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Abstract. This paper introduces the vehicle routing problem with partial outsourcing
(VRPPO) in which a customer can be served by a single private vehicle, by a common
carrier, or by both a single private vehicle and a common carrier. As such, it is a variant of
the vehicle routing problem with private fleet and common carrier (VRPPC). The objective
of the VRPPO is to minimize fixed and variable costs of the private fleet plus the out-
sourcing cost. We propose two different path-based formulations for the VRPPO and solve
these with a branch-and-price-and-cut solution method. For each path-based formulation,
two different pricing procedures are designed and usedwhen solving the linear relaxations
by column generation. To assess the quality of the solution methods and gain insight in
potential cost improvements compared with the VRPPC, we perform tests on two instance
sets with up to 100 customers from the literature.
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1. Introduction
To improve the efficiency of distribution logistics,
academic literature has developed efficient solution
algorithms and has explored novel distribution strat-
egies. Fundamental optimization problems such as the
capacitated vehicle routing problem and the vehicle
routing problem with time windows (VRPTW), which
underpin several distribution problems occurring in
practice, have been the subject of intensive research
efforts in search of more (cost) efficient solutions (Toth
and Vigo 2014). Novel distribution strategies such as
outsourcing and split deliveries contribute in a dif-
ferent but no less effective way to lowering distri-
bution costs.

Outsourcing refers to the fact that the service of some
customers can be entrusted to a third-party logistics
service provider. In routing problems, outsourcing can
be applied in case demand exceeds available trans-
portation capacity or if it is more economical to do so.
The two options for servicing customers—by a private
vehiclefleet or a common carrier—open up additional
opportunities for reducing distribution costs. Ap-
plications in the literature date back to Chu (2005),
and a recent overview of the literature on the vehi-
cle routing problem with private fleet and common
carrier (VRPPC) can be found in Dabia, Lai, and Vigo
(2019). Split deliveries imply that the demand of a
customer is not necessarily delivered by a single

vehicle. Split deliveries are a necessity if demand ex-
ceeds vehicle capacity but can also prove cost efficient
if, for example, demand of several customers is slightly
higher than half of the vehicle capacity (Archetti,
Savelsbergh, and Speranza 2008). Chen, Golden,
and Wasil (2007) review several applications of split
deliveries in VRPs.
Combining outsourcing and split delivery features

has received increasing attention in the literature
in recent years. To the best of our knowledge, only
application-based studies have been reported inwhich
heuristic methods are proposed, as discussed in Sec-
tion 2.3. Our study is intended to contribute to the lit-
erature by formally describing the vehicle routing
problem inwhich a customer can be served by a single
private vehicle, by a common carrier, or by both a
single private vehicle and a common carrier.We do not
allow for multiple private vehicles to serve the same
customer, as serving customers by multiple private
vehicles and a common carrier may lead to customer
inconvenience (see, for example, Bianchessi, Drexl,
and Irnich (2019)). It should also be noted that
allowing multiple private vehicle visits to a customer
would lead to a more complicated optimization prob-
lem. We refer to the defined problem as the vehicle
routing problem with partial outsourcing (VRPPO).
We assume that customers impose time windows,
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there is a heterogeneous limited fleet, and the out-
sourcing cost is a fixed fee per unit.

In this paper, we propose two path-based for-
mulations for the VRPPO and solve these with a
branch-and-price-and-cut approach because this method
has proven to be an effective method for various (re-
lated) routing problems. The first formulation explicitly
models the quantity delivered by a private vehicle to
each customer, whereas the second formulation defers
modeling this quantity and the resulting outsourced
units to the pricing problem. For both problem for-
mulations, we design two specialized pricing proce-
dures to generate additional columns during the so-
lution process. The first pricing procedure remains
close to current literature and is closely related to the
pricing algorithm proposed for the split delivery ve-
hicle routing problem (SDVRP) by Desaulniers (2010).
The second pricing procedure is closer to the algo-
rithm proposed by Luo et al. (2016) and exploits some
specific properties of the VRPPO.

A solution to the VRPPO consists of a set of routes
for the private vehicles and a set of customers for
which (part of) the demand’s delivery is outsourced,
and for both corresponding quantities. The objective
is to minimize the total routing and outsourcing cost.
The purpose of this paper is to investigate the effec-
tiveness of the two formulations and corresponding
solution methods and to compare the costs with the
VRPPC to assess the gain that can be achieved by
embracing both distribution strategies.

The paper is organized as follows. In Section 2, we
review the literature related to the VRPPO. In Sec-
tion 3, we describe the problem more formally and
present the problem formulations and solution
methods. Section 4 presents some implementation
features, and Section 5 describes the computational
results. Conclusions and suggestions for future re-
search follow in Section 6.

2. Literature Review
In this section, themain literature related to theVRPPO
is reviewed. First, in Section 2.1, we discuss litera-
ture on the SDVRP because the solution methods are
relevant for solving the VRPPO. Second, the literature
on the VRPPC is examined in Section 2.2 because
a generalization of the VRPPC is studied. Finally, in
Section 2.3, we review some work on combinations
of the SDVRP and VRPPC.

2.1. Literature on the SDVRP
The vehicle routing problem with split deliveries and
a private fleet is extensively studied. Archetti and
Speranza (2012) provide a thorough overview of prop-
erties and solution methods, both exact and heuris-
tic, for this problem and its variants, including the
variant with time windows (SDVRPTW).

Desaulniers (2010) studies the SDVRPTW and pro-
poses a branch-and-price-and-cut solution method.
The columns in the master problem represent a route
and corresponding “route delivery pattern,” which
indicates the quantities delivered to each customer.
The pricing problem is a variant of the elementary
shortest path problem with resource constraints
(ESPPRC) and is solved with a labeling algorithm. In
order to generate relevant delivery patterns, a label is
extended to the next customer at most three times for
a delivery of zero units, a delivery equal to the de-
mand, and a delivery quantity strictly between zero
and the demand. Archetti, Bianchessi, and Speranza
(2011) propose an improved version of the algorithm
by Desaulniers (2010) mainly by introducing a tabu
search heuristic for the pricing problem and by ap-
plying new valid inequalities and separation pro-
cedures. Luo et al. (2016) propose another improve-
ment over the algorithm by Archetti, Bianchessi, and
Speranza (2011) and include a linear weight-related
cost function. Instead of extending each label up to
three times, they observe that the delivery quantities
can be determined in a greedy way by fully serving
the customers with the highest delivery quantity-
related dual values. Therefore, during the labeling
algorithm, Luo et al. (2016) do not keep track of the
load of the vehicle and determine the delivery quan-
tities afterward.
Archetti, Bianchessi, and Speranza (2011) propose

a different solution method for the SDVRP with both
limited and unlimited fleets. The master problem is
comparable to the one of Desaulniers (2010), but the
pricing problem is approached completely different.
The pricing problem is also modeled as an ESPPRC,
but each customer is represented by multiple nodes,
one for each possible delivery quantity. As a result,
the number of nodes in the expanded network in-
creases rapidly, but the approach requires less complex
dominance rules than Desaulniers (2010). Similarly,
Salani and Vacca (2011) and Archetti, Bianchessi, and
Speranza (2015) use expanded networks to solve
variants of the SDVRP.
Several variants of the SDVRP have been proposed

in the literature, and some of these variants attempt to
prevent inconvenient situations for SDVRP customers.
Gulczynski, Golden, and Wasil (2010) and Han and
Chu (2016) consider the case with minimum delivery
amounts, which reflect the fact that each delivery can
be costly to both the distributor and the customer;
hence, a delivery should be significant in terms of
goods or value delivered. Ozbaygin, Karasan, and
Yaman (2018) introduce for the SDVRP customer
inconvenience constraints that set a maximum on
the number of vehicles serving each customer, with the
reasoning that handling multiple deliveries is not de-
sirable in practice. Bianchessi, Drexl, and Irnich (2019)
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apply these constraints to the SDVRPTW and, more-
over, consider two other types of customer incon-
venience constraints. They consider a maximum total
number of visits to all customers together and temporal
synchronization in which multiple visits can only be a
certain number of time units apart from each other.

2.2. Literature on the VRPPC
The VRPPO is an extension of the VRPPC inwhich the
service of a customer may be split between the two
delivery types. TheVRPPCwas first proposed byChu
(2005) as a single depot routing problem with out-
sourcing options for which a simple heuristic based
on amodified savings algorithmwasdeveloped. Later,
some metaheuristics were introduced, and these
achieved very good results on a large set of test in-
stances considering both homogeneous and hetero-
geneous private fleets. In particular, Bolduc et al.
(2008) proposed a perturbation-based procedure,
Côté and Potvin (2009) defined a tabu search ap-
proach, and Potvin and Naud (2011) used an ejection-
chain neighborhood within another tabu search
algorithm. More recently, Stenger et al. (2013) intro-
duced amultiple-depot version of the problem, called
MDVRPPC, for which they developed a variable
neighborhood search algorithm incorporating an in-
novative adaptive shaking mechanism to select routes
and customers involved in the shaking step.

To the best of our knowledge, only two exact
methods currently exist for this problem. Dabia, Lai,
and Vigo (2019) developed a branch-cut-and-price
algorithm for a variant of the VRPPC with hetero-
geneous fleet, which included time windows and
quantity discount on the outsourceddeliveries. Goeke,
Gschwind, and Schneider (2019) propose a simi-
lar solution method for the VRPPC with customer-
dependent, fixed fees as the outsourcing cost. For
more recent literature on the VRPPC, we refer to the
literature reviews by Gahm, Brabänder, and Tuma
(2017) and Dabia, Lai, and Vigo (2019).

2.3. Literature on Combined Split Delivery
and Outsourcing

Several studies consider the option to split deliveries
over several shipment types, including private and
common vehicles. Bolduc et al. (2010) study the so-
called SDVRP with production and demand calen-
dars, which is a multiperiod, inventory routing-like
problem inwhich a delivery to a customer can be split
over multiple, both private and common, vehicles.
The authors propose a tabu search heuristic to solve
the problem. A compact formulation for the studied
problem, which is discarded in this paper because of
conciseness, would be very similar to a single-period
formulation of the problem by Bolduc et al. (2010)
except for the splitting over private vehicles.

A ship routing problem with pickup and deliveries
is studied by Lee and Kim (2015). It is possible to split
the deliveries over multiple private vehicles, and
outsourcing (part of) the delivery to a so-called tramp
ship is also possible. The problem is formulated as a
mixed-integer linear program in which the outsourcing
costs are modeled as customer dependent and pro-
portional to the outsourced quantity. Having pickup
and deliveries is the main difference with the VRPPO.
An adaptive large neighborhood search heuristic is
proposed to solve the problem.
Keskin et al. (2014) consider a practical application

in which outbound shipment of products needs to be
optimized. Three transportation modes are consid-
ered simultaneously, with all vehicles belonging to
outsourced carriers. Split deliveries between the
different transportation modes is possible. For the so-
called truckload mode, the routes also need to be
determined because these are fully controlled by the
company. The problem is split into an assignment
and a routing problem, which are both solved us-
ing CPLEX.
Yan et al. (2015) study a multitrip SDVRP problem

with soft time windows in which not all customers
necessarily have to be fully served. For each un-
delivered unit of demand, a large penalty is incurred.
This can also be seen as if delivery of these units is
outsourced to a common carrier. The tests performed
by Yan et al. (2015) are very limited; the authors speak
about numerous test instances to assess the quality of
the proposed heuristic, but they only report detailed
results on one instance based on real-life data. In the
solution of the real-life instance, all units of demand
are delivered and the “outsourcing” option is not
used, probably caused by the huge penalty on not
satisfying some demand (10,000 New Taiwan Dollar
(TWD) per unit comparedwith costs of 12.53TWDper
unit distance traveling cost). The two-step solution
approach based on time-space networks could, how-
ever, be used to model (a variant of) the VRPPO by
choosing the appropriate values for the parameters.
In summary, for problems that contain both split

delivery and outsourcing features, to our knowledge,
only heuristic solution methods have been proposed
in the literature. The problem formulation by Bolduc
et al. (2010) is closest to a formulation for our problem.
For the SDVRP, problem variants have been proposed
that, for example, limit the number of visits to a
customer, with the motivation to limit customer in-
convenience. In the VRPPO, we do not allowmultiple
private vehicles to service the same customer. This
restriction limits customer inconvenience by pre-
venting a customer being served by, for example, two
private vehicles and a common carrier. Moreover,
this also substantially reduces the solution space, lead-
ing to more efficient solution methods. Some solution
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methods developed for the SDVRP provide a starting
point for our solution method for the VRPPO.

3. Problem Description and Formulation
TheVRPPO is defined on a graph,G � (V,A), inwhich
V is the set of nodes containing a depot 0 and a set of
customers V0 � V \ {0}, and A is the set of arcs. Each
customer has a certain demand, di, that must be ful-
filled and a time window [ei, li] in which service must
take place. There is a set of private, heterogeneous
vehicles available to serve the customers, each with a
capacity Qk, k ∈ K, with K the set of vehicle types.
There are mk vehicles available of vehicle type k ∈ K.
Next to the private vehicles, there is an option to
outsource a delivery to a common carrier. In the
VRPPO, it is possible to have a customer served by
both a private vehicle and the common carrier. To limit
the customer inconvenience, it is not possible to have
multiple private vehicles serve the same customer.
This results in three service options for each customer:
full private delivery, full outsourcing, or a split delivery
between one private vehicle and the common carrier.

Each arc (i, j) in graph G has an associated cost cij
and a travel time tij. We assume that both the arc costs
and travel times satisfy the triangle inequality. For
each vehicle, there is a set up cost fk depending on the
type of vehicle k ∈ K. For outsourcing, afixed fee of v is
charged per unit of outsourced demand. Using a fixed
fee per unit implies that there is no benefit from
outsourcing more units than strictly necessary be-
cause of flat rate or discount structures. Hence, for a
split customer, as many units as possible are de-
livered by the private vehicle. Moreover, because the
fee is customer independent, there is no difference
between outsourcing the delivery to different cus-
tomers. The objective is to minimize total routing and
outsourcing costs while respecting time windows,
vehicle capacity, and vehicle fleet limitations.

We propose two path-based master problem formu-
lations for this problem in Sections 3.2 and Section 3.3,
respectively, which are solved with a branch-and-
price-and-cut solution approach. Both formulations
potentially have an exponential number of columns;
therefore, we start with a limited subset of initial
columns and iteratively generate more columns by
solving a pricing problem. The solution of the pricing
problem is a set of columns with negative reduced
costs. If this set is empty, either branching is necessary
or an integer solution is found. The procedure results
in the optimal solution if all branch-and-bound nodes
have been explored. To strengthen the linear relaxation
of themaster problem, subset-row (SR) inequalities are
applied. These inequalities are introduced by Jepsen
et al. (2008) for the VRPTW. The SR inequalities
can immediately be applied to the first master prob-
lem; for the second master problem, we use the

generalized version as introduced by Dabia, Lai, and
Vigo (2019) for a rich vehicle routing problem with
private fleet and common carrier.

3.1. Properties
For the SDVRP, some properties have been established
in the literature (Archetti and Speranza 2012); how-
ever, thesemainly have to dowith interactions among
routes that visit the same customers and are not ap-
plicable here because, in the VRPPO, the routes of
private vehicles do not visit the same customers. In
the pricing problem, we do make use of the property
in Lemma 1.

Lemma 1. If the arc costs satisfy the triangle inequality, a
route from the starting to the end depot contains at most one
customer whose demand is split between the private vehicle
and common carrier.

The lemma can be proved by a simple exchange
argument. Suppose that a route of a private vehicle
contains a split delivery for two different customers, i
and j, and that the vehicle’s total load is equal to the
vehicle capacity. By delivering more units to cus-
tomer iwith the private vehicle and outsourcing fewer
units for customer i, and vice versa for customer j, and
continuing this exchange until no units are delivered
to customer j by the private vehicle, this exchange
process results in a zero delivery by the private ve-
hicle to customer j. Because of the triangle inequality,
it ismore expensive to visit customer jwith the private
vehicle (with a zero delivery) than not to visit cus-
tomer j. Hence, such a route, with one split delivery, is
never more expensive than the same route that con-
tains two split deliveries. Therefore, this lemma im-
plies that during execution of the labeling algorithm,
in each partial path, there has to be at most one
customer that does not receive its full demand by the
private vehicle.

3.2. Master Problem 1 (MP1)
In the first master problem (MP1), a column represents
a route visiting a set of customers and the corre-
sponding delivery quantities delivered by the private
vehicle. Let Ωk be the set of routes p and associated
delivery quantities for vehicle type k ∈ K, and let
Ω � ⋃

k∈K Ωk. Let cp be the routing cost of route p ∈ Ω.
Associate δ

p
i and aip with a route p ∈ Ω representing

the delivery quantity for customer i ∈ V and the
number of times customer i ∈ V is in the route, re-
spectively. Define binary decision variables yp, which
indicate whether route p ∈ Ω is in the solution of
MP1, and continuous decision variables βi being the
demand of customer i ∈ V that is outsourced. The
VRPPO can be formulated as follows:

min
∑
p∈Ω

cpyp +
∑
i∈V

vβi, (1a)
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s.t.
∑
p∈Ω

δ
p
i yp + βi ≥ di,∀i ∈ V, (1b)

∑
p∈Ω

aipyp ≤ 1, ∀i ∈ V, (1c)
∑
p∈Ωk

yp ≤ mk, ∀k ∈ K, (1d)

βi ≥ 0, ∀i ∈ V, (1e)
yp ∈ {0, 1}, ∀p ∈ Ω. (1f)

The objective function (1a) minimizes the routing and
outsourcing costs. Constraints (1b) make sure that the
demand of each customer is satisfied by a delivery of a
private vehicle, via outsourcing, or a combination of
these. We do not allow for multiple visits by a private
vehicle to a customer—that is, no private split de-
livery, which is enforced by constraints (1c). Con-
straints (1d) limit the number of vehicles used per
type, and the domains of the decision variables are
defined in constraints (1e) and (1f).

The pricing problem should generate columns de-
fining a route and delivery quantities, inwhich atmost
one customer does not receive its full demand. Asso-
ciate dual variables π1b

i ≥ 0, π1c
i ≤ 0, π1d

k ≤ 0 with con-
straints (1b)–(1d), respectively. Define π1b

0 � 0 and
π1c
0 � 0 for the depot. Let δp be the vector of delivery

quantities for the customers in route p. The reduced
cost of a column for route p associated with vehicle
type k ∈ K can be expressed as follows:

c̄p(δp) � fk +
∑
(i,j)∈A

cij − π1c
i

( )
xijp −

∑
i∈VP

δ
p
i π

1b
i − π1d

k , (2)

inwhich xijp is an integer variable counting the number
of times arc (i, j) is traversed in route p, andVP is the set
of nodes in the route. Note that the reduced cost of a
column depends on the delivery quantity to each
customer in the route. For ease of notation, define the
indicator function 1{event} � 1 if event is true, 0 oth-
erwise, and define

c̄ij � cij − π1c
i + 1{i � 0} fk − π1d

k

( )
, (3)

which gives reduced arc costs in which the vehicle
setup and dual costs are accounted for in the outgoing
arcs of the depot.

3.2.1. Pricing Algorithm 1 for MP1 (MP1-PA1). The
pricing problem is a variant of the ESPPRC, which
we solve with a labeling algorithm (see, e.g., Feillet
et al. (2004), Righini and Salani (2006), and Tilk et al.
(2017)). Because the pricing problem for the VRPPO
is similar to the one for the SDVRPTW, we first adjust
the labeling algorithm proposed for the SDVRPTW
by Desaulniers (2010) to our problem (MP1-PA1).
Desaulniers (2010) proposes creating up to three la-
bels for each extension of a partial path in which the

delivery quantity to the next customer is either zero,
full (equal to the demand), or partial (strictly between
zero and the demand). Subsequently, in the master
problem, any delivery quantity pattern for a route is
created by taking convex combinations of the columns.
To create any combination of delivery quantities, the
zero deliveries are necessary. Desaulniers (2010) ob-
serves that only so-called extreme delivery patterns,
which contain at most one partial delivery, are
needed. In the SDVRPTW, multiple private vehicles
can visit the same customer; therefore, routes are
interdependent, and the actual delivery quantity
cannot be determined in the pricing problem. On the
contrary, in the VRPPO, this interdependency is not
present; the delivery quantities can, therefore, be
determined in the pricing problem. Consequently, we
do not take convex combinations of columns in MP1,
and hence, in the pricing algorithm for the VRPPO,
the zero delivery option is not needed. By Lemma 1,
only routes with at most one partial delivery need to
be created.
Therefore, for the VRPPO,when extending a partial

path to a customer j, up to two labels can be created;
one label in which customer j is fully delivered by the
private vehicle, and one label in which the demand of
customer j will be partially delivered by the private
vehicle and partially outsourced. Note that it is never
optimal to fully outsource the demand of a visited
customer, because in that case it is more efficient to
not visit the customer at all. The outsourced part of the
demand of the split customer is determined by the
vehicle capacity and the demand of the other customers
in the route, which means that we can only determine
the delivery quantity when the route is complete. Be-
cause the delivery quantity δpi for the split customer i is
not known during the labeling algorithm, the re-
duced cost of a partial path p as in equation (3) cannot
contain the contribution of this split delivery until
reaching the end node. Therefore, during the labeling
algorithm, we keep track of the maximum reduced cost
of the partial path. This is equal to the case in which no
units are delivered to the split customer by the private
vehicle.
Let a label L correspond to a partial path p(L) in

the graph G starting at the depot. For a type-k vehicle,
associate the following attributes with a label L:

i(L) Last node visited in partial path p(L),
c(L) Maximum reduced cost of partial path p(L)

(i.e., no units to split customer),
q(L) Load of full deliveries in partial path p(L),
t(L) Ready time at node i(L) when reached

through partial path p(L),
r(L) Customer with split in path p(L),−1 if no

split in p(L),
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φ(L) The maximum quantity delivered in the split
delivery by the private vehicle in partial
path p(L), if any φ(L) � 0 if r(L) � −1( )

,
V(L) Set of visited nodes along path p(L).
Furthermore, let V(L) denote the set of visited and
unreachable nodes. Nodes are unreachable if they
cannot be visited by extending the path p(L) because
of time windows. Also, if a split delivery is already in
the path, and visiting a customer j ∈ V0 would violate
vehicle capacity, even by setting the split delivery to
zero, then customer j is unreachable. Note that this
differs fromwhat can be assumed for the SDVRP (e.g.,
Desaulniers (2010)), because for the VRPPO, we do
not have to consider extreme delivery patterns that
contain zero deliveries.

Suppose we extend a label L′ along arc (i(L′), j) to
node j ∈ V \ V(L′) to generate a new label L. The re-
sources for the new label L are established as follows:

i(L) � j,

c(L) � c(L′) + c̄ij − djπ1b
j if no split delivery at j,

c(L′) + c̄ij if a split delivery at j,

{

q(L) � q(L′) + dj if no split delivery at j,
q(L′) if a split delivery at j,

{
t(L) � max t(L′) + tij, ej

{ }
,

r(L) � r(L′) if no split delivery at j,
j if a split delivery at j,

{

φ(L) � min{φ(L′),Q − q(L)} if no split delivery at j,
min{dj,Q − q(L)} if a split delivery at j,

{
V(L) � V(L′) ∪ {j}.

An extension from label L′ to label L with i(L) � j is fea-
sible if j /∈ V(L′), q(L) ≤ Q, ej ≤ t(L) ≤ li, φ(L) ≥ 0. Note
that a label with a split delivery for customer j cannot be
created if r(L′) > −1 because a split is already in the path.

The potential number of labels is huge. Therefore, to
discard labels during the algorithm, sufficient domi-
nance conditions are formulated. If i ∈ V is the split
customer, then the reduced cost of a label is a linear
function in δi. Therefore, to compare two labels, the
dominance criteria need to compare two linear func-
tions. Because the linear functions have a limited do-
main, two line segments have to be considered to
compare the reduced costs of two labels. Specifically,
the dominance conditions must be able to handle the
comparison of line segments which are restricted in
domain by the quantity delivered to the split customer
(between zero and φ(L)) and in range by c(L) and the
minimum reduced cost that can be reached given
φ(L), which is c(L) − φ(L)π1b. Desaulniers (2010) en-
counters the same issue for the SDVRPTW, and the
author proposes the following sufficient dominance

conditions to establish whether label L1 dominates
label L2 associated with the same node:
A1. t(L1) ≤ t(L2);
A2. q(L1) ≤ q(L2);
A3. 1{r(L1) > −1} ≤ 1{r(L2) > −1};
A4. V(L1) ⊆ V(L2);
A5. c(L1) − φ(L1)π1b

r(L1) ≤ c(L2) − φ(L2)π1b
r(L2);

A6. c(L1) − (q(L2) − q(L1))π1b
r(L1) ≤ c(L2);

A7. c(L1) − (q(L2) + φ(L2) − q(L1))π1b
r(L1) ≤ c(L2)

−φ(L2)π1b
r(L2);

in which condition A5 compares the minimums of
both segments, and conditions A6 and A7 compare
the costs of both paths at the lowest and highest loads
of the path in label L2, respectively. These conditions
prevent comparing crossing line segments; for de-
tails, we refer to Desaulniers (2010).

3.2.2. Pricing Algorithm 2 for MP1 (MP1-PA2). In MP1-
PA1 (Section 3.2.1) in each label extension, a label
with and a label without a split are explicitly created
with at most one split per path. Hence, when a label
with a split is created, the split customer is immedi-
ately determined for the resulting route. However,
knowing the split customer is not necessary, it is
possible instead to decide which customer to split
when extending a path to the end node. Then, only a
path with a total delivery quantity larger than the
vehicle capacity will have a split, and any customer
with a sufficiently high demand can be the split cus-
tomer. The demand of a customer is sufficiently high
if the demand is higher than the vehicle capacity
shortage given the total demand in the path. For ex-
ample, if Q � 25 and the total demand is 30, the ca-
pacity shortage is 5 units, and splitting a customer
with demand 3 does not give a feasible path. Luo et al.
(2016) come to a similar insight for the SDVRPTW.
However, as explained in Section 3.2.1, zero deliveries
are also necessary, and therefore, Luo et al. (2016) do
not keep track of the vehicle capacity and, hence,
are not able to exclude paths because vehicle capacity
is violated. This leads to many very long routes,
whereas by keeping track of the load, we can prevent
many inefficiently long paths that would have many
zero deliveries or, in our case, many outsourced units.
This leads us to a different solution method for the

pricing problem (MP1-PA2). Instead of creating the
split explicitly at a node during the label extension, a
partial path is extended until it exceeds the vehicle
capacity, after which a split is definitely needed. After
exceeding the vehicle capacity, only customers with a
small demand that respect an additional constraint
can still be added to the path. To explain the additional
constraint, consider Figure 1. Suppose the vehicle ca-
pacity isQ � 25, and there is a partial path depot-1-2-3,
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which exceeds the vehicle capacity with the extension
to customer 3. The demand of each customer is in-
dicated in the figure. The vehicle capacity is already
exceeded by 5 units which have to be outsourced. Con-
sider three possible extensions to customers 4, 5, and 6,
respectively, with the indicated corresponding demands.

Suppose an extension is made to customer 6; then,
the total loadwill be 36 units, and at least 11 units need
to be outsourced. This implies that one customer’s
demandwill be fully outsourced as well as one unit of
another customer; hence, this path is not efficient. The
same holds for an extension to customer 5, because
exactly one customer’s demand will be fully out-
sourced, in which case it is better not to visit the
customer at all in this path. On the contrary, the ex-
tension to customer 4 is potentially efficient because
the total load becomes 34 and, therefore, nine units
have to be outsourced. Note that by Lemma 1 and the
maximumdemand in the path of 10, atmost nine units
can be outsourced. Hence, we make use of the cus-
tomer with the highest demand currently in the path
to determine whether an extension is still possible.
Concluding, the additional constraint is that the total
demand after adding a customer may not exceed
vehicle capacity plus the highest demand currently in
the path. Moreover, the quantity dedicated to this
customer that can still be delivered by the private
vehicle can be computed by vehicle capacity − current
load + highest demand � 25 − 34 + 10 � 1.

Therefore, instead of explicitly creating labels with
a split delivery, we propose an alternative labeling
algorithm, in which the split customer and corre-
sponding delivery quantity are determined in a post-
processing step such that reduced costs areminimized.
Note that if vehicle capacity is not exceeded, all units
are delivered by the private vehicle. In the post-
processing step, we know how many units need to be
outsourced (the shortage in vehicle capacity). Then, it
remains to decide which customer’s demand to split.
Jin, Liu, and Eksioglu (2008) have a similar issue for a
variant of the SDVRP in which the number of vehicles
to use is fixed up front, and they note that it is best to
split the demand of the customer with the smallest

dual variable. Which customer to split in a path fol-
lows from Lemma 2, which can be proved by a simple
interchange argument.

Lemma 2. In an optimal solution to the pricing problem,
each visited customer receives its full demand except for, at
most, one customer with the smallest dual variable and de-
mand higher than the shortage in vehicle capacity.

Let a label L correspond to a partial path p(L) in the
graph G starting at the depot. For a type-k vehicle,
associate the following attributes with a label L:

i(L) Last node visited in partial path p(L),
c(L) Minimum reduced cost of partial path p(L),
q(L) Load in partial path p(L),
t(L) Ready time at node i(L) when reached

through partial path p(L),
s(L) Indicates whether or not a split delivery is

necessary in partial path p(L),
if any (φ(L) � 0 if s(L) � 0),

dmax(L) Maximum demand over the customers in
path p(L),updated until vehicle capacity is
exceeded,

V(L) Set of visited nodes along path p(L).
For dmax(L), it is important to note that this value is no
longer updated when vehicle capacity is already
exceeded. Furthermore, let V(L) again denote the set
of visited and unreachable nodes. Nodes can be un-
reachable because of time windows or vehicle ca-
pacity; an unreachable node j has one of the following
properties: t(L) + ti(L),j > lj or s(L) � 1 and dj > Q+
dmax(L) − q(L). If necessary, the customer with the
lowest dual value that has a sufficiently high demand
is split. Hence, the best candidate customer changes
during the labeling algorithm, and the actual reduced
cost of a path is not known during the labeling al-
gorithm. Therefore, in the reduced cost c(L), for all
visited customers we account for the full demand di
and subtract diπ1b

i . This results in keeping track of the
minimum possible reduced cost of path p(L). Note
that in the case of a split delivery, this value c(L) is
lower than the actual reduced cost because the dual
value is subtracted for toomanyunits of demand. This
needs to be accounted for when applying dominance
rules. Also, at the end of the labeling algorithm, the
correct reduced cost has to be computed for a column
to decide whether adding it is actually efficient.
Suppose we extend a label L′ along arc (i(L′), j) to

node j ∈ V \ V(L′) to generate a new label L. The re-
sources for the new label L are established as follows:

i(L) � j,

c(L) � c(L′) + c̄ij − djπ1b
j ,

q(L) � q(L′) + dj,

t(L) � max t(L′) + tij, ej
{ }

,

Figure 1. Example of Possible Label Extensions
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s(L) � s(L′) + 1, if q(L′) < Q ∧ q(L) > Q,

dmax(L) � max dmax(L), dj{ }
if s(L′) � 0,

dmax(L′) if s(L′) � 1,

{
V(L) � V(L′) ∪ {j}.

An extension from label L′ to label L with i(L) � j is
feasible if j /∈ V(L′) and ej ≤ t(L) ≤ li. To discard labels,
sufficient dominance conditions are formulated. If
a path needs a split delivery, the reduced cost is a
function of the quantity delivered to the split customer,
with amultiplication factor equal to the corresponding
dual variable. On the one hand, when deciding which
customer to split, in a greedy way customers with the
highest dual values will be served by the private ve-
hicle because this results in the lowest reduced cost. On
the other hand, the split customer must have suffi-
ciently high demand (higher than the shortage in ve-
hicle capacity) to obtain a feasible route. The domi-
nance rules, again, must compare segments of reduced
cost functions, but in this case it is not immediately
clear what the slope and ranges of these segments
are. Therefore, to decide whether a label L1 dominates
L2, we consider the “worst” case in terms of cost and
range for L1 and the “best” case for L2, which corre-
sponds to the situation where L1 is least likely to
dominate L2. For the worst case for L1, determine
the highest dual value over the customers in the
path that have a sufficiently high demand (i.e., π̂1 �
maxi∈V(L1):di>q(L1)−Q π1b

i ). Similarly, for L2, determine the
lowest dual value (i.e., π̌2 � mini∈V(L2):di>q(L2)−Q π1b

i ).
Define π̂1 � 0 and π̌2 � 0 if a split is not necessary in
the path. Note that if an extension of L2 contains a
customerwith a lower dual value, this value cannot be
lower than the lowest dual value of the extension of L1,
in which case the slopes of both reduced cost func-
tions are the same. Moreover, for both labels, the
demand of the split customer is set to the highest
demand of a customer in each path (dmax(L)).

Define q̂(L) � q(L) −1{s(L) � 1}dmax(L), ĉ(L1) � c(L1) +
1{s(L1) � 1}dmax(L1)π̂1, and ĉ(L2) � c(L2) + 1{s(L2) �
1}dmax(L2)π̌2. Also, for both labels, compute the maxi-
mum quantity delivered by the private vehicle of the
maximum demand (i.e., φ(L) � Q − q(L) + dmax(L)). The
line segment of the reduced cost function extends
from a zero delivery to a delivery of φ(L) units to the
split customer (i.e., has a domain of zero to φ(L)).
See Figure 2 for an example of segments for labels L1
and L2.

Consider conditions B1–B7 to dominate label L2 by
label L1 which correspond to the same customer:

B1. t(L1) ≤ t(L2);
B2. q̂(L1) ≤ q̂(L2);
B3. s(L1) ≤ s(L2);
B4. V(L1) ⊆ V(L2);
B5. ĉ(L1) − φ(L1)π̂1 ≤ ĉ(L2) − φ(L2)π̌2;

B6. ĉ(L1) − (q̂(L2) − q̂(L1))π̂1 ≤ ĉ(L2);
B7. ĉ(L1) − (q̂(L2) +φ(L2) − q̂(L1))π̂1 ≤ ĉ(L2) −φ(L2)π̌2.

Proposition 1. Conditions B1–B7 are sufficient conditions
to dominate label L2 by label L1.

Proof. Any extension of label L2 is feasible for label L1
by conditions B1–B4, in which B1, B2, and B4 are the
same as in Desaulniers (2010). Note that in the case of
a split delivery in both labels L1 and L2, condition B2
considers the load without the maximum demand,
which allows for splitting the customer with the highest
demand in extensions of both paths.
If neither label has a split delivery, the dominance

conditions are the same as in Desaulniers (2010). If both
labels have a split delivery, for label L1, dmax(L1) units
are outsourced maximally. If the corresponding cus-
tomer would have dual value π̂1, the reduced cost
would be highest and the chance of dominating label L2
is lowest. Therefore, we create the artificial segment for
label L1 from (q̂(L1), ĉ(L1)) to (Q � q̂(L1) + φ(L1), ĉ(L1) −
φ(L1)π̂1). Note that the choice of customer demand to
create the artificial segment does not impact the lowest
point of the slope which is used in condition B5.
For label L2, with a similar reasoning except for using

the lowest possible reduced cost, we create an artificial
segment from (q̂(L2), ĉ(L2)) to (Q � q̂(L2) + φ(L2), ĉ(L2) −
φ(L2)π̌2). The dominance conditions by Desaulniers
(2010) are applied to these artificial segments (B5–B7).
By construction, using these artificial segments makes
it least likely that label L1 will dominate L2, and hence,
if dominance is established by conditions B1–B7, label
L2 will not result in a better path, which completes the
proof. □

Note that each resulting path in the labeling al-
gorithm now results in, at most, one route (column)
with negative reduced cost for MP1 because, in the
end, we only split the customer with the lowest dual

Figure 2. Reduced Cost as a Function of the Delivered
Quantity
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value. One could create multiple columns by splitting
different customers if the corresponding dual vari-
ables still lead to a negative reduced cost column. We
do not generate multiple columns because the cost of
outsourcing is the same for each customer; therefore,
the objective value ofMP1 remains the same nomatter
which customer receives a split delivery.

3.2.3. Subset-Row Inequalities. SR inequalities are
introduced by Jepsen et al. (2008) for the VRPTW and
are Chvátal-Gomory rank 1 cuts. We can apply these
valid inequalities to MP1. Remember that aip is the
number of times customer i is visited in p ∈ Ω. The SR
inequalities for a subset of nodes S ⊆ V and an integer
0 < κ ≤ |S| can be formulated as follows:

∑
p∈Ω

1
κ

∑
i∈S

aip

⌊ ⌋
yp ≤ |S|

κ

⌊ ⌋
. (4)

Separation of these valid inequalities is NP-complete.
As suggested by, for example, Jepsen et al. (2008), we
enumerate all inequalities for subsets of customers of
size three (|S| � 3) with κ � 2. As clearly stated by
Spliet and Desaulniers (2015), these valid inequalities
ensure that for every triplet of customers, at most one
route can be selected that contains more than one of
these customers. Because these inequalities are de-
fined on the master problem variables, they change
the structure of the pricing problem. Let ξI < 0 be the
dual variable corresponding to a valid inequality of
type (4) for subset SI ⊆ V. If a column is generated that
contributes to the valid inequality, i.e., for every κ
customers in SI visited in the path, ξI is subtracted
from the reduced cost of the path. However, only
when ending a path in the pricing problem (extend to
the end node), one knows exactly what the contribu-
tion of the valid inequalities to the reduced cost is. As
described by Jepsen et al. (2008), the contribution of
the SR inequalities can be accounted for in the costs to
handle the SR inequalities in the dominance conditions.

3.3. Master problem 2 (MP2)
In MP1, the quantity delivered by the private vehicle
to each visited customer in a route is decided upon in
the pricing problem. The outsourced quantities are
handled in the master problem by the β variables.
However, given a route with a split delivery retrieved
from the pricing problem, the number of units de-
livered by the private vehicle to each customer is
already known and, hence, the number of units that
are outsourced and the corresponding costs. There-
fore, we introduce MP2 in which the (outsourced)
delivery quantities are not modeled explicitly via
decision variables. For each customer, there are two
options: either the customer is visited by a route, and
from the pricing problem we know both the private

and outsourced delivery quantities; or the customer is
not visited at all and demand is fully outsourced. The
latter case should be explicitly modeled in MP2.
Let Λk be the set of routes and associated deliv-

ery quantities for vehicle type k ∈ K and outsourcing
quantities, and let Λ � ⋃

k∈K Λk. Let p ∈ Λ represent a
route visiting a set of customers, the corresponding
delivery quantities by the private vehicle, and the
outsourced quantity ζp. Note that for a column p,
knowing to which customer ζp belongs is not re-
quired. Let cp, p ∈ Λ, be the total routing and out-
sourcing cost (ζpv). Associate parameter aip with
p ∈ Λ, representing the number of visits to customer
i ∈ V in the route. Define binary decision variables zp
which indicate whether p ∈ Λ is in the solution of
MP2, and define nonnegative decision variables wi

indicating whether a customer i ∈ V is fully out-
sourced or not. MP2 is formulated as follows:

min
∑
p∈Λ

cpzp +
∑
i∈V

widiv (5a)

s.t.
∑
p∈Λ

aipzp + wi � 1, ∀i ∈ V, (5b)
∑
p∈Λk

zp ≤ mk, ∀k ∈ K, (5c)

wi ≥ 0, ∀i ∈ V0, (5d)
zp ∈ {0, 1}, ∀p ∈ Λ. (5e)

The objective function (5a) minimizes total routing
and outsourcing costs, in which the outsourcing costs
consist of the costs for split customers given by the
pricing problem and costs for customers for which
demand is fully outsourced. Constraints (5b) make
sure that either a customer is visited by a private ve-
hicle, potentially with a split delivery, or the customer’s
demand is fully outsourced. Constraints (5c) limit the
number of vehicles used per type, and the domains of
the decision variables are restricted in constraints (5d)
and (5e). Note that the w variables represent a binary
decision but can be added to MP2 as nonnegative
variables because, if the z variables are integer, the w
variables must be integer as well.
Associate dual variables μ5b

i ∈ R and μ5c
k ≤ 0 with

constraints (5b) and (5c), respectively. The reduced
cost of a column p ∈ Λ for a vehicle of type k ∈ K can be
expressed as follows:

c̄p � fk + ζpv +
∑
(i,j)∈A

cij − μ5b
i

( )
xijp − μ5c

k , (6)

in which ζp is a nonnegative variable being the quantity
outsourced, and xijp are integer variables counting the
number of times arc (i, j) is traversed in the route of
p ∈ Λ. For ease of notation, define

c̄ij � cij − μ5b
i + 1{i � 0} fk − μ5c

k

( )
, (7)
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in which μ5b
0 � 0 and the vehicle costs are accounted

for in the outgoing arcs of the depot.

3.3.1. Pricing Algorithm 1 for MP2 (MP2-PA1). The first
pricing problem for MP2 (MP2-PA1) is based on the
same reasoning as MP1-PA1 as described in Sec-
tion 3.2.1; therefore, we only highlight the differ-
ences here. Note that there is a significant difference
in the reduced cost functions between the two master
problems. ForMP1, the reduced cost is a function of the
quantities delivered by the private vehicle, whereas for
MP2, the reduced cost is a function of the outsourced
quantity. Accordingly, for MP1-PA1, the dual variable
π1b
i should be deducted from the reduced cost for each

privately delivered unit, but this number of units is
unknown for the split customer during the labeling
algorithm. Conversely, forMP2-PA1, the outsourcing
cost v should be added to the reduced cost for each
outsourced unit, but the outsourced quantity is un-
known during the labeling algorithm.

MP2-PA1 uses resources i(L), q(L), t(L), r(L), φ(L),
V(L), andV(L) as defined forMP1-PA1 in Section 3.2.1.
Only c(L), the reduced cost, is redefined. The number
of outsourced units cannot be established until the
path is finished. Moreover, the reduced cost is lowest
if all units are delivered by the private vehicle (no
outsourcing costs). Therefore, during this labeling
algorithm, we keep track of the minimum possible
reduced cost. This gives the following definition of
the resource:

c(L) Minimum reduced cost of partial path p(L)
(i.e., all units delivered by private vehicle),

which is updated as follows for an extension of a label
L′ along arc (i(L′), j) to a node j ∈ V \ V(L′) to generate a
new label L:

c(L) � c(L′) + c̄ij.

To reduce the number of labels, dominance rules can
be applied to discard labels. The reduced cost of a path
depends on the outsourced quantity or, equivalently,
on the quantity delivered by the private vehicle to the
split customer. Thenwe can express the reduced cost of
a path in label L as a function of φ(L) as follows:

c̄p � fk + dr(L) − φ(L)( )
v + ∑

(i,j)∈A
cij − μ5b

j

( )
xijp − μ5c

k , (8)

in which xijp again indicates the number of times arc
(i, j) is in the path, and recall that r(L) is the split
customer. The functional form of the rewritten re-
duced cost function is the same as for MP1. Therefore,
to apply dominance rules to compare labels, again we
have to compare segments of reduced cost functions.
Similarly to Desaulniers (2010) and MP1, sufficient

dominance conditions for dominance of label L1 over
L2 associated with the same node are given by
C1. t(L1) ≤ t(L2);
C2. q(L1) ≤ q(L2);
C3. s(L1) ≤ s(L2);
C4. V(L1) ⊆ V(L2);
C5. c(L1) + ds(L1)v − φ(L1)v ≤ c(L2) + dr(L2)v − φ(L2)v;
C6. c(L1) + ds(L1)v − (q(L2) − q(L1))v ≤ c(L2) + dr(L2)v;
C7. c(L1) + ds(L1)v − (q(L2) + φ(L2) − q(L1))v ≤ c(L2) +

dr(L2)v − φ(L2)v,
in which dr(L) � 0 and φ(L) � 0 if there is no split

delivery in the path at label L. In conditions C5, C6,
and C7, the minimum reduced cost is increased with
the maximum outsourcing cost, and subsequently,
the unit outsourcing cost is deducted for the units that
are not outsourced. Additionally, note that the slopes
of the compared segments are equal (v); therefore, we
can discard condition C7 because it is redundant with
conditions C2, C5, and C6.

3.3.2. Pricing Algorithm 2 for MP2 (MP2-PA2). As for
MP1-PA2 in Section 3.2.2, it can also be observed for
MP2 that knowing which customer to split is not
necessary during the labeling algorithm. Moreover,
for MP2, even in the master problem this information
is not necessary because only information on which
customers are visited is needed. Therefore, MP1-PA2
can be adjusted for MP2 (MP2-PA2), and again, we
only highlight the differences here.
MP2-PA2 uses resources i(L), c(L), q(L), t(L), s(L),

dmax(L), V(L), and V(L) as defined for MP1-PA2 in
Section 3.2.2. Additionally, φ(L) is defined as follows:

φ(L) Themaximum quantity delivered to a split
customer by the private vehicle in partial path
p(L),assuming that the customer with the
highest demand is split.

Although the definition of c(L) is the same, the com-
putation is different because of the different reduced
cost function. Therefore, for an extension of a label L′
alongarc (i(L′), j) tonode j ∈ V \ V(L′) to generate a new
label L, resources c(L) andφ(L) are updated as follows:

ç(L) � c(L′) + c̄ij,

φ(L) � Q − q(L) + dmax(L).

To apply dominance, a reduced cost function similar
to that for MP2-PA1 can be used in which ds(L) is
replaced by dmax. Again, segments of reduced cost
functions have to be compared. Define q̂(L) � q(L) −
1{s(L) � 1}dmax(L) and ĉ(L) � c(L)+1{s(L) �1}dmax(L)v.
Sufficient dominance conditions for dominance of label
L1 over L2 associated with the same node are given by
D1. t(L1) ≤ t(L2);
D2. q̂(L1) ≤ q̂(L2);
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D3. s(L1) ≤ s(L2);
D4. V(L1) ⊆ V(L2);
D5. ĉ(L1) − φ(L1)v ≤ ĉ(L2) − φ(L2)v;
D6. ĉ(L1) − (q̂(L2) − q̂(L1))v ≤ ĉ(L2);
D7. ĉ(L1) − (q̂(L2) + φ(L2) − q̂(L1))v ≤ ĉ(L2) − φ(L2)v.
These conditions are similar to the conditions for

MP1-PA2. Because the slope of the segments is equal
for both labels, condition D7 is redundant, analogous
to MP2-PA1.

3.3.3. Generalized Subset-Row Inequalities. As in
Dabia, Lai, andVigo (2019), forMP2we can still apply
the SR inequalities as described in Section 3.2.3;
however, these cuts do not make use of the fact that
part of the demand can be outsourced to the common
carrier. Dabia, Lai, and Vigo (2019) propose so-called
generalized SR inequalities for this variant of the prob-
lem. These can be applied to the MP2 as well because
constraint (5b) coincides with the first constraint of the
second formulation in Dabia, Lai, and Vigo (2019).

Let d(S) � ∑
i∈S di be the sum of the demand for

subset of customersS ⊆ V0. Dabia, Lai, andVigo (2019)
observe that splitting d(S) in packages of size κ will
result in a number of privately delivered packages
in an integer solution that is less than the total
number of packages minus the outsourced packages
of the customers in S. For a subset of customers S ⊆ V0
and 0 < κ < d(S), they propose the following valid
inequalities:

∑
p∈Ω

1
κ

∑
i∈S

diaip

⌊ ⌋
zp +

∑
i∈S

di
κ

⌊ ⌋
wi ≤ d(S)

κ

⌊ ⌋
. (9)

Dabia, Lai, and Vigo (2019) give two propositions to
establish dominance rules that take the generalized SR
inequalities into account, in which the second prop-
osition contains strengthened dominance rules com-
pared with the first proposition. If the generalized SR
cuts are combined with ng-paths (see Section 4.2), it is
not possible to use the strengthened version because
it makes use of the demand of the set of reachable
customers, which is changing during the algorithm
when ng-paths are used. Therefore, similar dominance
conditions as in the first proposition in Dabia, Lai, and
Vigo (2019) are used for the VRPPO.

3.4. Model Extensions
In the problem described in Section 3, we assumed
that the cost of outsourcing is a customer-independent
fixed fee per unit v. Although we designed the four
solution algorithms to solve the VRPPO for a fixed
fee per unit cost structure, several of our algorithms
can be easily adjusted for handling alternative cost
structures. In particular, forMP1-PA1,MP1-PA2, and
MP2-PA1, a customer-dependent cost structure, in
which the fixed fee per unit can be different per

customer (vi �� vj), can be easily integrated. In MP1,
the outsourcing cost is only present in the master
problem; hence, this can be easily changed to a
customer-dependent feewithout algorithmic changes
in MP1-PA1 and MP1-PA2. However, in MP1-PA2,
currently one column at most is generated per iter-
ation because creatingmultiple columnswould result
in columns with the same costs. In case of customer-
dependent outsourcing costs, it can be beneficial to
generate multiple columns per pricing problem it-
eration. The reduced cost for MP2 does depend on the
outsourcing cost. In MP2-PA1, the split customer, and
hence its corresponding outsourcing cost, is decided
during the labeling algorithm and, therefore, the
customer-dependent outsourcing cost can easily be
accounted for. On the contrary, for MP2-PA2, it is not
straightforward to include customer-dependent out-
sourcing costs. This is caused by the fact that the re-
duced cost function is dependent on both the out-
sourced quantity and the outsourcing cost per unit.
Hence, with customer-dependent outsourcing costs, in
the dominance conditions both the range and the slope
of the segments are unknown. Dominance conditions,
therefore, have to be customized for MP2-PA2 to in-
clude customer-dependent outsourcing costs.

4. Implementation
4.1. Branching
Let x∗ be the current fractional solution expressed in
the arc flow variables in which xij is the arc flow
variable of arc (i, j) ∈ A of the underlying compact
formulation. To result in a feasible solution, first, the
algorithm branches on the total number of vehicles,∑

k∈K
∑

i∈V0 x
k
0i. In the results section, we also consider

discarding this first branching option, and start with
the second branching strategy immediately. Second,
the algorithm branches on the number of vehicles per
vehicle type,

∑
i∈V0 x

k
0i. If, for all vehicle types, the

number used is integer, branch on the edge variables
xkij + xkji for some vehicle type k ∈ K. The algorithm
looks for i, j pairs, such that x∗kij + x∗kji is close to 0.5 and
imposes the branches xkij + xkji ≤ 0 and xkij + xkji ≥ 1. Fi-
nally, branching on one fractional arc xkij is performed
for some arc (i, j) ∈ A and vehicle type k ∈ K. As in
Dabia, Lai, and Vigo (2019), we apply strong branch-
ing, which means that potential branches are evalu-
ated quickly to decide which one to continue with
first. In this case, we solve the linear relaxation with
only the columns already generated in the column-
generation algorithm. This way, for each branching
candidate, we estimate a lower bound in the two child
nodes. The algorithm chooses the branch that maxi-
mizes the lower bound in the weakest of the two child
nodes. In the first 15 nodes of the branch-and-bound
tree, we consider 30 branch candidates, and 15 branch
candidates in the remaining nodes.
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4.2. Acceleration Techniques
To speed up the labeling algorithm, we implement
bidirectional labeling. This means that paths are cre-
ated both forward from the starting node and back-
ward from the ending node up to some bound in one of
the resources which are, afterward, merged to feasible
paths. The dominance rules are also applied to back-
ward labels. We apply an advanced version of bi-
directional labeling in which the halfway point of the
resource (up to which labels are extended) is deter-
mineddynamically during the labeling algorithm (Tilk
et al. 2017). As the boundary resource for the VRPPO,
we use the time.

We implemented the ng-path relaxation introduced
by Baldacci, Mingozzi, and Roberti (2011), which
allows for cycles in the labeling algorithm instead of
finding only elementary routes. For each customer
i ∈ V0, define a neighborhood NGi which contains
node i itself and, at most, b ∈ V0 other nodes that are
closest to i. An ng-path can visit a customer i more
than once only if at least one node j /∈ NGi is visited
between two visits to i. Allowing for such paths to be
generated and added to themaster problemmayyield
weaker lower bounds. However, the pricing problem
may become easier to solve if b is sufficiently small. In
the labeling algorithm, the number of times a customer
is visited should now be counted instead of whether a
customer is visited, and different label extensions are
now possible with the ng-path relaxation. The labeling
algorithms are adjusted accordingly.

The exact labeling algorithms as proposed in Sec-
tions 3.2.1, 3.2.2, 3.3.1, and 3.3.2 may be time con-
suming to fully execute. Therefore, before calling an
exact pricing algorithm, we first apply a heuristic la-
beling algorithm to more quickly generate negative
reduced cost columns. The exact labeling algorithm
is only called when the heuristic does not find any
negative reduced cost paths. The heuristic performs
the labeling algorithm on a reduced graph that keeps
for each node, at most, the k outgoing arcs with the
smallest reduced cost. The number of kept arcs is in-
creased to 2k, then to 4k until some bound (in our case,
set to 20) is reached.

5. Results
In the following sections, we will first compare, for
bothmaster problems, the two pricing algorithms and
determine which algorithm performs best. Second,
for the chosen algorithm, the performance and the
cost improvement of the VRPPO over the VRPPC on
two sets of instances will be investigated. The first set
of instances is derived from the instances used by
Dabia, Lai, and Vigo (2019) for the VRPPC (referred to
as instance set !). The second set of instances was
constructed for the SDVRPTW and used by, for ex-
ample, Desaulniers (2010) (referred to as instance set

@). We use two sets of instances because the benefit of
outsourcing part of a customer’s demand may differ
for instances originally designed to examine either the
impact of outsourcing in the absence of split delivery
(set !) or the reverse (set @).
The instances in set ! were originally constructed

by Liu and Shen (1999) from the Solomon (1987) in-
stances by adding information on heterogeneous ve-
hicles. There are six types of instances, based on to-
pology (R for randomly dispersed customers, C for
clustered customers, and RC for a combination) and
time window size (type 1 for tight time windows and
type 2 for wide time windows). The instances contain
heterogeneous vehicles, and there are three vehicles
per vehicle type. The algorithms are tested on instances
with 25, 50, and 100 customers. As in Dabia, Lai, and
Vigo (2019) and Liu and Shen (1999), three different
vehicle cost levels are considered. Types a, b, and c
have high, medium, and low vehicle costs, respec-
tively.We refer to Liu and Shen (1999) formore details
on the vehicle compositions and vehicle fixed costs.
The outsourcing cost is derived from Dabia, Lai, and
Vigo (2019). We do not consider all unit discounts
for outsourcing, as in Dabia, Lai, and Vigo (2019), but
rather a fixed fee per unit outsourced as argued in
Section 3. Therefore, we consider the highest cost and
the lowest cost from Dabia, Lai, and Vigo (2019) in
these experiments to examine the impact of different
outsourcing cost levels. This means we set v � 5.00,
3.50 for R instances; v � 2.00, 0.50 for C instances; and
v � 3.50, 2.00 for RC instances. There are 56 different
instances, each with three vehicle costs, for the three
different numbers of customers and for two out-
sourcing cost levels; this gives 1,008 instances in total.
The instances in set @ are also derived from the

Solomon (1987) instances by allowing split deliveries.
These instances contain homogeneous vehicles with-
out fixed vehicle costs. Because the original vehicle
capacity in the Solomon instances is relatively high, the
vehicle capacity for the SDVRP is set toQ � 30, 50, 100,
respectively. Based on preliminary experiments, for
the VRPPO we only use Q � 30, 50 because results for
Q � 50 and Q � 100 are comparable in terms of cost
improvements. Desaulniers (2010) points out that
because demand is randomly generated between 1
and 50, split deliveries can be necessary in the SDVRP
for Q � 30. This implies that outsourcing can be
necessary for the VRPPO and the VRPPC. The con-
sidered outsourcing costs are the same as for instance
set ! as described in the previous paragraph. Again,
there are 56 different instances, 2 vehicle capacities, 3
different numbers of customers, and 2 outsourcing
cost levels, resulting in 672 instances in total.
For all instances, the master problems are initial-

ized with a column that represents the solution in
which delivery of all demand is fully outsourced. The
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cost of this column provides a valid upper bound on
the solution. The branch-price-and-cut algorithms are
implemented using Java and Gurobi 8.0. All tests are
performed on a desktop computer running Windows
10, using a single core from an eight core Intel(R)
Core(TM) i7-6700K processor clocked at 4.00GHz with
24 GB RAM. The maximum computation time is one
hour per instance.

The outline of the computational experiments is
as follows. First, in Section 5.1, we compare the two
master problems for each of the two pricing algo-
rithms on a subset of the instances in set! to evaluate
their performance. Second, Section 5.2 presents ag-
gregated results of extensive tests on both instance
sets ! and @ for the selected algorithm from Section
5.1. Next, in Section 5.3, we compare for both instance
sets the results of the VRPPO and the VRPPC to gain
insight into the potential cost improvements of
allowing a part of the demand to be outsourced. Finally,
Section 5.4 presents some figures to gain insight into
the structure of the solutions of the VRPPO. The re-
sults per instance are given in Online Appendix 6.

5.1. Comparing the Algorithms
For bothMP1 (Section 3.2) andMP2 (Section 3.3), two
algorithms have been proposed for the pricing prob-
lems (PA1 and PA2). Because the pricing algorithms
differ in several aspects, it is hard to assess their per-
formance on theoretical grounds. The first pricing
algorithm can createmultiple labels per node extension,
which results in many labels, but vehicle capacity
cannot be exceeded. On the contrary, the second
pricing algorithm creates at most one label per node
extension but can result in longer paths because vehicle
capacity can be exceeded. Furthermore, because arti-
ficial segments for the reduced cost function are nec-
essary to apply dominance in the second pricing
algorithm the dominance criteria cannot be compared
between the pricing algorithms Moreover, for the sec-
ondpricing algorithmapostprocessing step is required.
Therefore, it cannot be stated up front which algorithm

will perform best in terms of running time and num-
ber of instances that can be solved. Hence, we test all
four algorithms (MP1-PA1, MP1-PA2, MP2-PA1, and
MP2-PA2) for multiple parameter settings on a subset
of the instances in set !.
Preliminary experiments showed that the differ-

ences between algorithms and parameter settings are
quite substantial. To find the best performing algo-
rithm (master problem, pricing algorithm and pa-
rameter setting), the R, C, and RC instances with time
window type 1 (tight time windows) were selected,
with 25 customers, for vehicle cost a, and with a high
outsourcing cost to test on. This resulted in a set of
29 instances. Next, we ran the algorithms on 11 ad-
ditional instances with time window type 2 (25 cus-
tomers, vehicle cost a, high outsourcing cost) that are
easier to solve compared with other instances with
type 2 time windows.
In these experiments, three parameters that are

likely to have an impact on the performance of the
algorithms are evaluated. These are indicators sig-
naling if branching on the total number of vehicles is
used, the maximum number of active (generalized) SR
inequalities at any point during the execution of the
algorithm (value 30 or 40), and the size of the neigh-
borhood of the ng-paths (value 7, 8, or 9). Column “S”
in Table 1 indicates the results for eight different
scenarios. The values of the parameters are indicated
in the columns “Branch,” “#SR,” and “NG,” respec-
tively. For each algorithm, per parameter setting, the
average CPU time for solving the instances with time
window type 1 to optimality (T1(s)), the number of
solved instances out of the 40 instances (#Opt.), and
the average CPU time for solving the 40 instances to
optimality (T(s)) are given.
The first obvious conclusion is that PA2 performs

much better than PA1 for both master problems. The
running time with PA1 for time window type 1 in-
stances is much higher than for PA2 (column T1(s)),
and PA1 solves, at most, 37 out of 40 instances (col-
umn #Opt.). Comparing MP1-PA2 and MP2-PA2

Table 1. Comparison Algorithms for Different Parameter Settings

Master problem 1 Master problem 2

PA1 PA2 PA1 PA2

S Branch #SR NG T1(s) #Opt. T(s) T1(s) #Opt. T(s) T1(s) #Opt. T(s) T1(s) #Opt. T(s)

1 1 40 7 117 37 297 31 40 195 103 37 290 32 40 185
2 1 40 8 110 37 304 29 39 139 84 37 297 22 39 86
3 1 40 9 110 37 320 31 39 138 99 36 235 21 39 87
4 0 40 7 95 37 273 24 39 115 94 37 281 22 40 186
5 0 40 8 82 37 283 25 38 56 71 37 282 20 39 100
6 0 30 7 122 37 295 30 40 173 146 37 321 28 40 189
7 0 30 8 98 37 293 25 39 123 98 37 302 25 39 94
8 1 30 7 175 37 336 35 40 174 120 37 301 36 40 167
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suggests that the performance of these algorithms is
quite similar, as for bothMP1 andMP2 all 40 instances
are solved in three and four scenarios, respectively
(indicated in bold). Because Scenario 4 for MP2-PA2
clearly gives the lowest running time for the type 1
instances and does not perform worst on all 40 in-
stances, it is selected for the remaining experiments.

5.2. Aggregated Results for VRPPO
Table 2 reports on results on the performance of MP2-
PA2 for instance set!, aggregated over time window
type and vehicle costs. Table 3 gives the results for
instance set @, aggregated over time window type
and vehicle capacity. Presented in both tables for each
topology R, C, and RC (“Topology,” number of in-
stances between brackets) and per instance size (N)
are the number of instances solved to optimality (#Opt.),
the number of solved instances in which the solution
consists of outsourcing all demand (#All out.), the
average computation time in seconds (T(s)), the av-
erage size of the branch-and-bound tree of the in-
stances solved to optimality (Tree), and the average
integrality gap (Gap(%)). The integrality gap indi-
cates the percentage difference between the optimal
integer solution (IP) and the solution of the linear
relaxation at the root node (LBroot), which is calcu-
lated by (IP − LBroot)/IP. Remember that if, in a so-
lution, all demand is outsourced, this solution is the
initial solution of the master problem.

5.2.1. Instance Set !. Instances in set ! are easier to
solve for low outsourcing costs than for high out-
sourcing costs as shown by the number of instances
solved, the computation times, and the size of the
branch-and-bound tree indicated in Table 2. As can be
expected, the number of solved instances decreases if
the number of customers increases. The number of
solved instances is approximately the same for high
and low outsourcing costs for the R instances. For the
C and RC instances, lower outsourcing costs allow for
solving more instances to optimality. This observation
can be explained by the fact that, for low outsourcing

costs, the optimal solution is to outsource regularly all
demand, which is a relatively easy solution to find
because it is the initial solution. On average, all in-
stances are solved within 17 minutes, with more than
half of the instances being solved within 10 seconds;
however, for some instances, the optimal solution is
only found very close to the time limit (see Online
Appendix 6 for the results per instance). For all solved
instances, the integrality gap is low with all averages
below 1.5% and a maximum of 4.40%.

5.2.2. Instance Set @. Table 3 gives the performance
results on the VRPPO for instance set@ aggregated on
vehicle capacity and time window type. The time to
solve these instances to optimality is smaller than
those in set!, probably because the instances in set@
do not contain heterogeneous vehicles and, therefore,
less pricing problems need to be solved. As a result, all
25 and 50 customer instances are solved to optimality.
The difference in solution time between the instances
with high and low outsourcing costs is smaller for
these instances than those in set !. Again, instances
with low outsourcing costs regularly result in solu-
tions in which all demand is outsourced, for both
C and RC instances. For the instances in set@, the RC
instances are not harder to solve than the R and C
instances as opposed to set !. On average, the in-
stances in set @ are solved within 6 minutes, with
more than three-quarters of them being solved within
10 seconds (see Online Appendix 6). Integrality gaps
for the instances in set@ are even lower than for those
in set!, with all averages being below 1.5% and with
a maximum gap of only 3.23%.

5.3. VRPPO vs. VRPPC
In Sections 5.3.1 and 5.3.2, the solutions of the VRPPO
are compared with the solutions of the VRPPC on the
total costs for instance sets ! and @, respectively. In
Section 5.4, we explore the impact of allowing split-
ting on the structure of the routes. The solutions of
the VRPPC are obtained by running the algorithm
by Dabia, Lai, and Vigo (2019) with the fixed-fee

Table 2. Aggregated Results on Instance Set !

High outsourcing cost Low outsourcing cost

Topology N #Opt. #All out. T(s) Tree Gap(%) #Opt. #All out. T(s) Tree Gap(%)

R (69) 25 43 0 29 1.7 0.13 42 0 14 0.7 0.05
50 26 0 485 12.2 0.44 30 0 391 5.7 0.26
100 3 0 78 10.7 0.13 4 0 299 15.0 0.11

C (51) 25 33 17 273 2.9 1.12 51 51 0 0 0.00
50 26 16 457 16.6 0.62 51 51 27 0 0.00
100 25 15 354 0.9 0.01 48 48 110 0 0.00

RC (48) 25 35 0 127 1.1 0.14 40 15 106 0.1 0.06
50 18 0 963 99.2 1.43 26 12 338 7.8 0.68
100 9 0 870 6.7 0.08 17 9 671 4.8 0.08
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outsourcing cost. The results are aggregated over all
instance sizes. The columns in the tables report the
topology of the instances (T), the type of time windows
(TW), the fixed vehicle costs (C) for set ! being high,
medium and low (a,b and c, respectively), and the
vehicle capacity (Q) for set @. For both outsourcing
costs (high and low), the tables give the average per-
centage cost improvement (Avg. %), the highest im-
provement (Max. %), and the number of solved in-
stances in the category (#Opt.). Finally, the “All out.”
column indicates the fraction of the solved instances
in which all demand is outsourced in the optimal
solution: all (1), none (0), or two-thirds ( 2/3) of the
instances. If for an instance all demand is outsourced
in the optimal solution of the VRPPO, then this is also
the case for the VRPPC. Hence, for these instances,
allowingpart of a customer’s demand to be outsourced
does not result in a cost improvement of the VRPPO
compared with the VRPPC. For each instance, the
percentage improvement in total cost between
VRPPO and VRPPC is computed as (cost VRPPC − cost

VRPPO)/cost VRPPC. Only instances for which both
the VRPPO and the VRPPC result in an optimal so-
lution are included in the averages. Note that there are
some instances for which an optimal VRPPO solution
is found, but no optimal VRPPC solution.

5.3.1. Improvements on Set ! Instances. In Table 4,
the solutions of the VRPPO are compared with the
solutions of the VRPPC for instance set !.
First, it is observed that the improvements that can

be achieved by allowing a part of the demand to be
outsourced are relatively small. For high outsourcing
costs, a better improvement can be achieved than for
low outsourcing costs for most instance categories.
This can be explained by the fact that for a high out-
sourcing cost, covering more distance with a private
vehicle ismore likely to be cost efficient comparedwith
a situation inwhich outsourcing is cheap. For theR and
RC instances, higher improvements are reached than
for the C instances, which can be explained by the fact
that if one customer in a cluster is outsourced, the

Table 3. Aggregated Results on Instance Set @

High outsourcing cost Low outsourcing cost

Topology N #Opt. #All out. T(s) Tree Gap(%) #Opt. #All out. T(s) Tree Gap(%)

R (46) 25 46 0 0 0 0.00 46 0 0 0.3 0.03
50 46 0 17 4.3 0.11 46 0 19 5.0 0.10
100 29 0 250 11.9 0.04 30 0 212 13.1 0.05

C (34) 25 34 0 3 12.1 0.52 34 34 0 0 0.00
50 34 0 255 492.0 0.49 34 34 0 0 0.00
100 25 0 161 34.8 0.08 34 26 0 0 0.00

RC (32) 25 32 0 7 40.5 1.48 32 16 2 7.6 0.26
50 32 0 2 3.9 0.53 32 16 29 47.8 0.23
100 31 0 357 16.5 0.07 32 0 75 5.9 0.05

Table 4. Comparison of VRPPO and VRPPC for Instance Set !

High outsourcing cost Low outsourcing cost

T TW C Avg. % Max. % #Opt. All out. Avg. % Max. % #Opt. All out.

R 1 a 0.32 1.30 20 0 0.68 1.29 25 0
b 0.12 0.93 22 0 0.08 0.66 22 0
c 0.08 1.05 22 0 0.03 0.76 22 0

2 a 0 0 1 0 0 0 1 0
b 0 0 2 0 0 0 2 0
c 0 0 4 0 0 0 4 0

C 1 a 0 0 24 1 0 0 27 1
b 0 0.02 17 0 0 0 27 1
c 0 0.02 17 0 0 0 27 1

2 a 0 0 16 1 0 0 21 1
b 0 0 1 0 0 0 21 1
c 0 0 1 0 0 0 21 1

RC 1 a 0.12 0.73 15 0 0 0 24 1
b 0.19 1.31 17 0 0.12 0.60 18 0
c 0.21 1.46 17 0 0.14 0.69 18 0

2 a 0 0 1 0 0 0 9 1
b 0 0 5 0 0 0 4 0
c 0 0 7 0 0.01 0.06 7 0
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whole cluster of customers tends to be outsourced
as for the VRPPC (Dabia, Lai, and Vigo 2019). For the
limited number of solved instances with wide time
windows (type 2), hardly any improvement is achieved
by allowing outsourcing. There are no consistent results
for the different vehicle costs because, for the R in-
stances, better improvements are achieved for high
vehicle costs (a), whereas for the RC instances, better
improvements are found for low vehicle costs (c).

5.3.2. Improvements on Set @ Instances. Table 5
shows that for set @, substantially larger improve-
ments are obtained by allowing outsourcing of part of
the demand compared with set !. Improvements of
approximately 10% are achieved. Also observe that
higher improvements are obtained when vehicle ca-
pacity is tight (Q � 30), as the percentage improve-
ments are much higher for Q � 30 than for Q � 50.
This implies that splitting demand over a private
vehicle and a common carrier is more beneficial if the
customer demands are closer to or higher than ve-
hicle capacity. For vehicle capacity Q � 30, larger im-
provements can be achieved for high outsourcing
costs than for low outsourcing costs for the same
reasons as indicated for set !. For vehicle capacity
Q � 50, the improvements are smaller and compa-
rable for both outsourcing cost levels. For high out-
sourcing costs, the best improvements can be achieved
for instances with both clustered and randomly lo-
cated customers (RC), whereas for low outsourcing
costs, the best improvements are found for instances
with only randomly located customers (R). The type of
time windows does not have a big impact on the im-
provements for the instances in set @.

To see the impact of time windows, we also con-
ducted experiments for a subset of instances in data
set @ in which we discarded the time windows and
adjusted the algorithm accordingly by, for example,
removing the time condition from the dominance

criteria. We observed that the results are quite com-
parable to those with timewindows for these instances.

5.4. Insights
To get further insight into the obtained results, we
examine the structure of some individual optimal
solutions by visualizing them in Figures 3 and 4. In
both figures, routes are indicated by lines connecting
the visited customers. The customers that are not
connected by the lines have their demand fully out-
sourced. The customers indicated in gray are in a
route that requires a split delivery because total de-
mand exceeds vehicle capacity. Note that any cus-
tomer with sufficiently high demand can be the split
customer without changing the total costs; therefore,
all customers in these routes are colored gray.
In a solution of the VRPPC, some routes may not

fully utilize the vehicle capacity. One might expect
that the VRPPO solution contains the same routes as
the VRPPC solution in which more customers are
added to the routes and a split delivery is performed to
fully utilize the vehicle capacity. However, the results
show that this is not necessarily the case. Rather, the
VRPPO solution of an instance can contain completely
different routes than the corresponding VRPPC solu-
tion. As an example, consider Figure 3, which shows
the optimal VRP, VRPPC, and VRPPO solutions of set
!, instance R101a, with 25 customers and high out-
sourcing costs. Consider customer 20 in the upper
part of Figure 3(b). Customer 20 is not added to route
0-3-9-12-0 of the VRPPC solution to find the optimal
VRPPO solution, but rather, it is combined with cus-
tomers 9, 12, and 1 because of both efficiency and time
windows. Note that customers 3 and 20 cannot be in
the same route because of their time windows; tem-
porarily widening the time windows of customer 20 to
allow for customers 3 and 20 in the same route does not
result in a different solution. Hence, in the VRPPO
solution, customer 20 is not added to route 0-3-9-12-0

Table 5. Comparison of VRPPO and VRPPC for Instance Set @

High outsourcing cost Low outsourcing cost

T TW Q Avg. % Max. % #Opt. All out. Avg. % Max. % #Opt. All out.

R 1 30 3.87 10.05 36 0 2.55 5.49 36 0
50 0.61 2.69 28 0 0.88 2.22 29 0

2 30 3.86 10.05 33 0 2.55 5.49 33 0
50 0.54 1.29 24 0 0.84 1.76 24 0

C 1 30 2.87 3.99 27 0 0 0 27 1
50 0 0 18 0 0 0 27 1

2 30 1.82 3.21 24 0 0 0 24 1
50 0 0 24 0 0 0 24 2/3

RC 1 30 4.56 7.95 24 0 0.03 0.09 24 2/3
50 0.15 0.88 24 0 0.11 0.48 24 0

2 30 4.56 7.95 24 0 0.03 0.09 24 2/3
50 0.13 0.76 23 0 0.10 0.39 24 0
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of the VRPPC solution because of route efficiency
reasons. At the same time, customer 3 in the VRPPO
solution is served together with customers whose

demand was fully outsourced in the VRPPC solution.
One can observe that only one route is the same in
both solutions (in the lower-right area). The VRPPO

Figure 3. Set ! Instance R101a, 25 Customers, High Outsourcing Cost

Note. Routes with gray customers require a split delivery which can be assigned to any customer with sufficiently high demand.

Figure 4. Set @ Instance R102, 50 Customers, High Outsourcing Cost

Note. Routes with gray customers require a split delivery which can be assigned to any customer with sufficiently high demand.
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solution contains seven routes, ofwhich three contain a
split delivery.

Next, it is also interesting to look at the number of
units of demand outsourced. In both routes 0-2-21-3-0
and 0-14-15-13-0, just one unit of demand needs to be
outsourced; hence, all customers are candidate to split
the delivery because their demand is larger than one.
In route 0-12-9-20-1-0, four units of demand need to
be outsourced. Also for this route, all customers are
candidate to be split, and four units of demand rep-
resent between 21% and 44% of each customer’s
demand.

Figure 4 presents the VRP, VRPPC, and VRPPO
results for set @, instance R102, with high outsourc-
ing costs. The improvement in costs of the VRPPO
compared with the VRPPC is 9.79% for Q � 30 and
1.55% for Q � 50, respectively. The VRP solution for
Q � 30 is infeasible, because customers 38 and 47 have
demands higher than the vehicle capacity. ForQ � 30,
two customers (38 and 47) with demand larger than
the vehicle capacity must be fully outsourced in the
VRPPC solution (Figure 4(b)), but full trucks can be
sent to customers in the VRPPO solution, which re-
duces costs substantially (Figure 4(c)). For Q � 50,
both customers 38 and 47 are combined with another
customer in the route in both the VRPPC and the
VRPPO solutions (Figure 4, (e) and (f), respectively).
Note that for Q � 30, improvements are not only
achieved because customers with a demand higher
than vehicle capacity can be partially served by a
private vehicle in the VRPPO, but also because other
adjustments can be made to improve efficiency. For
example, customer 34 that has demand of eight is
outsourced in the VRPPC solution but is served by a
private vehicle in the VRPPO solution. Moreover, note
that customer 23 for Q � 30 is served in the VRPPC
solution, whereas in the VRPPO solution it is more
efficient to fully outsource this customer to service
customer 34 by the private vehicle (with a split in the
corresponding route). ForQ � 50, the VRPPO solution
contains one route less than the VRPPC solution.
Hence, by allowing a split between private and out-
sourced delivery, the number of used private vehicles
can be reduced in some cases.

For Q � 30, the quantities outsourced are one unit
for routes 0-39-0 and 0-29-34-35-0, and six units for
route 0-48-0, which is 17% of the demand. ForQ � 50,
only route 0-4-44-7-0 requires a split, and one unit of
demand is outsourced, which is between 4% and 11%
of the demand.

Concluding, a solution of the VRPPO can be rather
different from the corresponding VRPPC solution.
The routes are structurally different, customers fully
served in a VRPPC solution can be fully outsourced in
the VRPPO solution, and customers with demand
higher than vehicle capacity can receive a full truck

load delivery in the VRPPO solution. Moreover, both
small and large shares of the demand are being out-
sourced in the split delivery in the considered examples.

6. Conclusion and Future Research
This paper is the first to formally describe a vehicle
routing problem in which splitting the delivery of de-
mand to customers between the private and common
fleet is allowed. For the so-calledVRPPO,wedeveloped
a branch-and-price-and-cut solution framework. We
proposed two master problem formulations for the
VRPPO, and for bothmaster problemswedesigned two
pricing algorithms In the first master problem, all
outsourcing decisions are taken in the master problem,
whereas in the second master problem, the decision on
partially outsourcing ademand is referred to the pricing
problem. The first pricing algorithm was inspired by a
pricing algorithm for the SDVRPTW by Desaulniers
(2010) in which multiple labels per extension are
created to decide which customer is split. The sec-
ond pricing algorithm exploits specific problem
characteristics by creating at most one label per ex-
tension and by taking the splitting decision after
creating a path. The first pricing algorithm leads to
a higher number of labels, whereas in the second
pricing algorithm the paths can be longer because
vehicle capacity can be exceeded during the labeling
algorithm. The performance of the algorithms is en-
hanced by applying (generalized) subset-row inequal-
ities and dominance rules in the labeling algorithms.
For the first pricing algorithm the dominance rules
suggested by Desaulniers (2010) are applicable. For
the second pricing algorithm, nontrivial problem-
specific adjustments are made to be able to handle
the postponed decision on splitting.
Extensive testing on two sets of instances derived

from the literature provided insight into the different
algorithms and the possible cost improvements of the
VRPPO over the VRPPC. The results show that the
second pricing algorithm performs much better than
the first pricing algorithm, and that the difference
between the master problems is small. Moreover, the
results show that higher cost improvements can be
achieved through outsourcing and split deliveries if
customer demand is close to or higher than vehicle
capacity. If outsourcing costs are low, it can be more
beneficial to outsource all demand of a certain cus-
tomer instead of having a split, thus resulting in larger
cost improvements of the VRPPO over the VRPPC for
high outsourcing costs. Finally, a topology with ran-
domly located customers gives more room for im-
provement than settings with only clustered customers
because outsourcing one customer in a cluster tends to
lead to outsourcing all customers in the cluster, which
was also observed for the VRPPC (Dabia, Lai, and
Vigo 2019).
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Because both routing problemswith outsourcing or
split deliveries are rich problems, multiple directions
for future research can be identified. First, similar to
Dabia, Lai, and Vigo (2019) and Gahm, Brabänder,
and Tuma (2017), the outsourcing cost structure could
be extended to include, for example, quantity dis-
counts. Second, one could consider customer incon-
venience constraints, such as a minimum delivery
amount (Gulczynski, Golden, and Wasil 2010; Han
and Chu 2016). Finally, also allowing for splits be-
tween private vehicles in the VRPPO could offer in-
teresting research challenges.
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