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a b s t r a c t 

Unpredictable routes may be generated by varying the arrival time at each customer over successive vis- 

its. Inspired by a real-life case in cash distribution, this study presents an efficient solution approach for 

the vehicle routing problem with arrival time diversification by formulating it as a vehicle routing prob- 

lem with multiple time windows in a rolling horizon framework. Because waiting times are not allowed, 

a novel algorithm is developed to efficiently determine whether routes or local search operations are time 

window feasible. To allow infeasible solutions during the heuristic search, four different penalty methods 

are proposed. The proposed algorithm and penalty methods are evaluated in a simple iterated granu- 

lar tabu search that obtains new best-known solutions for all benchmark instances from the literature, 

decreasing average distance by 29% and reducing computation time by 93%. A case study is conducted 

to illustrate the practical relevance of the proposed model and to examine the trade-off between arrival 

time diversification and transportation cost. 

© 2018 Elsevier B.V. All rights reserved. 
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. Introduction 

Cash-in-transit (CIT) companies transfer valuable goods to

anks, ATMs, and stores. For security reasons and owing to legal

egulations, these companies must use varying routes. Interviews

ith safety managers of CIT companies in the Netherlands indi-

ate that the moment of arrival at the customer and the periods

hen the vehicle is stationary are the most vulnerable points on

he transportation journey. Inspired by this real-life case, this study

ocuses on alternating the arrival times at each customer and min-

mizing transportation costs. Additionally, waiting time is not al-

owed, to minimize the time that an armored truck is stationary. 

To the best of the authors’ knowledge, there are only three

tudies focused on alternating arrival times over successive visits

o a customer. In Calvo and Cordone (2003) , the overnight security

ervice problem was introduced, in which a set of different trav-

lling salesman problem (TSP) solutions should be obtained. This

roblem was solved by generating different instances for the TSP

ith time windows: the initial customer time windows were split

nto four sub-windows, and they were assigned to four subsets of

ustomers in 4! ways. In Yan, Wang, and Wu (2012) , a mathemat-

cal model was formulated in which the current arrival time at a

ustomer should vary by at least ε minutes compared to previous

rrival times; moreover, a small case study was considered using
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PLEX. In Michallet, Prins, Amodeo, Yalaoui, and Vitry (2014) , the

ehicle routing problem (VRP) with arrival time diversification was

ormulated by varying the arrival time at each customer by at least

minutes over P successive visits. This problem was solved in a

eriodic setting by proposing a heuristic in which waiting time

s not allowed. A time-dependent penalty function was used to

enalize arrival times that violate the arrival time diversification

onstraint. The periodic setting and the time-dependent penalty

unction complicate this method, as a local search operation in one

eriod can also modify the penalties in other periods. Thus, the

valuation of the local search moves is computationally intensive. 

In this study, a more efficient and powerful solution method

s presented for the same arrival time diversification problem as

n Michallet et al. (2014) . In the proposed method, a rolling hori-

on setting of one day is used, whereas in Michallet et al. (2014) ,

he problem was solved in a periodic setting. As CIT orders are re-

eived on short notice, a CIT plans its routes on a daily basis, and

hus the rolling horizon approach matches this real-life setting. In-

tead of penalizing previous arrival time intervals as in Michallet

t al. (2014) , the proposed method deletes the P previous arrival

imes from the solution space, along with the surrounding band-

idth ε. The result is a routing problem with multiple time win-

ows in which each customer is still available for service. There-

ore, the problem is modeled as a vehicle routing problem with

ultiple time windows (VRPMTW) in which the multiple time

indows are constructed in a rolling horizon setting by deleting

he arrival intervals of previous days. 

As waiting time is not allowed, it is not efficient to use

xisting algorithms for the VRPMTW that allow waiting time

https://doi.org/10.1016/j.ejor.2018.11.020
http://www.ScienceDirect.com
http://www.elsevier.com/locate/ejor
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ejor.2018.11.020&domain=pdf
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(e.g., Belhaiza, Hansen, & Laporte, 2014; Hoogeboom, Dullaert, Lai,

& Vigo, 2018 ). Therefore, a novel algorithm is presented for deter-

mining whether a departure time from the depot exists, so that

no waiting time will occur during a given route. Moreover, this

algorithm can also be used to efficiently determine whether lo-

cal search moves will result in a time window feasible route. A

simple iterated granular tabu search is proposed to illustrate the

performance of the VRPMTW formulation and the proposed algo-

rithm. Because infeasible solutions are allowed during the search,

four separate measures are considered to penalize time window

violations, and these measures are compared based on the compu-

tational time and solution quality of the metaheuristic. The meta-

heuristic is tested on benchmark instances from the literature and

on a real-life instance in which the trade-off between arrival time

diversification and transportation costs is demonstrated. 

The contribution of this study is fourfold. (1) A new solution

approach is presented for the vehicle routing problem with arrival

time diversification (VRPATD) that is capable of supporting deci-

sion making in various practical settings, e.g., for the transporta-

tion of valuable goods ( Michallet et al., 2014; Yan et al., 2012 )

or for patrolling routes performed by security companies ( Calvo &

Cordone, 2003 ). (2) An efficient method is proposed to determine

whether a route is time window feasible when multiple time win-

dows are available per customer and when waiting time is not al-

lowed. (3) Four different methods for penalizing violations of the

multiple time windows and waiting time constraints are developed

and tested. (4) The proposed iterated granular tabu search obtained

new best known solutions to all benchmark instances generated in

Michallet et al. (2014) . Compared to the results in Michallet et al.

(2014) , total distance is reduced by 29% and computational time by

93% on average. 

This paper is organized as follows. In Section 2 , an overview of

the literature related to routing diversification and multiple time

windows is provided. In Section 3 , the problem description and

the mathematical model are presented. In Section 4 , the handling

of multiple time windows is described: the algorithm for deter-

mining route feasibility is proposed in Section 4.1 , and different

penalty functions are described in Section 4.4 . The iterated granu-

lar tabu search is described in Section 5 . The computational results

are reported in Section 6 , and the conclusions are presented in the

last section. 

2. Literature review 

There is an extensive literature on constructing consistent

routes to ensure that the same driver visits the same customers

at approximately the same time on each day these customers need

service ( Coelho, Cordeau, & Laporte, 2012; Groër, Golden, & Wasil,

2009; Kovacs, Golden, Hartl, & Parragh, 2014 ). The converse prob-

lem of finding unpredictable routes is a relatively new topic. There

are two streams in the literature, each focusing on a different as-

pect of route inconsistency: order diversification, and arrival time

diversification. 

The m -peripetic vehicle routing problem ( m -PVRP) is the most

restrictive way to model order diversification. The objective of

this problem is to find a set of edge-disjoint routes of minimal

cost over m periods such that each customer is visited exactly

once per period. It is a generalization of the VRP and the m -

peripatetic salesman problem ( m- PSP). The m -PVRP was first stud-

ied in Ngueveu, Prins, and Calvo (2010) , where lower and upper

bounds for the problem were presented. A drawback of this model

for practical application is that it is strict: if customers are served

in the order a − b, then edge ( a , b ) is removed and the reverse or-

der b − a cannot be used anymore. 

In Talarico, Sörensen, and Springael (2015a) , this constraint was

relaxed by formulating a similar problem called the k -dissimilar
ehicle routing problem ( k d-VRP). The goal is to find k different

RP solutions for which the similarity between a pair of solutions

s below a certain threshold. Even though multiple use of an edge

s allowed in the k d-VRP, it is restricted by a constraint on the

imilarity between the k solutions. In Talarico et al. (2015a) , var-

ous similarity measures were presented to compare VRP solutions

ased on, among others, the number of shared edges and the cost

f the shared edges. The objective function differs from the stan-

ard objective of minimizing distance, as it minimizes the worst-

ase cost across the k solutions. 

In Akgün, Erkut, and Batta (20 0 0) , it was argued that edge di-

ersification does not necessarily imply that routes are geograph-

cally spread. Geographically spread routes are used for the trans-

ort of hazardous materials, where the risk of an accident must

e equally divided over the population. In Dell’Olmo, Gentili, and

cozzari (2005) , spatially dissimilar paths were introduced by mea-

uring the intersection of the areas surrounding paths. The buffer

one of a path is defined as the area obtained by moving a cir-

le over the edge. In this method, a set of Pareto-optimal paths is

btained by solving a multi-criteria shortest path algorithm. Buffer

ones for these paths are calculated using GIS, and then the subset

f paths with maximal spatial dissimilarity is selected. 

In Bozkaya, Salman, and Telciler (2017) , a bi-objective function

as used to minimize the transportation cost and the security risk

f transporting cash. A composite risk measure was proposed that

s the weighted sum of the predictability and the risk of a so-

ution. Predictability is measured by the number of times an arc

s used compared to the solutions on previous days. Risk is de-

ned by a measure using the social-economic status of the neigh-

orhoods through which the vehicles travel. In Talarico, Sörensen,

nd Springael (2015b) and Talarico, Sörensen, and Springael (2017) ,

nother risk measure was proposed that is proportional to the

mount of cash carried and the distance covered by the vehicles. 

The second approach to designing unpredictable routes consists

n varying the arrival time at each customer over successive visits.

n Calvo and Cordone (2003) , the importance of differing arrival

imes was pointed out in the case of overnight security patrolling.

t was argued that it is not the routing of the guards that mat-

ers but the time at which each location or customer is served.

herefore, the goal is to find a set of different solutions in terms

f arrival times. It is assumed that all customers have the same

ervice time window. First, the routing problem without arrival

ime constraints is solved and the corresponding assignments of

he customers to the guards is fixed. Secondly, the customer’s time

indow is split into four sub-time windows and the customers are

ivided into four groups based on their arrival times in the solu-

ion. Finally, for every guard, 4! = 24 different solutions are cre-

ted by changing the sub-window assigned to every customer set

nd solving the corresponding TSP with time windows. Thereby,

4 different solutions are created for each guard, one of which is

andomly selected every night. 

In Constantino, Mourão, and Pinto (2017) , the problem of col-

ecting the safes from parking meters was discussed. In this case,

n arc represents a task; the goal is to minimize the total routing

ime and maintain a similarity index less than a certain value. To

easure the similarity between tours on different days, each day

s divided into a fixed number of periods containing a fixed num-

er of tasks. The similarity index of two routes is defined as the

ercentage of tasks that are performed in the same period. A MILP

odel was formulated and a metaheuristic was proposed to solve

his problem for H days simultaneously. 

In the model proposed in Yan et al. (2012) , the current ar-

ival time at customer i should differ by at least βp minutes from

he p th previous arrival time with p ∈ { 1 , . . . , P } . This minimum ar-

ival time difference decreases for arrival times further away in

he past, i.e., β1 ≥ β2 ≥ β3 ≥ . . . . For example, when the route for
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aturday is planned, the arrival time at customer i should differ by

t least β1 , β2 , and β3 minutes from the previous arrival times

n Friday, Thursday, and Wednesday, respectively. Furthermore, it

s allowed that δp % of the customers violate the arrival time con-

traints compared to the previous day p . The allowed percentage

p is smaller if the preceding day is closer. It should be noted that

t may happen that the arrival time at the same customer is al-

ays violated. The problem is formulated as an integer multiple-

ommodity network flow problem. To solve instances of approxi-

ately 40 customers, the schedule day is divided into several time

eriods, thus creating multiple sub-problems that are solved in-

ividually by CPLEX. Owing to the limitations of standard solvers,

he algorithm cannot handle larger-scale (practical) instances in a

easonable timespan. 

To generate unpredictable routes in Michallet et al. (2014) , a

eriodic VRPTW was presented in which customers must be vis-

ted daily and the arrival times must be spread across each cus-

omer’s time window. The model does not allow waiting time,

nd subsequent visits to the same customer must differ by a

iven time constant ε. An iterated local search was proposed in

hich infeasible solutions are allowed during the search. Arrival

imes that violate the time window or the arrival time spread

onstraints are penalized at each customer by a piecewise lin-

ar function. Therefore, every departure time from the depot re-

ults in a different total penalty. Forward and backward costs are

sed to calculate the minimum penalty of a route and to effi-

iently evaluate local search operators. The forward cost and back-

ard cost are the total penalty of serving a customer sequence σ
f the last customer is served at time t and if the first customer

s served at time t , respectively. Owing to the time-dependent

enalty functions at each customer, these forward and backward

osts are also time-dependent and should be calculated for ev-

ry time point, which is a computationally intensive task. Further-

ore, the periodic setting increases complexity, as a change in

ne route in a specific period can change penalties in other pe-

iods. 

Only in Michallet et al. (2014) was the arrival time diversifi-

ation problem solved for medium to large-sized instances of the

RP. Therefore, the problem instances and the solution method

n that study will be used to benchmark the proposed solution

pproach. A solution method for the VRPATD is proposed that

mproves all results in Michallet et al. (2014) . A rolling horizon ap-

roach of one day is proposed, rather than a periodic solution ap-

roach in combination with the time-dependent penalty function

s in Michallet et al. (2014) . In each period, arrival time slots from

revious days are removed from the solution space, resulting in a

ehicle routing problem with multiple time windows (VRPMTW).

his reduces the problem complexity and the solution space com-

ared to Michallet et al. (2014) , making it easier to find promising

olutions. 

To the best of the authors’ knowledge, there is no published

tudy on routing problems with multiple time windows without

aiting time. Recently, in Tricoire, Romauch, Doerner, and Hartl

2010) , Belhaiza et al. (2014) , and Hoogeboom et al. (2018) , al-

orithms were presented to minimize the duration of a route by

etermining the optimal departure time from the depot for the

RPMTW, in which waiting time is allowed. In the present case,

s waiting time is not allowed, the duration of a route is fixed be-

ause it consists only of the travel and service time. Furthermore,

t should still be determined whether a departure time exists for

hich the route is feasible, i.e., in which every customer is served

n one of its time windows without causing any waiting time. Ex-

sting algorithms for the VRPMTW that minimize duration are not

fficient for the present problem. Therefore, a novel algorithm is

roposed for determining the time window feasibility of a route

or the VRPMTW without waiting time. The reader is referred to
oogeboom et al. (2018) for a more extensive literature review on

he VRPMTW. 

. Model formulation 

In the vehicle routing problem with arrival time diversification

VRPATD), the current arrival time at customer i should differ by

t least ε i minutes from the P previous arrival times at customer i .

rrivals before the start of a time window are not allowed because

aiting times are forbidden for security reasons. The CIT company

lans the routes on a daily basis because in practice, replenish-

ent orders are received on short notice. Therefore, the VRPATD is

ddressed as a rolling horizon VRPMTW of one day, in which the

ultiple time windows are constructed by deleting the P previous

rrival times with bandwidth ε i from the initial service time win-

ow of customer i . 

The problem is defined on a complete directed graph G = (V, A )

ith vertices V = { 0 , 1 , . . . , n, n + 1 } and arc set A = { (i, j) ∈ V × V :

 � = j} . The vertices V ′ = { 1 , . . . , n } correspond to the set of cus-

omers that should be served and nodes 0 and n + 1 represent the

epot. The set of customers that should be served may differ per

ay; therefore, V ′ 
δ

⊆ V ′ represents the customers on day δ, and A δ

s the corresponding arc set. A non-negative travel time τ ij is as-

ociated with each arc ( i , j ) ∈ A , and let K be the set of available

omogeneous vehicles. The demand and service time of customer

 ∈ V 

′ are given by q i and s i , respectively. The demand and service

ime of the depot are set to zero, i.e., q 0 = q n +1 = s 0 = s n +1 = 0 . For

ll vertices i ∈ V , let [ e i , l i ] be the initial service time window in

hich it is possible to start serving customer i . The capacity of a

ehicle can be restricted for physical, security, or insurance rea-

ons. Let Q denote the maximum value that an armored truck may

arry. Furthermore, the duration of a route of an armored truck is

imited by the working hours of the drivers, and is denoted by D . 

Let αip be an input parameter representing the p th previous ar-

ival time at customer i , where i ∈ V 

′ and p ∈ { 1 , . . . , P } . The current

rrival time at customer i should differ by ε i time units from the P

revious arrival times at customer i . It should be noted that P and

i are input parameters, and the maximum length of ε i depends

n the length of the initial service time window and P as follows:

i = � φ × εmax 
i 

	 , where φ ∈ [0, 1] and εmax 
i 

= 

l i −e i 
2 P . 

To illustrate the arrival time solution space at customer i , the

xample in Fig. 1 is considered. By removing intervals with radius

i around the previous arrival times, the solution space consists

f multiple time windows in which the customer is still available

or service, indicated by the thick green lines in Fig. 1 . This im-

lies that it is required to select one of the available time win-

ows for each customer. Thereby, the problem can be formulated

s a VRPMTW. Let T i = { 1 , . . . , | T i |} be the index set of the time

indows of customer i and let { [ e 1 
i 
, l 1 

i 
] , . . . , [ e 

| T i | 
i 

, l 
| T i | 
i 

] } be the non-

verlapping time windows of customer i , with e 1 
i 

≤ l 1 
i 

< e 2 
i 

≤ l 2 
i 

<

 . . ≤ l 
| T i | 
i 

. These time windows result from deleting the previous ar-

ival intervals, as shown in Fig. 1 . 

The VRPATD is solved in a rolling horizon framework of a single

ay in which the parameters are adjusted daily. When a solution is

ound for day δ with arrival time a i at customer i , then the time

indows of each customer i ∈ V ′ 
δ

should be adjusted for future vis-

ts. The update procedure is performed in two steps. First, the P th 

revious arrival time taken into account at customer i in the so-

ution for day δ will not be taken into account for future visits at

ustomer i . As a result, the arrival time area around αiP is feasible

gain and should be included in the time windows. Secondly, the

nterval with bandwidth ε i around arrival time a i at customer i on

ay δ is no longer feasible for future visits at customer i . This in-

erval is therefore deleted from the arrival time solution space, i.e.,

rom the time windows of customer i . The results of the two-step
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Fig. 1. An example of the arrival time solution space of customer i with P = 3 . 

Fig. 2. An example of the update procedure of the arrival time solution space of customer i with P = 3 . 
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update procedure for the example in Fig. 1 is shown in Fig. 2 . In

step 1, the area around the previous arrival time αi 3 is included in

the time windows. In step 2, the area around the new arrival time

is blocked and the indices of the previous arrival times are up-

dated. It should be noted that in step 2 the areas around αi 1 and

αi 2 overlap, and therefore there are only two feasible time win-

dows after the update. 

To solve the VRPATD, an Iterated Granular Tabu Search (IGTS)

is proposed. Before describing the IGTS, the implications of hav-

ing multiple time windows will be explored in more detail. In the

next section, a method will be presented to efficiently determine

whether routes are feasible in terms of time windows, and dif-

ferent methods will be developed to penalize infeasible solutions.

Both the proposed feasibility check and the penalization methods

are embedded in the IGTS described in Section 5 . 

4. Handling multiple time windows 

In traditional routing problems with multiple time windows,

waiting time is allowed and the total duration is minimized. In

such problems, the waiting time of a given route is minimized

by determining the optimal departure time from the depot. In the

present problem, waiting time is not allowed; thus, for all feasible

departure times from the depot, the duration of a given route is

the same, that is, it is equal to the sum of the service time and the

travel time. However, it should still be verified whether a route is

feasible because not all departure times from the depot are feasi-

ble, owing to the multiple time windows. In the present problem,

a route is feasible in terms of time windows if there exists a depar-

ture time from the depot such that the vehicle arrives in one of

the time windows at each customer in the route. 

In this section, a method is first proposed to efficiently deter-

mine whether a route is feasible in terms of time windows. Sub-

sequently, it is demonstrated that this algorithm can be used to

determine whether neighborhood operations result in a time win-

dow feasible route. Then, four different methods are described for

penalizing routes that are not feasible in terms of time windows. 

4.1. Time window feasibility check 

To determine if a route is time window feasible, we use the for-

ward start intervals introduced in Hoogeboom et al. (2018) for the

VRPMTW. In contrast to the problem in Hoogeboom et al. (2018) ,

the VRPATD does not allow waiting time; therefore, the definition

and generation of the forward start intervals should be adjusted. 

Let σ be a route with m customers. For the sake of simplic-

ity, let the customers be denoted by σ ′ = { 1 , . . . , m } , and let 0 and

m + 1 represent the depot. The forward start intervals of customer
 are the feasible service start times for customer i such that the

receding customers are also feasible, i.e., service starts in one of

heir time windows without any waiting time. Let F i be the index

et of the forward start intervals associated with customer i ∈ σ ′ .
et [ E F 

i 
(y ) , L F 

i 
(y )] be the forward start interval y of customer i .

hese intervals are non-overlapping and increasingly ordered, i.e.,

 

F 
i 
(1) ≤ L F 

i 
(1) < E F 

i 
(2) ≤ L F 

i 
(2) < · · · < E F 

i 
(| F i | ) ≤ L F 

i 
(| F i | ) . 

The forward start intervals are iteratively constructed from

he first to the last customer in a route. Therefore, the for-

ard start intervals of customer i + 1 are obtained by compar-

ng the forward start intervals of customer i with the time win-

ows of customer i + 1 . The forward start interval y ∈ F i leads to

 new forward start interval in the time window t ∈ T i +1 at cus-

omer i + 1 if [ E F 
i 
(y ) + s i + τi,i +1 , L 

F 
i 
(y ) + s i + τi,i +1 ] and [ e t 

i +1 
, l t 

i +1 
]

re overlapping. Hence, all feasible combinations between forward

tart intervals F i and time windows T i +1 are given by { (y, t) ∈
 i × T i +1 | [ E F i 

(y ) + s i + τi,i +1 , L 
F 
i 
(y ) + s i + τi,i +1 ] 

⋂ 

[ e t 
i +1 

, l t 
i +1 

] � = ∅} . The

ew forward start interval z at customer i + 1 generated from the

easible combination ( y , t ) is calculated by the following forward

ecursion: 

 

F 
i +1 (z) = max { E F i (y ) + s i + τi,i +1 , e 

t 
i +1 } , 

 

F 
i +1 (z) = min { L F i (y ) + s i + τi,i +1 , l 

t 
i +1 } . (1)

he iterative process is initialized with the forward start interval

f the depot, which is equal to the time window [ e 0 , l 0 ]. A route is

easible if the last customer in the route (customer m ) has a non-

mpty set of forward start intervals. It should be noted that every

orward start interval of a customer corresponds to a different se-

ection of time windows. An illustrative example of generation of

orward start intervals is shown in Fig. 3 . In this example, the ser-

ice times are set to zero and the lines between the customers in-

icate the travel time. The thick black lines represent the forward

tart intervals per customer. 

As the time windows and forward start intervals are non-

verlapping and increasingly ordered, several combinations be-

ween forward start intervals of customer i and time windows of

ustomer i + 1 can be excluded. This is shown in Proposition 1 . 

roposition 1. If the forward start interval y ∈ F i and the time win-

ow t ∈ T i +1 are a feasible combination, then the forward start in-

erval y ′ ∈ F i , with y ′ > y , and the time window t ′ ∈ T i +1 , with t ′ < t ,

annot be a feasible combination. 

roof. Assuming that ( y , t ) is a feasible combination, we

ave [ E F 
i 
(y ) + s i + τi,i +1 , L 

F 
i 
(y ) + s i + τi,i +1 ] 

⋂ 

[ e t 
i +1 

, l t 
i +1 

] � = ∅ by def-

nition. Therefore, e t 
i +1 

≤ L F 
i 
(y ) + s i + τi,i +1 . Let y ′ ∈ F i and t ′ ∈

 i +1 , with y ′ > y and t ′ < t , respectively. As the time windows

nd forward start intervals are non-overlapping and increasingly
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Fig. 3. Forward start intervals for the three customers in a route. 
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Algorithm 2 Feasible Combination Check F C C (i, t, E i −1 , L i −1 , θ, 

F easible ) . 

1: if F easible = true then 

2: return Feasible 

3: else if i ≤ m AND t ≤ | T i | then 

4: if E i −1 + s i −1 + τi −1 ,i ≤ l t 
i 

then 

5: if L i −1 + s i −1 + τi −1 ,i ≥ e t 
i 

then � Arrival in time window 

t at customer i 

6: θi = t � Adjust last checked time window 

7: E i = max { E i −1 + s i −1 + τi −1 ,i , e 
t 
i 
} 

8: L i = min { L i −1 + s i −1 + τi −1 ,i , l 
t 
i 
} 

9: F C C (i + 1 , θi +1 , E i , L i , θ, F easible ) 

10: if L i −1 + s i −1 + τi −1 ,i > l t 
i 

then 

11: F C C (i, t + 1 , E i −1 , L i −1 , θ, F easible ) 

12: end if 

13: end if 

14: else � Arrival after time window t 

15: F C C (i, t + 1 , E i −1 , L i −1 , θ, F easible ) 

16: end if 

17: else if i > m then 

18: F easible = true 

19: end if 
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l  
rdered, we have that l t 
′ 

i +1 
< e t 

i +1 
≤ L F 

i 
(y ) + s i + τi,i +1 < E F 

i 
(y ′ ) + s i +

i,i +1 . Hence, ( y ′ , t ′ ) is not a feasible combination. �

The Forward Algorithm ( Algorithm 1 ) generates the forward

tart intervals in a depth-first manner. The algorithm stops as

oon as a forward start interval is found for the last customer

 , i.e., when a feasible schedule has been found for route σ . In

ppendix A , it is shown that all feasible start times at customer

 are included in a forward start interval. Therefore, the Forward

lgorithm indicates the time window feasibility of the route σ =
 0 , 1 , . . . , m, m + 1 } . 

lgorithm 1 Forward Algorithm. 

1: Initialization: θ = { θ1 , . . . , θm 

} = { 1 , . . . , 1 } & F easible = false ; 

2: for t = 1 : | T 1 | do 

3: F C C (1 , t, e 0 , l 0 , θ, F easible ) 

4: if F easible = true then 

5: return F easible 

6: end if 

7: end for 

By the Feasible Combination Check (FCC, Algorithm 2 ), it is

etermined if the forward start interval [ E i −1 , L i −1 ] of customer

 − 1 and the time window t of customer i are a feasible com-

ination. If E i −1 + s i −1 + τi −1 ,i ≤ l t 
i 

and L i −1 + s i −1 + τi −1 ,i ≥ e t 
i 
, then

his is a feasible combination and the new forward start inter-

al at customer i is calculated; then the process continues to the

ext customer. Only if L i −1 + s i −1 + τi −1 ,i > l t 
i 

can the forward start

nterval [ E i −1 , L i −1 ] and the time window t + 1 ∈ T i be a feasible

ombination. This is checked in lines 10–11 in Algorithm 2 . If

 i −1 + s i −1 + τi −1 ,i > l t 
i 
, then a vehicle that serves customer i − 1

uring [ E i −1 , L i −1 ] arrives after time window t at customer i ; thus,

his combination is not feasible, and the next time window t + 1

t customer i should be checked. 

It should be noted that in line 9, the process does not start from

he first time window at customer i + 1 but from the last checked

ime window θi +1 at customer i + 1 , following Proposition 1 . 

By Proposition 1 , the maximum number of feasible combina-

ions between forward start intervals F i −1 and time windows T i 
s equal to | F i −1 | + | T i | − 1 . Therefore, the worst-case complexity of

he Forward Algorithm for the VRPATD is O ( 
∑ m 

i =1 (1 + 

∑ i 
j=1 (| T j | −

)) , as proven in Appendix A . This complexity is the same as for

he algorithm proposed in Hoogeboom et al. (2018) . However, the

verage computational time of the Forward Algorithm will be sig-
ificantly less than that of the algorithm for the VRPMTW because

aiting time is not allowed; therefore, fewer forward start inter-

als are generated and no dominance checks should be performed.

To evaluate neighborhood operations during the local search

uickly, all forward start intervals at all customers in a route are

equired. The breadth-first implementation that generates all for-

ard start intervals, given in Appendix B , is faster than the depth-

rst implementation when all forward start intervals should be

enerated. The fast neighborhood evaluation will be demonstrated

n Section 4.2 , but the backward start intervals should first be de-

ned. 

.1.1. Backward recursion 

As shown in the previous section, the forward start intervals are

ufficient to determine whether a route is time window feasible. To

valuate local search operations quickly, the backward start inter-

als are also required. The backward start intervals of customer i

epresent the service start times for customer i such that the suc-

eeding customers are feasibly served, i.e., the service start times

or customers i + 1 , . . . , m lie in one of their time windows without

ny waiting time. The construction of the backward start intervals

s similar to the generation of the forward start intervals except

hat they are recursively generated from the last customer m to

he first customer 1. 

Let B i be the index set of the backward start intervals of cus-

omer i , sorted in increasing order, and let [ E B 
i 
(y ) , L B 

i 
(y )] be the

ackward start interval y of customer i . If the backward start

nterval y of customer i + 1 is compared with the time win-

ows t of customer i , then this results in a new backward start

nterval of customer i if [ E B 
i +1 

(y ) − τi,i +1 − s i , L 
B 
i +1 

(y ) − τi,i +1 − s i ]

nd [ e t 
i 
, l t 

i 
] are overlapping. Hence, the set of feasible combina-

ions between backward start intervals B i +1 and time windows T i 
s given by { (y, t) ∈ B i +1 × T i | [ E B i +1 

(y ) − τi,i +1 − s i , L 
B 
i +1 

(y ) − τi,i +1 −
 i ] 

⋂ 

[ e t 
i 
, l t 

i 
] � = ∅} . Let ( y , t ) be a feasible combination; then the new

ackward start interval z generated from ( y , t ) is given by 

 

B 
i (z) = max { E B i +1 (y ) − τi,i +1 − s i , e 

t 
i } , 

 

B 
i (z) = min { L B i +1 (y ) − τi,i +1 − s i , l 

t 
i } . (2) 

The procedure is initialized with the backward start interval [ e 0 ,

 ] of the depot, and the generation of all backward start intervals
0 
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Fig. 4. The deleted intervals of two arrival times a i and a ′ 
i 

in time window t of 

customer i . 
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of all customers in a route can be performed as in the case of the

forward start intervals. 

4.2. Efficient feasibility check for local search moves 

Once the forward and backward start intervals for all customers

have been obtained, it can be quickly determined whether a lo-

cal search operation results in a time window feasible solution. As

most local search operations are based on insertion and deletion

of customers, only these operations will be discussed. 

4.2.1. Deletion 

Assume that customer i is to be removed from route σ =
{ 0 , 1 , . . . , m, m + 1 } . As waiting time is not allowed, it may happen

that route σ is feasible and the new route σ ′ = { 0 , 1 , . . . , i − 1 , i +
1 , . . . , m + 1 } is not feasible because removing customer i can in-

troduce waiting time in the route. To determine if the new route

σ ′ is time window feasible, the forward start intervals of customer

i − 1 are compared with the backward start intervals of customer

i + 1 . Route σ ′ is time window feasible if there exist f ∈ F i and

b ∈ B i +1 such that 

[ E F i −1 ( f ) + s i −1 + τi −1 ,i +1 , L 
F 
i −1 ( f ) + s i −1 

+ τi −1 ,i +1 ] 
⋂ 

[ E B i +1 (b) , L B i +1 (b)] � = ∅ . (3)

If customer i is deleted from route σ , then the forward and back-

ward start intervals of the customers in the route should be recal-

culated. As a part of the route remains the same, only the forward

start intervals of customers i + 1 , . . . , m and the backward start in-

tervals of customers 1 , . . . , i − 1 should be recalculated. 

4.2.2. Insertion 

Insertion of a customer is performed similarly. Assume that cus-

tomer α is inserted between customers i and i + 1 in route σ . To

determine whether the new route σ ′ = { 0 , 1 , . . . , i, α, i + 1 , . . . , m +
1 } is time window feasible, the forward start intervals of customer

α are calculated based on the forward start intervals of customer i .

As in (3) , the forward start intervals f ∈ F α and the backward start

intervals b ∈ B i +1 are compared to determine whether this results

in a feasible route. 

The same approach can be used for the removal and insertion

of a sequence of customers, as well as for more complex opera-

tors. For example, the 2-Opt ∗ operation removes edge (i, i + 1) and

edge ( j − 1 , j) of two different routes and replaces them by ( i , j )

and ( j − 1 , i + 1) , respectively. To determine whether this opera-

tion results in a time window feasible solution, only the forward

start intervals of customer i should be compared with the back-

ward start intervals of customer j ; the same holds for j − 1 and

i + 1 . 

4.3. Departure time from the depot 

If a solution to the VRPATD has been obtained for day δ, then

multiple feasible departure times from the depot are possible for

every route in the solution. The arrival times of the customers in

a route can be immediately derived by fixing the departure time

from the depot. As described in Section 3 , the arrival time at cus-

tomer i ∈ V ′ 
δ

for day δ should be deleted from the arrival time solu-

tion space, along with the bandwidth ε i . To ensure that the arrival

time solution space for subsequent visits is as large as possible,

the departure time from the depot is selected such that the total

length of the intervals deleted at all customers in the route is min-

imized. 

Let σ be a route in the solution for day δ and let σ ′ be the

customers served in this route. Let D i ( a i ) be the length of the

deleted interval at customer i ∈ σ ′ if the vehicle arrives at time
 i at customer i , i.e., D i (a i ) = min (εi , a i − e t 
i 
) + min (εi , l 

t 
i 
− a i ) with

 

t 
i 
≤ a i ≤ l t 

i 
. In Fig. 4 , two examples of the deleted interval of two

ossible arrival times a i and a ′ 
i 

at customer i are shown. As a ′ 
i 

is

cheduled close to the boundary of time window t , less than 2 ε i 

s deleted from the solution space. The backward start intervals of

he first customer in a route represent the service start times for

he first customer so that all customers in the route are feasible.

herefore, the feasible departure times from the depot correspond

o the backward start intervals of the first customer in a route, be-

ause if the service at the first customer starts at time χ , then the

orresponding departure time is given by χ − τ01 . 

Assuming that route σ is feasible, there are | B 1 | backward start

ntervals at the first customer in the route, i.e., the start time at

ustomer 1 should lie in one of these | B 1 | backward start inter-

als. Therefore, the optimal start time in [ E B 
1 
(y ) , L B 

1 
(y )] , with y ∈ B 1 ,

hould be determined, i.e., the time that minimizes the total length

f the deleted intervals of all customers in the route. If a vehi-

le serves the first customer at time χ , then the vehicle arrives

t time χ + 

∑ i −1 
j=1 s j + τ j, j+1 at customer i ; thus, the total length

f the deleted intervals at all customers in route σ is given by

 (χ ) = 

∑ m 

i =1 D i (χ + 

∑ i −1 
j=1 τ j, j+1 + s j ) . Lemma 1 shows that the op-

imal start time at customer 1 is obtained at one of the boundaries

f the backward start intervals. 

emma 1. The start time χ of service for the first customer in a

oute that minimizes D ( χ ) is obtained at E B 
1 
(1) , L B 

1 
(1) , . . . , E B 

1 
(| B 1 | ) ,

r L B 1 (| B 1 | ) . 
roof. min (εi , a i − e t 

i 
) and min (εi , l 

t 
i 
− a i ) are both concave piece-

ise linear functions on a i ∈ [ E B 
i 
(y ) , L B 

i 
(y )] with y ∈ B i . As the sum

f two concave piecewise linear functions is again concave piece-

ise linear, D i ( a i ) is a concave piecewise linear function on the

nterval [ E B 
i 
(y ) , L B 

i 
(y )] . Therefore, D ( χ ) is also concave piecewise

inear in χ ∈ [ E B 
1 
(y ) , L B 

1 
(y )] . Hence, the minimum of D ( χ ) in this in-

erval is obtained at one of the endpoints, i.e., at E B 
1 
(y ) or L B 

1 
(y ) . �

Therefore, for each route in the solution for day δ, the to-

al deleted interval length D ( χ ) should be calculated for χ =
 

B 
1 
(1) , L B 

1 
(1) , . . . , E B 

1 
(| B 1 | ) , L B 1 

(| B 1 | ) , and the service start time for

he first customer χ that minimizes D ( χ ) is selected. 

.4. Penalty functions for time window violation 

In Section 4.1 , it is demonstrated that the forward and back-

ard start intervals can be used to determine whether a route

s feasible in terms of time windows. It is often the case in

etaheuristic searches that to allow the search to reach new ar-

as of the solution space, some constraints may be violated at

he expense of a penalty. In this section, different methods are

resented for penalizing a solution in which the time windows

re violated. A more efficient implementation of the penalty mea-

ure defined in Michallet et al. (2014) is presented, and three alter-

ative penalty measures are proposed that are less time consuming

han the penalty measure in that study. The four penalty methods

an be divided in two categories corresponding to whether a vehi-

le waits at a customer or not. 

Wait : This penalty method is based on the classical VRPTW

ith duration minimization from Savelsbergh (1992) , in which

aiting time is allowed but penalized. If a vehicle arrives at time

 before a time window at customer i , then it waits until the start
i 
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Fig. 5. An example of generating the forward penalty function of Customer 2. 
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f the time window. The penalty at this customer is equal to the

aiting time, i.e., p i = e t 
i 
− a i if l 

t−1 
i 

< a i < e t 
i 
, where l 0 

i 
= 0 . If a ve-

icle arrives after the last time window [ e 
| T i | 
i 

, l 
| T i | 
i 

] at customer i ,

hen the delay at customer i is calculated by p i = a i − l 
| T i | 
i 

. If the

ehicle arrives within a time window, then the penalty is zero,

.e., p i = 0 . The total time window violation penalty of solution x

s given by the sum of the waiting time and delay at every cus-

omer, namely, t(x ) = 

∑ 

i ∈ V p i . 

For every route in the solution, two options for the departure

ime from the depot are considered corresponding to two different

enalty functions: 

• Penalty 1: Departure from the depot so that the first customer

is served as early as possible, i.e., the departure time of the de-

pot is equal to max { e 0 , e 1 1 − τ01 } . 
• Penalty 2: Choose the departure time from the depot so that

the penalty is minimized. 

Do not wait : In this penalization method, all customers are im-

ediately served upon arrival even if the arrival time lies outside

he time windows of the customer. This penalty method is com-

arable to the time window violation penalties for the VRP with

oft time windows ( Figliozzi, 2010; Fu, Eglese, & Li, 2008 ). The to-

al time window penalty is calculated by summing up the differ-

nce between the arrival time and the closest time window bound-

ry (previous or next time window) at all customers that violate

he time window constraint. Therefore, the total time window vi-

lation is measured by t(x ) = 

∑ 

i ∈ V min t∈ T i | min { a i − e t 
i 
, l t 

i 
− a i , 0 }| .

gain, there are two options for the departure time from the de-

ot: 

• Penalty 3: Departure from the depot at max { e 0 , e 1 1 − τ01 } so

that the first customer is serviced as early as possible. 
• Penalty 4: Departure from the depot so that the penalty is min-

imized. This penalty is equal to the penalty measure used in

Michallet et al. (2014) . 

As Penalties 1 and 3 involve fixed departure times from the

epot, the calculations of these penalty functions are straightfor-

ard and easy to implement. Penalties 2 and 4 minimize the time

indow violations across all departure times from the depot. In

he remainder of this section, a technique for efficiently obtain-

ng this minimum penalty is indicated for both penalty methods.

or explanatory reasons, Penalty 4 will be discussed first and then

enalty 2. 

.4.1. Do not wait: minimal penalty 

Penalty function 4 corresponds to the penalty function pro-

osed in Michallet et al. (2014) . Let p i ( a ) be the penalty function

f customer i representing the penalty when a vehicle arrives at

imes a at customer i , i.e., p i ( a ) is the difference between arrival

ime a and the closest time window at this customer. Two exam-

les of penalty functions are given for Customer 1 and Customer 2

n Fig. 5 . As these penalty functions are piecewise linear functions,

hey are completely determined by the breakpoints, represented by

ots in Fig. 5 . Let R i = { r 1 
i 
, . . . , r 

| R i | 
i 

} represent the timestamps cor-

esponding to the breakpoints of customer i , with p i (r 
j 
i 
) being the

enalty at breakpoint r 
j 
i 
. 

For every customer in a route, the forward penalty function F i 
s generated. Let F i ( a ) be the total penalty at customers { 1 , . . . , i }

hen a vehicle arrives at time a at customer i . The forward penalty

unctions are recursively constructed by F i (a ) = p i (a ) + F i −1 (a −
 i −1 − t i −1 ,i ) . An example of the generation of the forward penalty

unction of Customer 2 is shown in Fig. 5 . 

In Michallet et al. (2014) , it is stated that the forward penal-

ies should be calculated for every time point. However, the for-

ard penalty functions are piecewise linear functions and hence
ompletely determined by the breakpoints. Therefore, in the pro-

osed approach, only the breakpoints of the forward penalty func-

ions are considered, which may result in a significant reduction

n computational time. Let R i = { f 1 
i 
, . . . , f 

| R i | 
i 

} be the set of break-

oints corresponding to the forward penalty function F i . Let A i =
 a 1 

i 
, . . . , a 

| R i −1 | 
i 

} be the set of arrival times of customer i corre-

ponding to the breakpoints R i −1 , with a k 
i 

= r k 
i −1 

+ s i −1 + τi −1 ,i for

 = 1 , . . . , | R i −1 | . The arrival times A i and the original breakpoints

 i of customer i form the breakpoint set R i of the forward penalty

unction of customer i , i.e., R i = A i 

⋃ 

R i . Only the forward penal-

ies corresponding to these breakpoints are calculated by F i ( f 
j 

i 
) =

p i ( f 
j 

i 
) + F i −1 ( f 

j 
i 

− s i −1 − t i −1 ,i ) for all f 
j 

i 
∈ R i . The forward penalties

t other arrival times can be easily derived as follows: If f 
j−1 

i 
< a <

f 
j 

i 
, then F i ( a ) is determined using linear interpolation of the break-

oints f 
j−1 

i 
and f 

j 
i 

. If the arrival time lies before the first break-

oint, i.e., if a < f 1 
i 
, then all customers are served before their first

ime window. In this case, the penalty is equal to the penalty at

he first breakpoint and the additional difference f 1 
i 

− a that is en-

ountered at all customers 1 , . . . , i ; thus, the penalty is equal to

 i (a ) = F i ( f 1 
i 
) + i ( f 1 

i 
− a ) . Similarly, if a > f 

| R i | 
i 

, then all customers

re served after the last time window, and the penalty is equal to

 i (a ) = F i ( f 
| R i | 
i 

) + i (a − f 
| R i | 
i 

) . 

The forward penalty function F m 

of the last customer in a route

epresents the total penalty function of the entire route { 1 , . . . , m } .
herefore, F m 

can be used to calculate the minimum penalty of

he route. As stated in Lemma 2 , the minimum value of a forward

enalty function is always obtained at a breakpoint. Hence, to cal-

ulate the minimum penalty of a route, only the breakpoints of the

otal penalty function F m 

should be considered. 

emma 2. The minimum value of a forward penalty function is al-

ays obtained at a breakpoint. 

roof. (By contradiction.) Let a be the arrival time at customer i

ith minimum penalty F i ( a ), and it is assumed that a is not a

reakpoint of F i . As the penalty functions of the customers in-

rease outside the time windows, the forward penalty functions

lso increase before the first breakpoint and after the last break-

oint. Therefore, the arrival time a is located between two break-

oints, i.e., there exists j such that f 
j 

i 
< a < f 

j+1 
i 

. As the forward

enalty functions are piecewise linear, the breakpoint f 
j 

i 
or f 

j+1 
i 

as a lower penalty than a or all three penalties are equal, i.e.,

 i ( f 
j 

i 
) = F i (a ) = F i ( f 

j+1 
i 

) , which leads to a contradiction. Therefore,

he minimum value of the forward penalty function F i is always

ttained at a breakpoint. �

The backward penalty function B i ( a ) of customer i represents

he total penalty of the customers { i, . . . , m } when a vehicle ar-

ives at time a at customer i . The backward penalty functions are
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Fig. 6. Generating the forward penalty functions of Customer 2 (left) and Customer 3 (right). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 7. Generating the backward penalty function of customer m − 1 . 
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generated as in the case of the forward penalty functions, but from

the last to the first customer in a route. 

The forward and backward penalty functions can be used to

efficiently recalculate the lowest penalty of the route when a

neighborhood operation is evaluated. For example, if customer i is

deleted from route σ , then the total penalty function of the new

route is obtained by summing the forward penalty of customer

i − 1 and the backward penalty of customer i + 1 . Hence, the to-

tal penalty function of the new route is given by F (a ) = F i −1 (a ) +
B i +1 (a + s i −1 + τi −1 ,i +1 ) . As in Lemma 2 , the minimum penalty of

the new route is obtained at one of the breakpoints of the new to-

tal penalty function. Therefore, only the breakpoints of F ( a ) should

be considered. 

4.4.2. Wait: minimal penalty 

For Penalty function 2, the forward and backward penalty func-

tions defined in the previous section are also used. However,

as waiting time is now allowed, the generation of the functions

should be adjusted. When a vehicle arrives between time windows,

it should wait until the start of the next time window. Hence, the

arrival and start times for serving a customer are not always the

same as in Penalty 2. Let p i ( a ) be the penalty of customer i when

a vehicle arrives at time a at customer i . Let F i ( χ ) be the for-

ward penalty of customers { 1 , . . . , i } when the service at customer

i starts at time χ . The forward penalty functions are recursively

generated from the first to the last customer in the route. Two ex-

amples of forward penalty function generation are given in Fig. 6 .

Owing to the waiting time, the (forward) penalty functions are not

continuous; however, the functions are still piecewise linear, and

therefore they are also completely determined by the breakpoints. 

The service at customer i can start only in the time win-

dows or after the last time window at the expense of a penalty.

Let dom ( F i ) be the domain of F i ( χ ) with dom (F i ) ⊂ { [ e 1 
i 
, l 1 

i 
] ∪ . . . ∪

[ e 
| T i | 
i 

, l 
| T i | 
i 

] ∪ [ l 
| T i | 
i 

, ∞ [ } . For χ − s i −1 − τi −1 ,i ∈ dom (F i −1 ) the forward

penalty function of customer i is generated as follows: 

F i (χ ) = 

{
F i −1 (χ − s i −1 − τi −1 ,i ) 
F i −1 (χ − s i −1 − τi −1 ,i ) + p i (χ ) 

. 

For other start times χ , F i ( χ ) is not defined because then χ
is not a feasible start time. As it is possible that a vehicle ar-

rives between time windows and waits until the start of the next

time window, the penalties corresponding to the start times of

the time windows should also be calculated. Let a t = max { χ | χ ≤
e t 

i 
and χ − s i −1 − τi −1 ,i ∈ dom (F i −1 ) } be the latest arrival time be-

fore the time window boundary e t 
i 
. If l t−1 

i 
< a t ≤ e t 

i 
, then this ar-

rival time lies between the time windows t − 1 and t ; hence, the

vehicle should wait, and thus the penalty at start time e t 
i 

is equal

to F i (e t 
i 
) = F i −1 (a t − s i −1 − τi −1 ,i ) + p i (a t ) . This penalty corresponds
o the waiting time and is represented by the horizontal arrow in

he right part of Fig. 6 . If a t does not exist or a t / ∈ ] l t−1 
i 

, e t 
i 
] , then

 

t 
i 

/ ∈ dom (F i ) . 

To recalculate the minimum penalty quickly if neighborhood

perations are applied, backward penalties are also required. Let

he backward penalty function B i ( a ) of customer i represent the

otal penalty of the customer sequence { i, . . . , m } when a vehi-

le arrives at time a at customer i . The backward penalty func-

ion of all customers can be recursively calculated from the last to

he first customer in a route by B i (a ) = p i (a ) + B i +1 (a + s i + τi,i +1 )

or a ∈ [ e t 
i 
, l t 

i 
] , where t ∈ T i and a > l 

| T i | 
i 

. Owing to the waiting time,

he backward penalties for arrival times l t−1 
i 

< a < e t 
i 

are given by

 i (a ) = B i (e t 
i 
) + p i (a ) = B i (e t 

i 
) + e t 

i 
− a . An example of the genera-

ion of the backward penalty function of customer m − 1 is given

n Fig. 7 . It should be noted that as the backward function repre-

ents the penalty for all arrival times instead of start times, there

re no domain issues. 

If, for example, customer i is to be deleted from route σ , then

he total penalty function of the new route is given by F (χ ) =
 i −1 (χ ) + B i +1 (χ + s i −1 + τi −1 ,i +1 ) for χ ∈ dom (F i −1 ) . As the func-

ion F ( χ ) is again piecewise linear, the minimum penalty of the

ew route is obtained at a breakpoint of F ( χ ). Therefore, only these

oints should be considered to determine the minimum penalty of

he new route. 

. Iterated granular tabu search heuristic 

Tabu search is a well-known search strategy that explores the

olution space and moves each iteration to the best solution in the

eighborhood. To avoid being trapped in a local optimum, moving

o poorer solutions is accepted if no improving solution is avail-

ble in the neighborhood. To prevent cycling, a move that restores
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he previously accepted move to a new solution will be prohibited

or θ iterations. The tabu status can be overridden when the new

olution is the best ever found, which is the so-called aspiration

riterion ( Gendreau, Hertz, & Laporte, 1994 ). 

In this section, the components of the Iterated Granular Tabu

earch (IGTS) are described. An overview of the IGTS heuristic is

iven in Algorithm 3 . The IGTS is initialized with a feasible initial

lgorithm 3 Iterated granular tabu search (IGTS). 

1: Initialization: Create an initial feasible solution x̄ by the RM

heuristic, x ∗ = x̄ ∗ = x̄ 

2: for I iterations do 

3: Select x ∈ N ( ̄x ) that minimizes V ( ̄x ) , set x̄ = x 

4: if V ( ̄x ) < V ( ̄x ∗) then � Check if current solution improves

local optimum 

5: x̄ ∗ = x̄ 

6: if V ( ̄x ) < V (x ∗) then � Check if current solution

improves incumbent 

7: x ∗ = x̄ 

8: end if 

9: end if 

10: Update the tabu status 

11: Every μ iterations: Update the self-adjusting parameters β1 ,

β2 and β3 

12: if x̄ ∗ not improving for η iterations then 

13: Shake solution x̄ � Shaking phase is called

14: x̄ ∗ = x̄ � Reset local optimum 

15: end if 

16: if x ∗ not improving for S iterations then 

17: return x ∗

18: end if 

19: end for 

olution x ∗ constructed by applying the route minimization (RM)

euristic in Nagata and Braysy (2009) , as described in Section 5.3 .

n each iteration, the solution x̄ with minimum objective value

 ( ̄x ) is selected from the neighborhood, and the local optimum

¯ ∗ and the best found solution x ∗ are updated if necessary. If

he local optimum x̄ ∗ does not improve for η iterations, then the

earch is restarted by shaking the solution; details are described in

ection 5.2 . The IGTS stops if the maximum number of iterations

 is reached or if the incumbent solution x ∗ is not improved for S

terations. 

As different operators are used in the shaking procedure, the

euristic bears a similarity to a VNS algorithm. Because no sys-

ematic change of neighborhoods is used in both the shaking pro-

edure and the local search, the present method is referred to as

n iterated granular tabu search. 

.1. Penalized objective function V ( x ) 

Let x be a solution and let the objective value be equal to c(x ) =
(x ) + F m, with t ( x ) being the total travel time, F being the fixed

ost of using a vehicle, and m being the number of vehicles used.

ollowing ( Gendreau et al., 1994 ) and Ho and Gendreau (2006) , to

btain better feasible final solutions, the violation of the capac-

ty, duration, and time window constraints is allowed during the

earch at the expense of a penalty. The overload q ( x ) is calculated

y q (x ) = 

∑ | K| 
k =1 

max { ∑ 

(i, j) ∈ A q i x k i j 
− Q, 0 } and the overtime is given

y d(x ) = 

∑ | K| 
k =1 

max { ∑ 

(i, j) ∈ A (s i + τi j ) x 
k 
i j 

− D, 0 } . For the time win-

ow violation t ( x ), four different penalty functions are described in

ection 4.4 . Therefore, the penalized objective function of the so-

ution x is given by V (x ) = c(x ) + β1 q (x ) + β2 d(x ) + β3 t(x ) , where

i are parameters that are self-adjusted every μ iterations. If in

he last μ iterations the capacity constraint is violated in at least
ne route, then the parameter β1 is multiplied by δ > 1; otherwise,

he capacity constraint holds in all μ solutions and β1 is divided

y δ. The same update rule is applied to parameters β2 and β3 . 

.2. Granular neighborhood and tabu list 

To accelerate the local search, a granular neighborhood will be

sed. This sparsification method was first introduced in Toth and

igo (2003) and is used to improve calculation time by restrict-

ng the neighborhood to moves containing elements likely to be

art of high-quality solutions. The restricted arc set in the present

tudy consists of the arcs from each customer to the c % closest cus-

omers. All depot arcs are also included in the restricted arc set,

s it was shown in Schneider, Schwahn, and Vigo (2017) that this

mproves solution quality. In every iteration, the best move of the

omposite neighborhood is selected. The composite neighborhood

s obtained by using five well-known operators for the VRP with

ime windows: 

Intra-route 

N 1 - Relocate: Customer i is relocated to the best new position

in the same route. 

N 2 - Exchange: Two customers i and j from the same route ex-

change position. 

Inter-route 

N 3 - Relocate: Customer i is relocated to the best position in 

another route. 

N 4 - Cross-exchange: Two customers i and j from two different

routes exchange position. 

N 5 - 2-Opt ∗: The tails of two routes are exchanged. 

As described in Toth and Vigo (2003) , in the tabu search, only

he moves with a generator arc in the restricted arc set are per-

ormed. Let (i, i + ) be the generator arc, where i + is the new suc-

eeding node following customer i after one of the operators above

s applied. In Fig. 8 , the generator arc of the cross-exchange and

-Opt ∗ moves are shown in bold. After the generator arc for a

iven operator is chosen, the other arcs involved in a move fol-

ow immediately. This implies that arcs that do not belong to the

estricted arc set can be inserted by the operators as well. During

he search, a different tabu status is used for the intra- and inter-

oute operators. For the inter-route moves, the attribute set of a

olution as introduced in Cordeau, Laporte, Mercier et al. (2001) is

sed. The attribute set of a solution x is given by B (x ) = { (i, k ) :

ustomer i is visited by vehicle k } . Therefore, the attribute set B ( x )

efines the structure of the solution x and can be used to con-

rol the tabu status. As in Belhaiza et al. (2014) , the set L θ con-

ains the attribute sets of the θ most recently explored solutions.

 solution x generated by an inter-route operator is declared tabu

f B ( x ) ∈ L θ . An intra-route operation does not change the alloca-

ion of customers to vehicles. Therefore, the attribute set remains

he same, and a different tabu status will be used: if an intra-

oute move is performed on customer i in vehicle k , then intra-

oute moves involving customer i in route k are declared tabu for

iterations. If a tabu move improves the best known solution,

hen the aspiration criterion is satisfied and the tabu move is per-

ormed. 

A shaking procedure is applied when the local optimum does

ot improve for η iterations. For the shaking procedure, one oper-

tor is randomly selected out of four operators: the first two op-

rators are the intra-exchange and 2-Opt ∗. The third operator per-

orms relocation of a sequence of (at most) four customers to the

est position in another route. The last is the cross-sequence oper-

tor in which two sequences of at most four customers of two dif-

erent routes exchange positions. For the inter-route operators, the
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Fig. 8. Example of Cross-exchange (left) and 2-Opt ∗ (right): the generator arc is shown in bold and the dashed arcs represent the removed arcs. 
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best move of every combination of non-empty routes is executed.

The intra-route operator is applied to every non-empty route, and

a minimum of S itr moves should be performed. 

If the incumbent solution x ∗ has not improved after ρ shakes,

then the solution is restarted from the incumbent solution and the

current tabu lists and penalties are retained. This will diversify the

search, as it is highly likely that the local search will take a differ-

ent path ( Schneider et al., 2017 ). 

5.3. Initial solution 

To construct an initial solution, each customer is first served

by a separate vehicle. To minimize the number of vehicles, the

RM heuristic in Nagata and Braysy (2009) is used. In each itera-

tion, the RM heuristic attempts to reduce the number of routes

by selecting a route from the current solution for removal. The

customers of this removed route are put in the ejection pool in-

troduced in Lim and Zhang (2007) . First, attempts are made to

insert a customer v of the ejection pool in the remaining routes

without violating capacity, duration, and time window constraints.

If there is no feasible insertion position for customer v , then the

customer is inserted in the position that minimizes the penalized

objective function V ( x ) defined in Section 5.1 . Secondly, it is at-

tempted to restore the infeasible solution by local search moves

that minimize the penalty. If this second approach fails, then up

to three customers are removed from the existing routes to cre-

ate a feasible insertion position for customer v . The ejected cus-

tomers are added to the ejection pool. The ejected customers are

selected using the concept of guided local search ( Voudouris &

Tsang, 2003 ), which estimates the difficulty of re-inserting the

ejected customers. Finally, after the ejection of customers, the

search is diversified by M tabu search moves from a randomly

selected neighborhood ( N 1 , N 2 , N 3 , N 4 , N 5 ). These steps are re-

peated until EP = ∅ is reached, and then the next route is selected.

The RM heuristic stops if the number of vehicles is equal to the

lower bound � ∑ N 
i =1 

q i 
Q � or if the maximum execution time T max is

reached. 

6. Computational results 

In this section, the IGTS is first used to evaluate the effect on

solution quality and running time of the penalty functions pro-

posed in Section 4.4 . Subsequently, the best performing penalty is

used to compare the performance of the IGTS with the results in

Michallet et al. (2014) . Then, a real-life instance is used to illustrate

the trade-off between arrival time diversification and transporta-

tion costs. 

The algorithms were implemented in C++ and executed on a

Windows 7 computer with a 2.3 GHz Intel core i5-6200U and 8

GB RAM. As in Michallet et al. (2014) , the ( Solomon, 1987 ) VRPTW

instances were used to test the IGTS. The instances were adjusted

by adding an arrival time spread value ε i per customer, a number

P of previous arrival times taken into account, and the number of

days in the problem instance (period). It should be noted that ev-

ery day, the same set of customers was considered. A simple pre-

processing of the time windows was performed to adjust the lower

and upper bound in case of conflict with the time window of the
epot, i.e., e i = max { e i , e 0 + τ0 i } and l i = min { l i , l 0 − τi 0 − s i } for all

 ∈ V 

′ . To tune the IGTS parameters, the same penalty function as

n Michallet et al. (2014) was used (Penalty 4), but with the more

fficient implementation. The tuning strategy described in Ropke

nd Pisinger (2006) was applied to set the parameters of the IGTS.

he initial parameter values were chosen based on preliminary re-

ults during the development of the heuristic and on parameter

ettings used in the literature. During the tuning, one parameter

hanged value, whereas the other parameters were fixed. For each

arameter, five runs were conducted on a randomly selected sub-

et of the instance set (with two instances from each of the sets

1, C2, R1, R2, RC1, and RC2), and the parameter value with the

est average results was selected. This process was repeated for all

arameters and resulted in the following parameter setting: The

ehicle cost F was set to 400 and the solutions were kept tabu for

= 50 iterations. The shaking procedure was called after η = 150

on-improvement iterations in which at least S itr = M = 10 moves

ere performed. The search restarted from the incumbent after

= 4 shakes were executed. The granular neighborhood of every

ustomer consisted of the c = 50% closest customers and the de-

ot arcs. The penalty parameters were adjusted every μ = 20 iter-

tions with factor δ = 1 . 2 , and the parameters were initialized at

1 = β2 = β3 = 100 . The maximum number of iterations was set

o I = 10 , 0 0 0 and the stopping criterion to S = 4 , 0 0 0 , resulting in

 good trade-off between computational time and solution quality.

he same holds for the running time of the RM heuristic, which

as set to T max = 30 seconds. 

.1. Influence of penalty functions 

In the first set of computational experiments, the penalty func-

ions described in Section 4.4 are evaluated in terms of their per-

ormance. In the first two penalization methods, the vehicle waits

f it arrives at a customer between time windows. If the vehicle

rrives after the last time window at a customer, then the de-

ay is calculated. The penalty is given by the sum of the waiting

ime and delay. In Penalties 3 and 4, all customers are immediately

erved upon arrival even if the arrival time lies outside the time

indows of the customer. In this case, the difference between the

rrival time and the closest time window boundary (previous or

ext time window) is penalized. In Penalties 1 and 3, the vehicle

eparts from the depot so that the first customer in the route is

erved as early as possible. The optimal departure time that mini-

izes the penalty is used in penalization methods 2 and 4. 

The four penalty methods were used in the IGTS and were

ested on the ( Solomon, 1987 ) VRPTW instances for a three-day

eriod. The value P = 2 was considered; thus, only on day 3 should

wo previous arrival times be taken into account. Furthermore, εi =
 0 . 5 × εmax 

i 
	 with εmax 

i 
= 

l i −e i 
2 P . For every penalty type, the IGTS

as performed three times, and the average results are shown in

able 1 . Per instance set, the average number of vehicles used and

he average total distance are shown in columns “nVeh” and “dis-

ance”, respectively. 

In the column “No penalty”, the results for the IGTS are given

n which infeasible solutions are not allowed during the search. In

his case, the IGTS stops if there is no feasible solution available in

he composite neighborhood. In the other columns, the results are
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Table 1 

Average number of vehicles and average total distance of the IGTS using different penalty functions. 

No penalty Wait Not Wait 

Penalty 1 Penalty 2 Penalty 3 Penalty 4 

Instance nVeh distance nVeh distance nVeh distance nVeh distance nVeh distance 

C1 30.5 3413.4 30.4 3005.6 30.4 2937.9 30.3 2964.2 30.4 2906.0 

C2 9.9 2815.0 9.9 2365.9 9.9 2320.5 9.9 2365.9 10.1 2367.4 

R1 39.2 4424.4 39.1 4323.2 39.0 4333.5 39.1 4313.5 39.1 4314.4 

R2 9.2 3910.0 9.0 3586.1 9.2 3566.3 9.1 3618.9 9.2 3561.1 

RC1 37.4 4833.9 37.5 4740.3 37.5 4738.9 37.3 4757.5 37.5 4771.5 

RC2 10.3 4917.1 10.3 4496.6 10.2 4522.9 10.2 4534.6 10.5 4498.5 

Average 23.35 4059.8 23.29 3771.4 23.27 3755.9 23.24 3777.0 23.39 3753.5 

Table 2 

For the different penalty functions the average, best, and standard devia- 

tion of the objective value are presented. The average computational time 

is reported in the last column. 

Best Average std Time(sec) 

No infeasible solution 13244.1 13400.3 143.1 69.7 

Wait P1: Fixed 12948.8 13085.7 122.1 134.8 

P2: Optimal 12963.8 13063.1 85.7 164.1 

Not Wait P3: Fixed 12960.2 13072.2 92.1 132.7 

P4: Optimal 12964.4 13108.3 128.4 492.8 
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iven for the IGTS using one of the four penalty functions during

he search. It should be noted that the final solution in the table

s always feasible. The results demonstrate that allowing infeasible

olutions during the local search reduces the average distance by

–8%, depending on the penalty type. For both the “Wait” and “Do

ot Wait” methods, the penalty that selects the optimal departure

ime has a lower average distance than Penalty 1 and Penalty 3, re-

pectively. However, there is a trade-off between this more exten-

ive calculation of the penalty and computational time, as shown

n Table 2 . 

In Table 2, the best and average objective values are given for

ll penalty functions in columns “best” and “average”, respectively.

he objective value is the combination of the total distance and

he vehicle cost. The standard deviation is given in column “std”,

nd the average computational time in the last column. Penalty 4

s the most computationally intensive: the computational time is

t least three times as high compared to that of the other penalty

unctions. As the RM heuristic has a time limit of T max seconds, the

umber of vehicles is also slightly higher for Penalty 4. Penalty 2

xhibits the best trade-off between solution quality, computational

ime, and solution robustness and was therefore used in the re-

aining experiments. 

.2. Comparison to Michallet et al. (2014) 

To examine the performance of the model formulation as a

olling horizon VRPMTW and the proposed IGTS solution approach,

he results by the method were compared with those in Michallet

t al. (2014) , where the same arrival time diversification prob-

em was investigated, but it was solved in a periodic setting. To

est their model, the instances in Solomon (1987) with a period

f three days were used. To align the present setting to that in

ichallet et al. (2014) , a period of three days was considered, and

herefore P was set to 2. The same ε value was used as in Michallet

t al. (2014) , i.e., ε = � 0 . 5 × min 
i ∈ V ′ { l i −e i } 

2 	 , which was used for all

ustomers. Furthermore, in Michallet et al. (2014) , the fleet size

as increased to 30 vehicles to find a feasible solution for all in-

tances. As in Michallet et al. (2014) only distance was minimized,

n the present study, the vehicle cost was set to F = 0 to make the

esults comparable. The tests in Michallet et al. (2014) were per-
ormed on a 32-bit 2.8 GHz Intel core i5 computer with 4GB RAM

ompared to the 2.3 GHz Intel core i5 computer with 8GB RAM

hat was used in the present study. 

In Table 3 the results by the proposed IGTS and the results in

ichallet et al. (2014) are given per instance set. As in Michallet

t al. (2014) , the IGTS was run three times, and the best and the

verage distance are given in columns “best” and “average”, re-

pectively. The average computational time in seconds over the

hree runs is given in column “time”, and the gaps are presented

n the last two columns (reported by Michallet et al. (2014) -

GTS/ Michallet et al., 2014 ). The results demonstrate that the IGTS

ignificantly improved the results in Michallet et al. (2014) , with

n average distance reduction of 29% and an average computa-

ional time decrease of 93%. All instances were improved, with

 maximum improvement of 62% and a minimum improvement

f 9%. The new best known solutions per instance are given in

ppendix C . 

There could be various reasons for this improvement in both

omputational time and solution quality. First, in Michallet et al.

2014) Penalty function 4 was used, which was shown to be the

ost time consuming penalty in Table 2 . Moreover, the penalty

ethod was implemented less efficiently than in the present study,

hat is, by calculating the forward and backward cost for every

ime point, instead of using only the breakpoints. Secondly, in

ichallet et al. (2014) , a periodic setting was used in which a

hange in one period could have an impact on the feasibility and

enalties in other periods; therefore, additional checks should be

erformed. Thirdly, because in Michallet et al. (2014) a periodic

etting was used, the solution space was larger, and thus better

olutions could potentially be obtained. However, such solutions

ere not found, as shown in Table 3 , because the periodic setting

eems to make the problem too complex for the solution approach

sed. 

.3. Real-world instance 

Finally, the trade-off between arrival time diversification (incon-

istency level) and transportation costs was examined in a real-

ife setting. A real world instance was provided by a cash man-

gement company in the Netherlands. It consisted of the requests

f 400 ATMs and bank offices in March 2016. The customers were

ocated in a region in the east part of the Netherlands, and there

as a total of 26 replenishment days, because no transport is per-

ormed on Sundays. Some customers should be replenished every

ay, whereas others only once during this period. A real road dis-

ance matrix was used, and an average travel speed of 40 km/h

as applied. The maximum duration of a trip was 8 hours. The

ime windows of the bank offices were set to 9:0 0–17:0 0 and

he time windows of the ATMs and the depots were 7:0 0–19:0 0.

he goal was to minimize the number of vehicles and the distance,

ith a vehicle cost of 400 EUR per truck. 
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Table 3 

The results of the proposed IGTS and of Michallet et al. (2014) per instance set. 

IGTS Michallet et al. (2014) Gap 

Instance Best Average Time Best Average Time Best (%) Time (%) 

C1 2613.2 2700.7 47.2 4185.7 4209.8 1037.1 −38 −95 

C2 1924.5 2101.8 154.8 3351.9 3366.0 2590.0 −43 −94 

R1 4287.7 4350.3 122.1 5561.6 5580.5 1302.3 −23 −91 

R2 34 4 4.7 3519.0 309.8 4738.4 4755.6 5269.6 −27 −94 

RC1 4728.1 4812.6 120.0 6361.9 6383.0 980.9 −26 −88 

RC2 4599.4 4711.6 249.5 6383.9 6406.3 3914.9 −28 −94 

Average 3622.8 3718.3 169.5 5094.9 5114.4 2550.2 −29 −93 

Fig. 9. Average daily distance for different inconsistency settings. 

Fig. 10. Average daily number of vehicles used for different inconsistency settings. 
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The average daily distance was calculated for different values of

the arrival time spread ε i and for different numbers P of previous

arrival times taken into account. The values of ε i change by fluc-

tuating φ, with εi = � φ × εmax 
i 

	 . In Fig. 9 , the relation between the

average daily distance and inconsistency level is shown, where the

inconsistency level increases if P or φ increases. For the solid line,

the number of previous arrival times taken into account is fixed at

P = 2 and the value of φ varies. The graph shows that the relation

between inconsistency level and total distance is not linear: com-

pared to the unconstrained problem ( φ = 0 ), the distance increases

by 1.2% if φ = 0 . 2 and by more than 8% if φ = 0 . 4 . If φ = 0 . 8 , then

the total distance increases by more than 40% compared to the un-

constrained problem. 

This effect is weaker but also noticeable if ε i is fixed at 45 min-

utes for all customers and the number of previous arrival times

taken into account varies, as shown by the dashed line. A simi-

lar relationship between the average daily number of vehicles used

and the inconsistency level is shown in Fig. 10 . Therefore, this case
llustrates that introducing arrival time diversification with low ep-

ilon and P values can be achieved with low impact on the trans-

ortation cost. Clearly, setting high values for the inconsistency pa-

ameters φ and P can have a large impact on the cost. 

.3.1. Trade-off on Solomon Instances 

The same experiment can be conducted on the Solomon in-

tances. In Tables 4 and 5 , the average increase in daily travel time

nd daily number of used vehicles is presented, compared to the

nconstrained problem, for different values of the inconsistency

arameters φ and P , respectively. In Table 4 , P was set to 2, and

n Table 5 , ε i was set to � 0 . 5 × l i −e i 
2 ×4 	 to keep the value of ε i fixed

or all values of P . On average, the increase in travel time and num-

er of vehicles is higher for the set 2 instances. These are instances

ith a long planning horizon, and therefore the impact of the in-

onsistency parameters on the transportation cost is larger on in-

tances with longer routes. Furthermore, when the length of the

riginal service time windows increases, the impact of the incon-

istency parameters increases as well. This is because the size of

he arrival time solution space that is blocked increases when the

ervice time window is larger. 

The increase in daily travel time and number of vehicles is ap-

roximately linear in the number of past arrival times P . When the

alue of φ is increased, there is a jump in the cost from φ = 0 . 4

o φ = 0 . 6 . This confirms the finding that for low values of φ and

 , the impact on the cost is low, but it increases rapidly for higher

alues of the inconsistency parameters. 

. Conclusions and future research 

Sufficiently unpredictable routes are required for the transport

f valuable goods and for security patrolling. Accordingly, there

s a growing interest in designing unpredictable routes ( Calvo &

ordone, 2003; Michallet et al., 2014; Talarico et al., 2015a; Yan

t al., 2012 ). The current study presents a novel method to di-

ersify the arrival times of customers and to minimize transporta-

ion costs. The arrival times are diversified by removing the previ-

us arrival times with surrounding bandwidth ε from the solution

pace. This results in a set of multiple time windows available to

erve each customer. Therefore, the problem is formulated as a ve-

icle routing problem with multiple time windows that is solved

n a rolling horizon of one day. As no periodic setting or computa-

ionally intensive penalty function is used, the proposed approach

s easier, more efficient, and more powerful than existing meth-

ds such as that in Michallet et al. (2014) . The IGTS proposed to

olve the routing problem obtained new best-known solutions for

ll benchmark instances in Michallet et al. (2014) . The average im-

rovement in total distance was 29% and the computational time

ecreased by 93%. 

Furthermore, because waiting times are not allowed for the

roblem under consideration, a method was proposed to efficiently

etermine if a route is time window feasible. To allow time win-

ow violations during the local search, four different penalty func-
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Table 4 

Increase in average daily travel time and average number of vehicles used for different values of φ compared to the 

unconstraint problem φ = 0 . 

Daily travel time Daily vehicles used 

Instance φ= 0.2 (%) φ= 0.4 (%) φ= 0.6 (%) φ= 0.8 (%) φ= 0.2 (%) φ= 0.4 (%) φ= 0.6 (%) φ= 0.8 (%) 

C1 7 7 28 39 0 0 4 8 

C2 14 15 43 61 7 7 13 22 

R1 2 3 11 16 3 3 10 15 

R2 3 3 16 24 6 7 11 20 

RC1 3 3 12 16 3 3 12 17 

RC2 5 5 18 32 3 2 8 13 

Average 5 6 20 30 4 4 10 16 

Table 5 

Increase in average daily travel time and average number of vehicles used for different values of P compared to the 

unconstraint problem P = 0 . 

Daily travel time Daily vehicles used 

Instance P = 1 (%) P = 2 (%) P = 3 (%) P = 4 (%) P = 1(%) P = 2 (%) P = 3 (%) P = 4 (%) 

C1 4 9 15 22 0 0 1 1 

C2 9 16 23 29 2 6 8 12 

R1 1 4 6 10 2 3 6 8 

R2 0 5 8 14 8 11 14 16 

RC1 0 3 5 7 3 4 6 8 

RC2 3 7 13 17 4 4 4 6 

Total 3 7 11 16 3 5 7 9 
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O

ions were proposed and compared in terms of solution quality

nd computational time. Finally, computational experiments on a

eal-life instance quantified the trade-off between arrival time di-

ersification and transportation costs. 

Following ( Yan et al., 2012 ), the proposed model can be ex-

ended by making ε i period-dependent, so that ε i decreases for

rrival times further away in the past. Furthermore, the number

f previous arrival times taken into account can also be allowed to

eviate per customer. For example, if a customer is rarely visited,

hen fewer previous arrival times should be taken into account.

hese extensions influence only the number of intervals and the

ength of the multiple time windows; they do not change the pro-

osed problem or solution method. 

In theory, the periodic setting of Michallet et al. (2014) should

btain a better solution, as the solution space is larger. Therefore,

t would be interesting to extend the proposed approach to a pe-

iodic setting. As route unpredictability is a relatively new area of

esearch, there are several other topics to be considered in the fu-

ure, e.g., congestion could be incorporated, or order and arrival

ime diversification could be combined in one approach. Compar-

ng arrival time and order diversification approaches in terms of

oth inconsistency level and transportation costs could also be an

nteresting topic for future research. 
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ppendix A. Proof of optimality and complexity for the 

orward Algorithm 

Herein, it will be first shown that every feasible service start

ime for customer i in route σ = { 0 , 1 , . . . , m, m + 1 } lies in a for-

ard start interval of customer i . Then, the complexity of the For-

ard Algorithm will be examined. 

emma 3. For all customers of route σ = { 0 , . . . , i, . . . , m + 1 } , all

easible start times at customer i ∈ σ ′ are included in a forward start

nterval of i. 

lgorithm 4 Forward Algorithm (FA). 

nput: F 1 = T 1 and F i = ∅ ∀ i ∈ { 2 , . . . , m } 
1: for i ∈ { 2 , . . . , m } do 

2: θ = 1 

3: for y ∈ F i −1 do 

4: for t ∈ { θ, . . . , | T i |} do 

5: if E F 
i −1 

(y ) + s i −1 + τi −1 ,i ≤ l t 
i 

then 

6: if L F 
i −1 

(y ) + s i −1 + τi −1 ,i ≥ e t 
i 

then � Create a new

forward start interval 

7: z = | F i | + 1 

8: E F 
i 
(z) = max { E F 

i −1 
(y ) + s i −1 + τi −1 ,i , e 

t 
i 
} 

9: L F 
i 
(z) = min { L F 

i −1 
(y ) + s i −1 + τi −1 ,i , l 

t 
i 
} 

10: end if 

11: if L F 
i −1 

(y ) + s i −1 + τi −1 ,i ≤ l t 
i 

then � Go to next

forward start interval 

12: θ = t � Set the last visited time window

13: break 

14: end if 

15: end if 

16: end for t 

17: end for y 

18: end for i 

utput: F i ∀ i ∈ { 1 , . . . , m } 
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Table C1 

New best-known solution per instance. 

Michallet et al. (2014) IGTS - distance IGTS - distance + vehicle cost 

Inst best average time nVeh best Obj av time nVeh distance Obj av time gap (%) 

c101 3029.2 3038.2 401 31 2584.5 2584.5 63.1 31 2584.5 14984.5 62.8 −15 

c102 4862.2 4 86 8.9 1247 31 2993.6 3565.8 51.3 30 3458.3 15752.3 51.0 −38 

c103 5485.1 5521.24 1559 30 2520.4 2681.1 42.3 30 2567.2 14614.1 45.4 −54 

c104 5191.8 5224.88 2996 30 2534.2 2543.0 55.4 30 2522.8 14538.0 54.5 −51 

c105 3157.1 3180.64 406 30 2528.2 2528.2 24.8 30 2528.2 14528.2 24.6 −20 

c106 3527.5 3544.69 533 31 2610.5 2610.5 67.7 31 2610.5 15010.5 67.6 −26 

c107 3833.6 3833.89 468 30 2528.2 2528.2 31.7 30 2528.2 14528.2 31.7 −34 

c108 3902.3 3977.57 765 31 2568.5 2573.7 50.6 30 2582.5 14840.4 52.7 −34 

c109 4682.3 4698.42 959 31 2651.1 2691.2 52.8 31 2692.8 15131.0 52.4 −43 

c201 1987.5 1987.46 1716 11 1807.4 1807.4 147.4 10 1856.7 5856.7 146.2 −9 

c202 3558.5 3563.59 1980 10 1807.1 1807.1 136.3 9 1810.3 5410.3 133.6 −49 

c203 5362.9 5395.05 3295 10 2002.0 2116.9 195.9 9 1989.0 5664.8 194.5 −63 

c204 3892.6 3907.27 4353 9 2105.8 2117.6 247.7 9 2105.8 5717.6 245.7 −46 

c205 3137.3 3139.77 1696 12 1958.4 2229.9 134.5 11 1996.0 6764.6 131.8 −38 

c206 2892.7 2894.48 2504 10 1861.7 1985.7 130.7 10 1861.7 5985.7 133.3 −36 

c207 2648.6 2662.55 3185 10 1831.2 1837.8 148.8 9 1839.4 5538.6 147.1 −31 

c208 3335.2 3378.01 1991 10 2022.2 2912.0 131.9 10 1974.8 6822.5 141.0 −39 

r101 8427.5 8430.75 531 68 7296.0 7409.9 102.1 68 7482.5 35010.0 100.7 −13 

r102 7695.0 7721.54 910 61 5852.9 5896.3 105.8 59 5830.0 29638.0 106.4 −24 

r103 6299.2 6319.67 1489 44 4386.4 4432.6 119.3 44 4337.8 21972.5 116.6 −30 

r104 4505.8 4564.06 1893 31 3257.5 3287.1 143.5 30 3298.2 15530.2 138.0 −28 

r105 6101.4 6119.17 763 48 4960.6 5094.6 109.1 48 5099.5 24655.7 106.9 −19 

r105 5597.3 5612.56 971 43 4276.0 4379.6 116.7 41 4382.1 21204.4 118.4 −24 

r107 5154.0 5180.19 1639 34 3745.1 3831.5 125.8 33 3794.3 17273.5 136.6 −27 

r108 4056.5 4060.53 1676 28 3183.5 3201.3 140.9 28 3189.0 14595.6 139.0 −22 

r109 5123.2 5132.92 1009 37 4112.5 4131.1 120.5 37 4035.5 18893.1 118.9 −20 

r110 4785.1 4804.51 1860 32 3584.1 3632.5 137.2 32 3546.0 16438.0 126.8 −25 

r111 4742.1 4758.13 1819 32 3490.8 3564.4 130.5 31 3637.3 16209.0 128.5 −26 

r112 4252.3 4261.69 1067 32 3306.8 3342.4 125.6 31 3423.9 15949.1 121.3 −22 

r201 6127.6 6134.42 3255 14 4837.0 4943.3 225.9 12 4888.8 9847.6 213.0 −21 

r202 5735.9 5760.71 5074 11 4130.9 4195.3 270.1 10 4196.0 8381.9 282.3 −28 

r203 4909.7 4943.03 6028 9 3379.9 3431.3 330.3 9 3368.1 6979.4 355.0 −31 

r204 3270.1 3302.31 6904 6 2677.2 2721.6 536.8 6 2677.2 5255.0 501.0 −18 

r205 5673.3 5694.75 3486 11 4311.5 4476.3 242.8 10 4432.5 8576.1 238.4 −24 

r206 4837.4 4846.25 4094 9 3760.0 3891.0 266.8 9 3898.7 7541.0 283.4 −22 

r207 4625.5 4644.08 5041 8 3166.5 3239.0 328.3 8 3131.5 6403.9 325.4 −32 

r208 3314.5 3325.32 7570 7 2595.4 2602.3 340.1 7 2595.4 5401.0 332.9 −22 

r209 4664.8 4668.46 5484 9 2997.0 3057.5 279.1 9 3049.5 6663.3 273.7 −36 

r210 50 0 0.3 5015.57 4885 9 3289.5 3352.9 308.6 9 3397.7 7003.3 308.8 −34 

r211 3963.6 3977.18 6145 9 2746.8 2798.5 287.8 8 2805.8 6138.1 316.0 −31 

rc101 8427.5 8430.75 531 53 6353.1 6475.2 105.9 53 6423.8 27773.3 104.1 −25 

rc102 7695.0 7721.54 910 45 5391.7 5519.8 111.6 45 5372.1 23811.1 110.4 −30 

rc103 5943.3 5965.26 716 35 4325.4 4408.3 122.1 34 4556.0 18489.4 124.2 −27 

rc104 5062.0 5074.7 1500 30 3662.4 3685.0 138.3 31 3613.3 16075.2 141.1 −28 

rc105 7100.3 7121.3 862 40 5311.5 5412.9 109.1 40 5316.7 21502.7 108.9 −25 

rc106 6555.3 6589.34 696 41 4986.1 5070.4 114.7 41 4994.0 21650.4 114.1 −24 

rc107 5623.6 5638.54 1163 34 4194.4 4242.8 131.1 34 4137.9 17806.3 130.1 −25 

rc108 4488.2 4522.39 1469 32 3600.1 3686.3 138.3 31 3706.8 16130.2 135.4 −20 

rc201 8286.8 8314.42 1605 19 6725.6 6858.1 173.4 17 7210.7 14077.4 175.1 −19 

rc202 7380.4 7409.24 3058 12 5588.1 5735.6 210.2 12 5573.9 10529.1 213.8 −24 

rc203 6255.5 6269.33 4576 10 4505.4 4581.9 268.5 10 4245.0 8546.8 265.3 −28 

rc204 4483.7 4510.67 5257 9 3033.2 3102.3 298.1 9 3049.1 6694.1 325.5 −32 

rc205 7787.7 7812.84 2466 12 5282.8 5338.0 219.2 12 5463.3 10425.2 211.3 −32 

rc206 6678.2 6682.86 2401 11 4832.7 5193.1 219.0 10 4991.0 9383.1 198.7 −28 

rc207 5527.5 5542.67 5337 9 3745.9 3760.8 288.6 9 3680.7 7353.5 296.3 −32 

rc208 4671.4 4708.56 6619 9 3081.9 3123.1 279.0 9 3070.8 6725.7 290.8 −34 
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Proof. The proof is by induction. For the first customer i = 1 in a

route, the forward start intervals are equal to the time windows

(after the preprocessing described in Section 6 ), and thus by defi-

nition, the lemma holds for i = 1 . Assuming that the lemma holds

for i ≤ j < m , it suffices to show that the lemma holds for i = j + 1 . 

We assume that ζ j+1 is a feasible start time at customer j + 1 .

As ζ j+1 is feasible, ζ j+1 lies in one of the time windows of cus-

tomer j + 1 , i.e., there exists t ∈ T j+1 such that ζ j+1 ∈ [ e t 
j+1 

, l t 
j+1 

] .

Let ζ j = ζ j+1 − τ j, j+1 − s j be the service start time for customer

j . By the induction hypothesis, ζ j is feasible only if it lies in

a forward start interval, i.e., there exists y ∈ F j such that ζ j ∈
[ E F 

j 
(y ) , L F 

j 
(y )] . This implies that ( y , t ) is a feasible combination gen-
a  
rating a new forward start interval at customer j + 1 that includes

j+1 . Hence, the lemma is true for all customers in σ . �

emma 4. The computational complexity of the Forward Algorithm is

 ( 
∑ m 

i =1 (1 + 

∑ i 
j=1 (| T j | − 1)) 

roof. We will first show that the maximum number of times that

he FFC algorithm is called to check a feasible combination be-

ween customers i and i + 1 is equal to | F i | + | T i +1 | − 1 . We define

 bipartite graph G = (F i , T i +1 ) , where F i is the index set of the

orward start intervals at customer i and T i +1 is the index set of

he time windows of customer i + 1 . There exists an edge between

 ∈ F i and t ∈ T i +1 if the combination ( q , t ) is checked by the FCC

lgorithm. Therefore, the number of arcs represents the maximum
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umber of calls to the FCC algorithm and the maximum number of

orward start intervals of customer i + 1 . By putting the index set

f the forward start intervals F i and the time windows T i +1 both

n increasing order, the bipartite graph G can be drawn without

rossings following Proposition 1 . As G is a bipartite graph with-

ut crossings, it does not contain cycles. Hence, G consists of a

nion of disjoint trees, which has at most | F i | + | T i +1 | − 1 edges.

s the maximum number of forward start intervals of customer

 is | F 1 | = | T 1 | , by induction we obtain | F i | ≤ 1 + 

∑ i 
j=1 (| T j | − 1)

or all i ∈ σ ′ . The worst-case complexity occurs when the maxi-

um number of forward start intervals is generated for customers

 , . . . , m − 1 , but no feasible combination exists between the for-

ard start intervals of customer m − 1 and the time windows

f customer m . Therefore, this worst-case complexity is equal to
 m 

i =1 (1 + 

∑ i 
j=1 (| T j | − 1) . �

ppendix B. Breadth-first implementation 

To calculate all forward start intervals of all customers

 2 , . . . , m } . First all forward start intervals of customer 2 are gener-

ted, then of customer 3 and so on. 

ppendix C. Solutions per instance 

Per instance the new best solutions and average solutions over

hree runs are given in Table C1 . First, the results reported by

ichallet et al. (2014) are presented, with in column “best”, “av-

rage”, and “time” the best distance, average distance and aver-

ge calculation time, respectively. The results of the proposed IGTS

ith the objective function solely consisting of the distance ( F =
 ) and with the objective consisting of distance and vehicle cost

(F = 400) are reported. In column “nVeh” and “best” the number

f vehicles used and the total distance are presented for the best

olutions over three runs. The average objective value and average

alculation time are represented in columns “Obj av” and “time”.

he last column represents the distance gap between the best

olution of Michallet et al. (2014) and the IGTS with objective min-

mizing distance. 
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