
perform this comparison, we executed the AVNS
algorithm described in Section 4 on all instances for
I � 1,000 iterations without imposing a time limit.
Every time the route duration requiredminimization,
each of the three algorithms was used and its com-
putational time was reported. Note that because all
algorithms are exact, the final solution was the same
for all algorithms. The minimum total duration was,
therefore, not reported in Table 1. Furthermore, the
RM algorithm used to create an initial solution was
the same for all algorithms. Its computational time
varied across problem instances; it required a maxi-
mum of eight seconds.

The first column of Table 1 reports the instances,
and the second column indicates the number of routes
m in the final solution. The number of time windows
and the width of the time windows are indicated in
the third and fourth columns, respectively.

For each instance set, the number of time windows
per customer decreased per instance. The decrease in
computational time from the first to the last instance
in a set was, on average, 20%, 65%, and 36% for the

TRDH10, BHL14, and DFSI algorithms, respectively.
Hence, Table 1 indicates that the computational times
of all algorithms increased if more time windows
were considered. The computational times of both the
TRDH10 and BHL14 algorithms clearly increased
when route length increased, especially for the BHL14
algorithm, this increase in computational time was
significant. This can be seen when comparing Set 1
instances with Set 2 instances. The average computa-
tional times of the TRDH10 and BHL14 algorithms
were, respectively, 11.2 and 14.7 seconds for the Set 1
instances, and 18.3 and 178.1 for the Set 2 instances. The
computational times of the DFSI algorithm were be-
tween 0.8 and 11.7 seconds for all instances, which
indicates that the DFSI algorithm is less influenced
by problem specific characteristics.
The proposed DFSI algorithm outperformed the

other algorithms in terms of average computational
time. The DFSI algorithm had the lowest computa-
tional time on all instances. On average, it was 2.1 and
13.5 times faster than the approaches of TRDH10
and BHL14, respectively. The TRDH10 method out-
performed the BHL14 method on all instances. These
results are in line with the worst-case computational
complexity analysis of the algorithms in Section 2.1.

5.2.2. Influence of the Embedded Forward Start
Interval. In the second test, the performance of dif-
ferent methods to evaluate neighborhood solutions
in a local search was tested. Because the previous test
indicated that the proposed DFSI algorithm out-
performed the existing route duration minimization
algorithms, we compared only the average compu-
tational times of the DFSI algorithm and the ESI al-
gorithm. These are both exactmethods to calculate the
minimal duration of a route. We also implemented an
approximate evaluation method where the waiting
time and time window infeasibility of a route were
approximated by servicing the customers as early as
possible and accumulating the waiting times and
delays at every customer in the route. The approxi-
mate method was used when evaluating a move, and
the exact DFSI algorithmwas used only when a move
was performed. The AVNS algorithm was used to
test the three different evaluation methods with a
maximum number of I � 50,000 iterations and no
time limit. The obtained average results on the different
instance sets are summarized in Table 2. The first
column is the name of the instance set. The next three
columns represent the results for the approximate
evaluation method. The average number of vehicles
used, the average duration, and the average com-
putational time in seconds are reported in columns
“nVeh,” “Duration,” and “Time,” respectively. The
results for the exact evaluations are reported in the
last four columns, where columns “DFSI” and “ESI”

Hoogeboom et al: Efficient Neighborhood Evaluations for the VRPMTW
412 Transportation Science, 2020, vol. 54, no. 2, pp. 400–416, © 2020 INFORMS

indicate the average computational times of the corre-
sponding exact evaluation methods. Note that the two
algorithms follow exactly the same optimization path
and thus yield the same final solution.

The results in Table 2 indicate a trade-off between
solution quality and computational time when com-
paring the approximate evaluation approach with the
exact evaluation approach. Using exact evaluations
during the local search reduces the average duration
by 4% compared with the approximate evaluation ap-
proach. However, the approximate method is, on av-
erage, 2.7 times faster than the exact DFSI algorithm,
yet only 1.2 times faster than the exact ESI algorithm.
The ESI is, on average, 2.25 times faster than the DFSI
method. Because it was demonstrated in the previous
test that theDFSI algorithm is, on average, twice as fast
as the existing route duration minimization algo-
rithms, we can conclude that the ESI results in an
average computational savings of a factor of four com-
pared with using the existing exact algorithms for local
search evaluations. This indicates that an efficient eval-
uation method using the forward and backward start
intervals significantly accelerates the evaluation of local
search moves.

5.3. Comparison with State-of-the-Art Results
In the final experiment, we compared the perfor-
mance of the proposed AVNS with state-of-the-art
results published by Belhaiza, Hansen, and Laporte
(2014) and those reported in the recent conference
paper by Belhaiza, M’Hallah, and Brahim (2017). The
proposed AVNS uses either the embedded start in-
terval algorithm (denoted by E-AVNS) or the ap-
proximate evaluation method (denoted by A-AVNS)
described in the previous section to test the influence
of exact local search evaluations.

Belhaiza, Hansen, and Laporte (2014) used a com-
puter with a 3.3 GHz Intel Core i5 vPro processor and
3.2 GB of RAM, and performed 10 runs of at most

25,000 iterations per instance. Belhaiza, M’Hallah,
and Brahim (2017) performed a single run of 100,000
iterations on a computer with a 3.3 GHz Intel Core i5
vPro processor and 4 GB of RAM. The proposed AVNS
was executed one time for 100,000 iterations. The
computational results are presented per instance in
Table 3. For each solution method, the number of
vehicles used and the total duration (i.e., the total
travel time plus the total waiting time) are reported in
columns “nVeh” and “Dur,” respectively. The ob-
jective value consisting of the duration and vehicle
costs is presented in column “Obj.” For Belhaiza,
Hansen, and Laporte (2014), the best results over
the 10 runs are reported.
The best known solution for every instance is in-

dicated in bold. Of the 48 instances, the E-AVNS
improved 39 instances of the best published results
of Belhaiza, Hansen, and Laporte (2014) and 22
instances compared with Belhaiza, M’Hallah, and
Brahim (2017). The RM heuristic used in the AVNS
performed extremely well because the AVNS always
identifies a solution with the minimal number of
vehicles. The number of vehicles used in the AVNS
was on average 1.3% and 1.9% less than those of
BMB17 and BHL14, respectively. The E-AVNS had,
on average, the lowest objective value, and the BMB17
algorithm had, on average, the lowest duration.
The two-sided sign test indicates that neither the

E-AVNS nor BMB17 algorithm dominates the other.
With a p-value of 0.77, the null hypothesis that both
algorithms are equally likely to produce better re-
sults compared with the other is not rejected. Con-
versely, the significantly improved results of the
E-AVNS over the BHL14 method are confirmed by
the two-sided sign test with a significance level of
1.5 × 10−5. TheWilcoxon two-sided rank test confirms
these results, with p-values of 0.3 and 1.4 × 10−5.
In Table 4, the average running time and average

execution time in seconds to obtain the best result are
given in rows “Total time” and “Time best,” re-
spectively. The BHL14 algorithm had an average
computational time of 70.2 seconds per run (they
executed their algorithm 10 times). BMB17 reported
an average execution time of 81.2 seconds to obtain
the best solution per instance. The average com-
putational time to obtain the best solution of the
E-AVNS was less; however, we were executing on a
marginally faster computer. Therefore, we consider
the computational times of the BMB17 and E-AVNS
algorithms to be comparable.
In the above computational results, the objective

consisted of minimizing the total duration and ve-
hicle cost. Belhaiza, Hansen, and Laporte (2014) and
Belhaiza, M’Hallah, and Brahim (2017) developed
their algorithms to also minimize a second objective
of minimizing the total travel time (without waiting

Table 2. Results from Different Evaluation Methods in the
AVNS Algorithm

Approximate Exact

Instance nVeh Duration Time nVeh Duration DFSI ESI

RM1 9.1 959.7 40.5 9.1 936.9 101.4 51.6
RM2 2.0 725.5 109.2 2.0 705.1 346.8 145.3
CM1 10.6 1,277.5 34.9 10.6 1,198.7 91.7 44.1
CM2 4.6 1,038.1 57.0 4.6 982.4 128.6 62.5
RCM1 10.3 1,234.8 33.6 10.3 1,214.7 78.9 47.7
RCM2 2.1 809.2 99.8 2.1 769.1 269.6 100.7
Average 6.5 1,007.5 62.5 6.5 967.8 169.5 75.3

Note. The table shows the average number of vehicles (nVeh),
average total duration, and average running time in seconds using
different evaluation algorithms for different instance sets, with I �
50,000 and no time limit.

Hoogeboom et al: Efficient Neighborhood Evaluations for the VRPMTW
Transportation Science, 2020, vol. 54, no. 2, pp. 400–416, © 2020 INFORMS 413

time) and vehicle cost. Because the proposed start
interval algorithm was developed to minimize the
waiting time of a route, it is less useful for mini-
mizing travel time excluding waiting time. However,
the proposed algorithm without modification could

improve 17 of the 48 best known results of Belhaiza,
Hansen, and Laporte (2014) and Belhaiza, M’Hallah,
and Brahim (2017), and has an average saving of 0.5%
per instance. The results per instance can be found in
Online Appendix G.

Table 3. Number of Vehicles (nVeh), Total Duration (Dur), andObjective Value (Obj) of Belhaiza,
Hansen, and Laporte (2014), Belhaiza, M’Hallah, and Brahim (2017), A-AVNS, and E-AVNS

BHL14 BMB17 A-AVNS E-AVNS

Instance nVeh Dur Obj nVeh Dur Obj nVeh Dur Obj nVeh Dur Obj

RM101 10 1,041.9 3,041.9 10 1,027.1 3,027.1 10 1,064.5 3,064.5 10 1,026.1 3,026.1
RM102 9 965.1 2,765.1 9 951.2 2,751.2 9 988.6 2,788.6 9 974.8 2,774.8
RM103 9 908.5 2,708.5 9 903.0 2,703.0 9 927.0 2,727.0 9 900.6 2,700.6
RM104 9 918.0 2,718.0 9 901.2 2,701.2 9 933.2 2,733.2 9 907.1 2,707.1
RM105 9 888.8 2,688.8 9 887.2 2,687.2 9 913.2 2,713.2 9 890.5 2,690.5
RM106 9 892.9 2,692.9 9 908.4 2,708.4 9 927.6 2,727.6 9 914.8 2,714.8
RM107 9 901.4 2,701.4 9 892.8 2,692.8 9 916.1 2,716.1 9 900.4 2,700.4
RM108 9 929.1 2,729.1 9 922.6 2,722.6 9 935.9 2,735.9 9 938.1 2,738.1
RM201 3 808.2 3,808.2 3 805.4 3,805.4 2 925.9 2,925.9 2 888.9 2,888.9
RM202 2 739.0 2,739.0 2 706.8 2,706.8 2 754.0 2,754.0 2 721.9 2,721.9
RM203 2 710.3 2,710.3 2 696.9 2,696.9 2 700.2 2,700.2 2 693.2 2,693.2
RM204 2 691.9 2,691.9 2 674.5 2,674.5 2 692.7 2,692.7 2 671.7 2,671.7
RM205 2 689.9 2,689.9 2 668.1 2,668.1 2 681.7 2,681.7 2 668.4 2,668.4
RM206 2 703.4 2,703.4 2 684.9 2,684.9 2 689.2 2,689.2 2 672.6 2,672.6
RM207 2 701.7 2,701.7 2 664.3 2,664.3 2 667.9 2,667.9 2 662.4 2,662.4
RM208 2 682.8 2,682.8 2 664.3 2,664.3 2 678.4 2,678.4 2 663.6 2,663.6
cm101 10 1,320.0 3,320.0 10 1,319.1 3,319.1 10 1,496.5 3,496.5 10 1,345.4 3,345.4
cm102 12 1,092.1 3,492.1 11 1,210.7 3,410.7 11 1,258.7 3,458.7 11 1,282.3 3,482.3
cm103 12 1,241.1 3,641.1 12 1,232.4 3,632.4 11 1,466.7 3,666.7 11 1,392.2 3,592.2
cm104 14 1,287.8 4,087.8 14 1,298.0 4,098.0 13 1,378.4 3,978.4 13 1,327.8 3,927.8
cm105 11 883.4 3,083.4 10 1,027.0 3,027.0 10 1,097.5 3,097.5 10 1,066.3 3,066.3
cm106 10 1,073.9 3,073.9 10 1,059.0 3,059.0 10 1,191.3 3,191.3 10 1,066.4 3,066.4
cm107 11 1,124.2 3,324.2 11 1,118.0 3,318.0 10 1,138.6 3,138.6 10 1,108.4 3,108.4
cm108 10 990.4 2,990.4 10 986.0 2,986.0 10 1,010.3 3,010.3 10 985.9 2,985.9
cm201 5 1,020.1 4,520.1 5 998.8 4,498.8 5 1,076.6 4,576.6 5 968.4 4,468.4
cm202 6 827.3 5,027.3 6 825.1 5,025.1 6 879.6 5,079.6 6 820.2 5,020.2
cm203 5 997.2 4,497.2 5 965.8 4,465.8 5 1,062.6 4,562.6 5 986.5 4,486.5
cm204 5 859.8 4,359.8 5 844.0 4,344.0 5 899.4 4,399.4 5 856.9 4,356.9
cm205 4 1,084.1 3,884.1 4 1,027.8 3,827.8 4 1,107.7 3,907.7 4 1096.8 3,896.8
cm206 4 967.7 3,767.7 4 913.2 3,713.2 4 991.1 3,791.1 4 933.4 3,733.4
cm207 4 1,209.7 4,009.7 4 1,163.7 3,963.7 4 1,207.5 4,007.5 4 1,163.7 3,963.7
cm208 4 988.1 3,788.1 4 949.7 3,749.7 4 983.7 3,783.7 4 956.8 3,756.8
RCM101 10 1,098.9 3,098.9 10 1,081.2 3,081.2 10 1,093.3 3,093.3 10 1,080.6 3,080.6
RCM102 10 1,222.6 3,222.6 10 1,188.3 3,188.3 10 1,194.8 3,194.8 10 1,184.3 3,184.3
RCM103 10 1,174.3 3,174.3 10 1,150.4 3,150.4 10 1,171.0 3,171.0 10 1,148.3 3,148.3
RCM104 10 1,156.3 3,156.3 10 1,144.0 3,144.0 10 1,157.8 3,157.8 10 1,141.2 3,141.2
RCM105 10 1,216.7 3,216.7 10 1,207.0 3,207.0 10 1,233.3 3,233.3 10 1,208.2 3,208.2
RCM106 10 1,219.9 3,219.9 10 1,181.7 3,181.7 10 1,211.1 3,211.1 10 1,191.8 3,191.8
RCM107 11 1,342.4 3,542.4 11 1,321.5 3,521.5 11 1,325.5 3,525.5 11 1,316.5 3,516.5
RCM108 11 1,414.5 3,614.5 11 1,365.2 3,565.2 11 1,389.5 3,589.5 11 1,366.2 3,566.2
RCM201 2 783.6 2,783.6 2 783.2 2,783.2 2 890.1 2,890.1 2 800.1 2,800.1
RCM202 2 847.1 2,847.1 2 779.4 2,779.4 2 838.4 2,838.4 2 822.9 2,822.9
RCM203 2 721.9 2,721.9 2 722.0 2,722.0 2 814.2 2,814.2 2 771.7 2,771.7
RCM204 2 726.5 2,726.5 2 708.5 2,708.5 2 758.9 2,758.9 2 716.0 2,716.0
RCM205 2 754.5 2,754.5 2 754.5 2,754.5 2 796.5 2,796.5 2 756.0 2,756.0
RCM206 2 812.7 2,812.7 2 803.3 2,803.3 2 822.7 2,822.7 2 725.0 2,725.0
RCM207 3 764.2 3,764.2 3 761.5 3,761.5 3 789.9 3,789.9 3 757.1 3,757.1
RCM208 2 791.4 2,791.4 2 742.7 2,742.7 2 759.4 2,759.4 2 735.1 2,735.1
Average 6.58 962.2 3,231.0 6.54 949.8 3,210.2 6.46 997.7 3,224.8 6.46 1,033.7 3,189.0

Notes. The service time is not included in the duration or objective. The results including service time as in
Belhaiza, Hansen, and Laporte (2014) and Belhaiza, M’Hallah, and Brahim (2017) are presented in Online
Appendix F. The best known solutions are given in bold.

Hoogeboom et al: Efficient Neighborhood Evaluations for the VRPMTW
414 Transportation Science, 2020, vol. 54, no. 2, pp. 400–416, © 2020 INFORMS

Last, the influence of the exact evaluations in the local
search can be determined by comparing the E-AVNS
with the A-AVNS. The average total computational time
of the E-AVNS was 14.4% greater than that of the
A-AVNS, yet for both methods the calculation, time
remains short. Thedurationof the E-AVNSwas less in 46
of the 48 instances, with an average improvement of
3.5%. The A-AVNS could not identify any best known
solutions of the benchmark instances. Therefore,
we conclude that including the proposed efficient
exact route duration minimization algorithm enables
determining state-of-the-art results in a simple met-
aheuristic framework.

6. Conclusions
In the VRPMTW, the duration of a route can be
minimized by determining the optimal selection of
the time windows. Routing problems with multiple
time windows occur frequently in practice, yet receive
relatively minimal attention in the literature. Tricoire
et al. (2010) and Belhaiza, Hansen, and Laporte (2014)
developed exact algorithms to minimize the duration
of a given route. Belhaiza, Hansen, and Laporte (2014)
used the same exact approach to evaluate a move in
the local search. In the metaheuristic of Tricoire et al.
(2010), the exact algorithm is used only to calculate the
minimum duration of a local optimum. An approxi-
mation of the route duration is used when evaluating
moves in the local search.

In this paper, we presented an efficient approach to
recalculate the exact route duration when neighbor-
hood operations are evaluated during the local search
based on forward and backward start intervals. These
forward (backward) start intervals represent the start
times of servicing a customer such that the preceding
(succeeding) customers in a route are serviced in one
of their time windows. Furthermore, forward start
intervals can be used to efficiently calculate the
minimal duration of a given route (i.e., to determine
the optimal selection of time windows).

First, we formally demonstrated that the forward
start interval algorithm has a reduced worst-case
complexity than the existing exact route duration
minimization algorithms of Tricoire et al. (2010) and
Belhaiza, Hansen, and Laporte (2014). Second, the
experimental tests indicate that the forward start
interval algorithm is at least twice as fast as the
existing algorithms in terms of average computa-
tional effort. Third, the start interval approach was

embedded in an AVNS to efficiently recalculate the
exact route duration when neighborhood operations
are evaluated in the local search. Experimental tests
indicated that these efficient exact local search eval-
uations resulted in an acceleration by a factor of four
compared with using the existing exact algorithms in
the local search. Furthermore, we demonstrated that
the exact evaluations significantly improved the solu-
tion quality compared with an approximate evaluation
approach, where the increase in the computational
time was relatively small. Finally, the proposed al-
gorithm identified new best known solutions for 22
of the 48 benchmark instances. Therefore, we believe
that the proposed algorithm can be useful for solving
other routing and scheduling problems involving mul-
tiple time windows, such as routing problems with ar-
rival time diversification (Hoogeboom and Dullaert
2019) and long-haul transport (Goel and Kok 2012).

Acknowledgments
The authors thank the referees for valuable comments.

References
Beheshti AK, Hejazi SR, Alinaghian M (2015) The vehicle routing

problem with multiple prioritized time windows: A case study.
Comput. Indust. Engrg. 90(December):402–413.

Belhaiza S (2018) A game theoretic approach for the real-life multiple-
criterion vehicle routing problem with multiple time windows.
IEEE Systems J. 12(2):1251–1262.

Belhaiza S, Hansen P, Laporte G (2014) A hybrid variable neigh-
borhood tabu search heuristic for the vehicle routing problem
with multiple time windows. Comput. Oper. Res. 52(December):
269–281.

Belhaiza S, M’Hallah R, Brahim GB (2017) A new hybrid genetic
variable neighborhood search heuristic for the vehicle routing
problem with multiple time windows. Lozano JA, ed. IEEE
Congress Evolutionary Comput. (Institute of Electrical and Elec-
tronics Engineers, Piscataway, NJ), 1319–1326.

Bräysy O, Gendreau M (2005) Vehicle routing problem with time
windows, part II: Metaheuristics. Transportation Sci. 39(1):119–139.

Favaretto D, Moretti E, Pellegrini P (2007) Ant colony system for a VRP
withmultiple time windows andmultiple visits. J. Interdisciplinary
Math. 10(2):263–284.

Goel A (2012) The minimum duration truck driver scheduling
problem. EURO J. Transportation Logist. 1(4):285–306.

Goel A, Kok L (2012) Truck driver scheduling in the united states.
Transportation Sci. 46(3):317–326.

Hoogeboom M, Dullaert W (2019) Vehicle routing with arrival time
diversification. Eur. J. Oper. Res 275(1):93–107.

Hurkała J (2015) Time-dependent traveling salesman problemwithmul-
tiple timewindows.Ann. Comput. Sci. Inform. Systems 6(September):
71–78.

Kirkpatrick S, Gelatt CD, Vecchi MP (1983) Optimization by simu-
lated annealing. Science 220(4598):671–680.

Mladenović N, Hansen P (1997) Variable neighborhood search.
Comput. Oper. Res. 24(11):1097–1100.

Nagata Y, Braysy O (2009) A powerful route minimization heuristic
for the vehicle routing problem with time windows. Oper. Res.
Lett. 37(5):333–338.

Paulsen N, Diedrich F, Jansen K (2015) Heuristic approaches to
minimize tour duration for the TSP with multiple time win-
dows. Italiano GF, Schmidt M, eds. 15th Workshop Algorithmic

Table 4. Average Total Running Time and Time to Obtain
the Best Solution in Seconds for Different Heuristics

BHL14 BMB17 A-AVNS E-AVNS

Total time 70.2 × 10 92.1 105.4
Time best 81.2 51.7 67.6

Hoogeboom et al: Efficient Neighborhood Evaluations for the VRPMTW
Transportation Science, 2020, vol. 54, no. 2, pp. 400–416, © 2020 INFORMS 415

Approaches Transportation Model. Optim. Systems, OpenAccess
Series in Informatics, vol. 48 (Schloss Dagstuhl–Leibniz-Zentrum
fuer Informatik, Dagstuhl, Germany), 42–55.

Pesant G, Gendreau M, Potvin JY, Rousseau JM (1999) On the flex-
ibility of constraint programming models: From single to mul-
tiple time windows for the traveling salesman problem. Eur. J.
Oper. Res. 117(2):253–263.

Rancourt ME, Cordeau JF, Laporte G (2013) Long-haul vehicle
routing and scheduling with working hour rules. Transportation
Sci. 47(1):81–107.

Ropke S, Pisinger D (2006) An adaptive large neighborhood search
heuristic for the pickup and delivery problem with time win-
dows. Transportation Sci. 40(4):455–472.

Savelsbergh MW (1992a) Computer aided routing. Unpublished doc-
toral thesis, Centrum voor Wiskunde en Informatica, Amsterdam.

Savelsbergh MW (1992b) The vehicle routing problem with time win-
dows: Minimizing route duration. ORSA J. Comput. 4(2):146–154.

Schneider M, Schwahn F, Vigo D (2017) Designing granular solution
methods for routing problems with time windows. Eur. J. Oper.
Res. 263(2):493–509.

Solomon MM (1987) Algorithms for the vehicle routing and sched-
uling problems with time window constraints. Oper. Res. 35(2):
254–265.

SouffriauW, Vansteenwegen P, Vanden Berghe G, Van Oudheusden
D (2013) The multiconstraint team orienteering problem with
multiple time windows. Transportation Sci. 47(1):53–63.

Stenger A, Vigo D, Enz S, Schwind M (2013) An adaptive variable
neighborhood search algorithm for a vehicle routing problem
arising in small package shipping. Transportation Sci. 47(1):64–80.

Toth P, Vigo D (2003) The granular tabu search and its application
to the vehicle-routing problem. INFORMS J. Comput. 15(4):
333–346.

Toth P, Vigo D (2014) Vehicle Routing: Problems, Methods, and Ap-
plications, vol. 18 (SIAM, Philadelphia).

Tricoire F, RomauchM,Doerner KF, Hartl RF (2010)Heuristics for the
multi-period orienteering problem with multiple time windows.
Comput. Oper. Res. 37(2):351–367.

Voudouris C, Tsang EP (2003) Guided local search. Glover F,
Kochenberger GA, eds. Handbook of Metaheuristics (Springer,
Berlin), 185–218.

Hoogeboom et al: Efficient Neighborhood Evaluations for the VRPMTW
416 Transportation Science, 2020, vol. 54, no. 2, pp. 400–416, © 2020 INFORMS

	Efficient Neighborhood Evaluations for the Vehicle Routing Problem with Multiple Time Windows
	Literature Review
	Problem Description
	Efficient Methods for the Duration Minimization Subproblem
	Metaheuristic
	Computational Results
	Conclusions

