
VU Research Portal

Distribution with Quality of Service Considerations

Orlis, Christos; Laganá, Demetrio; Dullaert, Wout; Vigo, Daniele

published in
Omega (United Kingdom)
2020

DOI (link to publisher)
10.1016/j.omega.2019.02.003

document version
Publisher's PDF, also known as Version of record

document license
Article 25fa Dutch Copyright Act

Link to publication in VU Research Portal

citation for published version (APA)
Orlis, C., Laganá, D., Dullaert, W., & Vigo, D. (2020). Distribution with Quality of Service Considerations: The
Capacitated Routing Problem with Profits and Service Level Requirements. Omega (United Kingdom), 93, 1-18.
[102034]. https://doi.org/10.1016/j.omega.2019.02.003

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

            • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
            • You may not further distribute the material or use it for any profit-making activity or commercial gain
            • You may freely distribute the URL identifying the publication in the public portal ?

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

E-mail address:
vuresearchportal.ub@vu.nl

Download date: 13. Sep. 2021

https://doi.org/10.1016/j.omega.2019.02.003
https://research.vu.nl/en/publications/39965a58-179f-4a3f-9144-9bb599960acd
https://doi.org/10.1016/j.omega.2019.02.003


Omega 93 (2020) 102034 

Contents lists available at ScienceDirect 

Omega 

journal homepage: www.elsevier.com/locate/omega 

Distribution with Quality of Service Considerations: The Capacitated 

Routing Problem with Profits and Service Level Requirements 

� 

Christos Orlis a , ∗, Demetrio Laganá b , Wout Dullaert a , Daniele Vigo 

c , a 

a Department of Supply Chain Analytics, Vrije Universiteit Amsterdam, The Netherlands 
b Department of Mechanical, Energy and Management Engineering, University of Calabria, Italy 
c Department of Electrical, Electronic and Information Engineering, University of Bologna, Italy 

a r t i c l e i n f o 

Article history: 

Received 19 April 2018 

Accepted 6 February 2019 

Keywords: 

Routing with profits 

Cash logistics 

ATM cash replenishment 

Service level requirements 

Branch-and-Cut 

a b s t r a c t 

Inspired by a problem arising in cash logistics, we propose the Capacitated Routing Problem with Prof- 

its and Service Level Requirements (CRPPSLR). The CRPPSLR extends the class of Routing Problems with 

Profits by considering customers requesting deliveries to their (possibly multiple) service points. More- 

over, each customer imposes a service level requirement specifying a minimum-acceptable bound on the 

fraction of its service points being delivered. A customer-specific financial penalty is incurred by the lo- 

gistics service provider when this requirement is not met. The CRPPSLR consists in finding vehicle routes 

maximizing the difference between the collected revenues and the incurred transportation and penalty 

costs in such a way that vehicle capacity and route duration constraints are met. A fleet of homoge- 

neous vehicles is available for serving the customers. We design a branch-and-cut algorithm and evaluate 

the usefulness of valid inequalities that have been effectively used for the capacitated vehicle routing 

problem and, more recently, for other routing problems with profits. A real-life case study taken from 

the cash supply chain in the Netherlands highlights the relevance of the problem under consideration. 

Computational results illustrate the performance of the proposed solution approach under different input 

parameter settings for the synthetic instances. For instances of real-life problems, we distinguish between 

coin and banknote distribution, as vehicle capacities only matter when considering the former. Finally, we 

report on the effectiveness of the valid inequalities in closing the optimality gap at the root node for both 

the synthetic and the real-life instances and conclude with a sensitivity analysis on the most significant 

input parameters of our model. 

© 2019 Elsevier Ltd. All rights reserved. 
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. Introduction 

Routing problems with profits have recently attracted scien-

ific attention in the field of distribution logistics. This shift of

nterest from classical vehicle routing variations to their profit-

riented counterparts is closely connected to the challenges im-

osed by real-life settings. Companies currently provide a portfolio

f distinct service packages to meet the special needs and prefer-

nces of their end-consumers. This, in turn, can make them more

ompetitive by maintaining and growing their end-consumer base,

rovided operating costs stay sufficiently low. As an immediate

onsequence of this shift, the revenue obtained by a Logistics Ser-

ice Provider (LSP) serving a company’s (or customer’s) service
� This manuscript was processed by Associate Editor Pesch. 
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oints cannot be considered to be merely analogous to the num-

er of times a service was provided. Rather, it is heavily based on

he manpower (associated with the volume) and the skillset (as-

ociated with the type of service) needed to provide a delivery to

 desired location. Another reason behind this scientific shift lies

n the fact that profit-oriented problems consider fleets of lim-

ted size. Most supply chains are characterized, to some extent,

y demand uncertainties as a result of locality or seasonality ef-

ects. Taking into account the limited distribution capacity of any

SP, this can result in poor service levels (for both the LSP and the

nd-consumers) on days with peak demand, especially when no

dvanced and problem-specific routing strategies are utilized. 

In supply chain management, the term service level is typically

sed to quantitatively assess the performance of a specific element

n a supply chain. To come up with such a measure, different Key

erformance Indicators (KPIs) are often used in practice. Promi-

ent applications of different KPIs can be found in the agreements

etween governments and private bus operators. For example,

https://doi.org/10.1016/j.omega.2019.02.003
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service level considerations are taken into account in the bus sec-

tor between the Australian government and the private bus oper-

ators in Sydney to ensure that operators deliver to the market the

best possible service levels consistent with stakeholder needs, and

especially with the objectives of government [26] . A recent work

associating the trade-off between the level of service in the bus

network and the incurred operating costs (that are related to the

fleet size) in Monterrey in terms of Pareto fronts can be found in

[27] , while a study dealing with a supplier selection and schedul-

ing problem simultaneously optimizing expecting costs and service

levels of customers under disruption risks can be found in [38] .

The literature dealing with service level considerations and vehi-

cle routing is scarce with the notable exception of [15] which uses,

however, a different model as will be discussed in Section 2 . For a

recent review measuring, among others, the logistics performance

in distributing internal hospital supplies while determining desired

service level requirements see [34] . For an extended and more gen-

eral overview of KPIs used when considering the performance of

an LSP see [31] . Generally, Service Level Requirements (SLRs) target

either the quality of service offered by a supplier or the quality of

service offered to end-consumers. In this study, and motivated by

a real-life case, we consider the SLR, imposed by a customer on an

LSP to be the minimum-accepted percentage of fulfilled requests

over their total number. When this SLR is not met, a predefined

financial penalty applies. 

Our research was motivated by a real-life cash distribution

problem in the Netherlands. Specifically, Cash-In-Transit (CIT) com-

panies face the problem of selecting which customers’ service

points to visit in order to maximize their profits. Their deci-

sion, however, is heavily affected by the SLRs agreed with their

customer base (e.g. banks, supermarket chains, retailers, casinos,

etc.) and the respective financial penalties in the event that they

are missed. The rest of the paper is organized as follows. In

Section 2 a literature review is presented with a special focus on

vertex-oriented routing problems with profits. Section 3 provides

a formal presentation of the Capacitated Routing Problem with

Profits and Service Level Requirements (CRPPSLR). In Section 4 the

adapted valid inequalities for the polyhedron associated with

our problem formulation are presented, along with the branch-

and-cut algorithm, including branching and node selections rules.

Section 5 contains an extended computational study of a total of

180 synthetic and seven real-life instances of coin and banknote

distribution. Finally, we give our concluding remarks in Section 6 . 

2. Literature review 

Given a fleet of vehicles, the main task in the classical set-

ting of the Capacitated Vehicle Routing Problem (CVRP) is to de-

sign minimum-cost routes that satisfy the requests of a given set

of customers (for an extended overview, see [43] ). The problem is

known to be N P -complete, as it generalizes simultaneously both

the Traveling Salesman Problem (TSP) and the Bin Packing Prob-

lem (BPP). In this paper, we consider a problem that generalizes

the CVRP and falls into the class of Routing Problems with Prof-

its in which the fleet size is always assumed to be of limited size.

Problems of this nature are typically classified into three further

subclasses: routing problems in which customers are located on

the vertices of a graph; arc routing problems where customers are

located on the links (i.e., arcs or edges) of a graph; and vertex-

arc routing problems in which customers may be located either on

the vertices or on the links (or both) of a graph. In this class of

problems, and in contrast to the CVRP setting, it is no longer re-

quired to serve all of the customers but only the most profitable

subset of them. To arrive at such a decision, the LSP makes use of

the information provided by the customer requests regarding their

geographical location, the profit obtained by serving each of them,
nd their demand related to the vehicle capacity. Under this clas-

ification, the current vertex-oriented routing problem with prof-

ts literature concentrates on the following four main categories of

roblems based on their objective functions and constraints: 

– The Prize-Collecting T SP (PCT SP), the Prize-Collecting VRP

(PCVRP), and the Selective T SP (ST SP) : In the PCTSP, the aim

is to maximize the difference between two different objec-

tives, namely, the collected revenue obtained and the total

transportation costs incurred by the fulfilled customer re-

quests. However, the problem has appeared in the literature

under two more variations in which either of the objectives

may be listed as a set of constraints. An overall treatment

of this problem including exact solution methods, approx-

imation algorithms, and heuristic approaches can be found

in [21] . Surprisingly, the problem is defined differently in

its first appearance in 1989 [10] . In this original definition,

a customer-specific penalty is occurred when the TSP tour

does not visit a customer. The PCVRP extends the PCTSP

by seeking prize-collecting TSP routes maximizing the dif-

ference between collected revenue and total transportation

costs under vehicle capacity constraints. For an example of a

rich PCVRP arising in the hot rolling production of the iron

and steel industry (and a solution approach based on iter-

ated local search and very large neighborhoods) see [41] .

A recent variable neighborhood search heuristic selecting

adaptively neighborhoods with higher probability of finding

new better solutions can be found in [32] for the version of

the problem in which vehicle set-up costs are considered. A

problem closely related to the PCTSP is the STSP, for which a

branch-and-cut algorithm can be found in [22] . In this prob-

lem, some customers may be compulsory, and the aim is to

construct a tour of maximal profit whose cost does not ex-

ceed a given preset constant. 

– The (Capacitated) Profitable Tour Problem ((C)PTP) : Similarly

to the PCTSP, the objective in the PTP is to maximize the

difference between the total collected profit and the to-

tal transportation costs incurred by serving the most prof-

itable subset of customers. The PTP was introduced in 1995

[19] along with a presentation of two approximation al-

gorithms for the symmetric version of the problem: one

constant-factor based on Linear Programming (LP) rounding

[14] ; and one purely combinatorial with an input-dependent

approximation ratio [23] . In the capacitated version of this

problem, a fleet of vehicles is given to serve only the most

profitable subset of customers. An exact algorithm based

on column generation and heuristics based on tabu search

and variable neighborhood search are presented in [5] , while

a most recent warm-start branch-and-price algorithm can

be found in [3] . A new solution framework based on ex-

ploring standard VRP neighborhoods of exponential size in

pseudo-polynomial time was recently introduced in [45] . Re-

cently, a new version of the problem incorporating strictly

non-violated service level requirements for groups of cus-

tomers, along with a branch-and-price and a population-

based heuristic, was presented in [15] . In the case of a single

vehicle, instances with up to 800 vertices have been solved

to optimality in [28] by utilizing a rich set of valid inequali-

ties in a purely branch-and-cut framework. 

– The (Team) Orienteering Problem ((T)OP) and the Capacitated

TOP (CTOP) : Contrary to the CPTP, the objective function in

the TOP maximizes only the total collected profit without

considering any transportation costs. On the constraints part,

capacity constraints are disregarded, while a hard constraint

is imposed on the maximum route duration of each unca-

pacitated vehicle. This problem was initially designated as
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the Multiple Tour Maximum Collection Profit Problem by

Butt and Cavalier [16] , while the name TOP was coined by

Chao et al. [17] . Recently, an effective metaheuristic utiliz-

ing a Pareto-dominance criterion controlling the similarity

between a generated solution and the incumbent was pre-

sented in [29] . From the exact solutions point of view, the

most competitive algorithm has been recently presented in

[30] and is based on a new formulation that incorporates a

polynomial number of variables and constraints. An interest-

ing application that includes the TOP as a special case can

be found in paratransit systems, in which, buses operating

in a public transport route may diverge from their nominal

paths to pick-up passengers with limited mobility and drop

them off at their destination [20] . The OP, which first ap-

peared in [24] , is the single uncapacitated vehicle version

of the above-mentioned problems. A survey treating most

problem variants can be found in [44] , while an extension

of this survey with more up-to-date research findings, prob-

lem variants, and solution approaches can be found in [25] .

In the capacitated version of this problem, vehicle capaci-

ties are taken into account. Exact and heuristic solution ap-

proaches for this problem can be found in [5] and [42] . Re-

cently, a new exact approach and a hybrid heuristic for the

same problem in which split deliveries are allowed was pre-

sented in [4] . 

– The Undirected Capacitated General Routing Problem with Prof-

its (UCGRPP) : In this problem, customer requests may appear

either on some of the vertices or on some of the edges (or

both) of an undirected graph. This is a general routing prob-

lem with profits, meaning that the vertex-oriented version is

embedded in the structure of the general version. The objec-

tive function of this problem maximizes the difference be-

tween the total collected profit and the total transportation

costs. Note that the vertex-oriented objective of this problem

is exactly the same as that of the multi-vehicle CPTP. On the

constraints part, the problem is identical to the CTOP. A re-

cently developed branch-and-cut algorithm for this problem

can be found in [2] . 

An in-depth survey of more classes of vehicle routing problems

ith profits located on the vertices of the graph can be found in

8] while a study concentrating on problems in which profits may

e located on the links (for a representative problem motivated by

ecreational cyclist searching for nice routes of certain maximum

engths see [40] ) of the graph can be found in [6] . 

In this paper, we introduce and study a real-life vertex-oriented

outing problem with profits that generalizes three well-known

roblems (PCTSP, PCVRP, and CPTP) and their special cases, and in

hich SLRs are imposed by customers responsible, each of them,

or possibly multiple service points. Contrary to the problem de-

cribed in [15] in which the SLR of every customer should be al-

ays fulfilled, our SLR is a minimum-accepted portion of a cus-

omer’s fulfilled requests over their total number. A penalty rule is

ctivated in the event of a missed SLR. The amount of this penalty

s customer-specific, with the aim of incentivizing the LSP to pro-

ide service, even in cases when this is not beneficial. On top of

his, our problem takes into account maximum route duration con-

traints imposed by working regulations in many real-life settings. 

The abovementioned definition of this SLR is derived from cash

istribution practice in the Netherlands. In particular, LSPs are al-

owed to leave a limited number of ATMs unserved due to excep-

ional demand or capacity conditions. If an SLR is missed, a flat-

ate financial penalty is imposed to the LSP. 

Our contributions to the literature are several: ( i ) our problem

efinition extends the class of routing with profits and generalizes

ell-established problems in this research stream by (1) allowing
ustomers to be responsible for many requests, extending the stan-

ard single-customer single-request pattern, and (2) by introducing

he notion of a real-life SLR. To the best of our knowledge, this is

he first work that deals with the concept of a real-life KPI, even

hough different KPIs are already used in practice; ( ii ) we provide a

inary programming formulation of the CRPPSLR; ( iii ) we develop

 branch-and-cut algorithm by utilizing a set of families of valid in-

qualities; ( iv ) we adapt and extend theoretical and technical find-

ngs from the literature that help solving instances of our prob-

em more effectively; ( v ) we provide 180 new synthetic problem

nstances; ( vi ) we present a real-life coin and banknote distribu-

ion case study, with seven instances coming from the cash supply

hain in the Netherlands; ( vii ) we show computational results for

ur synthetic and real-life instances, along with a sensitivity anal-

sis on the most significant input parameters of our model. 

. Problem description and formulation 

The CRPPSLR is a single-period problem defined over an undi-

ected complete graph G = (V, E) where V = { 0 , . . . , N} represents

he set of vertices. Traditionally, the vertices of such a graph rep-

esent either the customers or the depot(s). In our problem, how-

ver, a customer is not represented necessarily by a single ver-

ex. Rather, a non-empty set of vertices is used to represent a

ustomer’s service point delivery requests. Consequently, vertices

 

′ = V \ { 0 } denote the service points of customer set C and ver-

ex 0 denotes the depot, while V C is the set of requests associ-

ted with customer C ∈ C. Therefore, V ′ = 

⋃ 

C∈C V C . E denotes the

et of edges and is split into E ′ = { (i, j) = V ′ × V ′ : i < j} and E ′′ =
 ( j, 0) = V ′ × { 0 }} ⋃ { (0 , j) = { 0 } × V ′ } . In our setting, each cus-

omer C belonging to the set of customers C imposes a service

evel requirement 0 ≤αC ≤ 1. This requirement can be seen as the

inimum-allowed percentage of fulfilled requests coming from the

ame customer. The respective financial penalty when this require-

ent is not met is denoted by P C ≥ 0. An infinite-valued financial

enalty is used to indicate a hard constraint on the SLR agreed

ith a customer imposing compulsory requests. We further con-

ider a homogeneous fleet set K consisting of vehicle indices, such

hat each vehicle has capacity equal to Q > 0. In the following, we

hall denote by c ij and t ij the non-negative cost coefficients and

ravel times associated with each edge ( i, j ) ∈ E . Triangle inequality

s satisfied for both of these. For the sake of simplicity, we assume

hat c i j = t i j for all ( i, j ) ∈ E . A nonnegative fixed profit p i is asso-

iated with each customer’s service point demand d i , with i ∈ V 

′ .
he profit of each service point delivery request associated with a

ustomer can be collected at most once by one of the |K| available

ehicles. Finally, each vehicle should start at most one time from

he depot, collect revenue as long as this is operationally feasible

nd profitable, and end at the depot, with a maximum route dura-

ion of T max . 

Our 0-1 programming formulation uses three families of binary

ariables: z k 
i 

with i ∈ V are equal to 1 if and only if vertex i is vis-

ted by vehicle k ∈ K. Binary variables x k 
i j 

are equal to 1 if and

nly if edge ( i, j ) ∈ E ′ has been traversed by vehicle k . Accordingly,

ariables x k 
0 j 

and x k 
j0 

with (0, j ) and (0, j ) ∈ E ′′ indicate a vehicle k

raversal from the depot to vertex j in the former case, and from

ertex j to the depot in the later. x ∗k 
i j 

are auxiliary variables equal

o x k 
i j 

when ( i, j ) ∈ E ′ and equal to (x k 
0 j 

+ x k 
j0 

) when ( i, j ) ∈ E ′′ . Fi-

ally, λC is equal to 1 if and only if the SLR of customer C is not

ulfilled. 

The CRPPSLR is then formulated as follows: 

aximize 
∑ 

i ∈ V ′ 

∑ 

k ∈K 
p i z 

k 
i −

∑ 

(i, j) ∈ E 

∑ 

k ∈K 
c i j x 

∗k 
i j −

∑ 

C∈C 
λC P C (1) 
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w  

t  

t  
s.t. 
∑ 

i ∈ V ′ 
d i z 

k 
i ≤ Q ∀ k ∈ K (2)

∑ 

j∈ V ′ ,i< j 

x ∗k 
i j + 

∑ 

j ∈ V, j <i 

x ∗k 
ji = 2 z k i ∀ i ∈ V, k ∈ K (3)

∑ 

(i, j) ∈ E(S) 

x ∗k 
i j ≤

∑ 

i ∈ S 
z k i − z k u ∀ S ⊆ V, | S| ≥ 2 , u ∈ S, ∀ k ∈ K (4)

∑ 

k ∈K 
z k i ≤ 1 ∀ i ∈ V (5)

∑ 

(i, j) ∈ E 
t i j x 

∗k 
i j ≤ T max ∀ k ∈ K (6)

αC −
∑ 

i ∈ V C 

∑ 

k ∈K 

z k 
i 

| V C | ≤ λC ∀ C ∈ C (7)

z k i ∈ { 0 , 1 } ∀ i ∈ V, ∀ k ∈ K (8)

x ∗k 
i j ∈ { 0 , 1 } ∀ (i, j) ∈ E, ∀ k ∈ K (9)

λC ∈ { 0 , 1 } ∀ C ∈ C (10)

The objective function (1) seeks to maximize the total profit of

the LSP. To calculate this value, we sum up the revenue obtained

from the fulfilled service point requests in V 

′ and then substract

the total transportation costs incurred by these requests and the

(possible) financial penalties for not meeting the service level re-

quirements of the customers. Constraints (2) guarantee that the ca-

pacity of each vehicle is not exceeded. Constraints (3) and (4) are

constraints eliminating subtours not connected with the depot.

Constraints (5) limit the fulfillment of a request by using at most

one vehicle, while constraints (6) restrict the maximum duration

of a vehicle route. Constraints (7) set the binary variable λC to 1

when the service level requirement of customer C is not met. Fi-

nally, constraints (8) –(10) define the variable domains. 

In the following section we describe the four families of valid

inequalities (along with their respective separation procedures)

that we adapt for our branch-and-cut algorithm along with the

separation strategy and the branching and node selections rules of

our overall solution method. Our decision to develop a branch-and-

cut solution method was based on the fact that real-world cash

distribution scenarios typically require a small amount of routes.

The reason behind this observation is that individual routes tend to

be long, serving many requests as a result of the vehicle capacity

for cash compared to the average demand of a request. Moreover,

there are many successful applications of branch-and-cut methods

to routing problems with profits (e.g. see [2,7] , and [28] ) motivat-

ing the choice for a branch-and-cut framework for our problem.

The main component of our algorithm is a cutting-plane proce-

dure that identifies violated inequalities of several classes, some

of which consider the specific nature of the CRPPSLR. 

4. Valid inequalities 

Our formulation is strengthened with four families of valid in-

equalities for the polyhedron of the convex hull of the integer vec-

tors satisfying (1) –(10) . Observe that, since all the decision vari-

ables in (1) –(10) are bounded, the convex hull of these vectors

is a polytope. Combinations of these inequalities have been effec-

tively used for solving instances of the CVRP and of other vehi-

cle routing problems, with and without profit considerations (for
ome representative examples see [1,13,33] ). Our decision to in-

lude these specific families of inequalities was based on their suc-

essful incorporation for solving instances of the UCGRPP [2] that

s reducible to our problem when profits are associated exclusively

ith the vertices of the representation graph. In the following, we

resent the adaptation of these inequalities to our solution frame-

ork along with either exact or heuristic procedures for solving

he corresponding separation problems. 

.1. Parity inequalities 

Parity inequalities (hereafter PI), also known as co-circuit in-

qualities [11] , have proved useful for problems with binary vari-

bles that require the parity of vertices. One successful incorpora-

ion, among others, can be found in one of the most well-studied

elaxations of the Symmetric TSP [35] . In our case, they are defined

or each vehicle index and guarantee that for each subset S ⊆V and

dge cut-set F ⊆δ( S ), if | F | is odd, at least one further edge must be

raversed. 

With S being a proper subset of V and δ(S) = { (i, j) ∈ E : i ∈
, j ∈ V \ S} containing the edges in the cut between S and V \ S , dis-

ggregate parity inequalities are defined as follows: ∑ 

(i, j) ∈ δ(S) \ F 
x ∗k 

i j ≥
∑ 

(i, j) ∈ F 
x ∗k 

i j − | F | + 1 ∀ k ∈ K, ∀ F ⊆ δ(S) , | F | odd 

(11)

For example, consider the case in which the two edges ( i, j ) and

 j ′ , i ) incident to vertex i are traversed by vehicle k . In the presence

f solutions with fractional values such that z k i = 0 . 75 , x ∗k 
i j = 1 and

 

∗k 

j 
′ 
i 
= 0 . 5 , constraint (4) is satisfied, while inequality (11) is vio-

ated by F = { (i, j) } . 
We use the framework of Aràoz et al. [1] to separate these in-

qualities heuristically. In the separation procedure, S is considered

o be a singleton rather than a subset of F . More specifically, for

ach vertex v ∈ V the edge cut-set F = { e ∈ δ(v ) | x ∗e ≥ 0 . 5 } is com-

uted and then, if | F | is odd, inequalities (11) are checked for possi-

le violations. If | F | is even, the heuristic makes the cardinality of F

dd by either removing or adding an edge to F . This is done by se-

ecting two candidate edges, one from F ( x ∗e 1 = min { x ∗e | e ∈ F } ), and

ne from δ( v ) \ F ( x ∗e 2 = max { x ∗e | e ∈ δ(v ) \ F } ). The decision on which

dge to move from one set to another is based on the following

ontrol check: if x ∗e 1 − 0 . 5 ≤ 0 . 5 − x ∗e 2 , e 1 is deleted form F ; other-

ise, e 2 is added to F . Inequalities (11) can be generalized from

 single route to all routes. Inequalities (12) are named aggregate

arity inequalities since they involve the variables corresponding

o all routes. Note that inequalities (12) are not dominated by (11).

nequalities (12) can be separated heuristically as inequalities (11)

y simply aggregating over all the vehicle indices. ∑ 

(i, j) ∈ δ(S) \ F 

∑ 

k ∈K 
x ∗k 

i j ≥
∑ 

(i, j) ∈ F 

∑ 

k ∈K 
x ∗k 

i j − | F | + 1 ∀ F ⊆ δ(S) , | F | odd 

(12)

Disaggregate and aggregate parity inequalities can also be ex-

ctly separated with a polynomial-time algorithm similar to that

roposed by Padberg and Rao [36] for finding odd cutsets of

inimum weight. However, we decided to separate inequalities

12) heuristically due to their minor expected contribution com-

ared to the computational overhead of separating them exactly. 

.2. Fractional capacity inequalities 

Fractional or generalized capacity inequalities (hereafter CI)

ere introduced in 1998 as part of a branch-and-cut algorithm for

he CVRP [9] . Since then, they have been widely used in exact solu-

ion frameworks for the CVRP and many more variants of the same
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roblem. Recently, they have also proven to be helpful for solving

rofit-oriented CVRP variants (see, for example, [2] ). 

For a given set S ⊆ V 
′ 

such that | S | ≥ 2, the following fractional

apacity inequalities are valid: 

 

k ∈K 

∑ 

(i, j) ∈ δ(S) 

x ∗k 
i j ≥ 2 

Q 

∑ 

k ∈K 

∑ 

v ∈ S 
d i z 

k 
i (13) 

et 
(
z , x ∗

)
be the fractional solution of the linear programming re-

axation. The related exact separation procedure consists of solving

 maximum flow problem on a new graph G 

′ (
z , x ∗

)
constructed

rom the original G by adding a dummy vertex, denoted N + 1 ,

onnected to every vertex i of G , i = 0 , . . . , N. The capacity of each

dge ( i, j ) in G 

′ (
z , x ∗

)
is denoted by b ij and defined as follows: 

 i j = 

{ ∑ 

k ∈K x 
∗k 
i j , for all (i, j) ∈ E, 

2 
Q 

∑ 

k ∈K d i z 
k 
i , such that i = 0 , . . . , N, and j = N + 1 

(14) 

et S ⊆ V 
′ 

be a set of original vertices. The slack of (13) can be ob-

ained by solving a maximum flow problem on G 

′ ( x ∗, z ) , and sub-

racting P = 

2 
Q �i ∈ V �k ∈K d i z 

k 
i from the capacity of the corresponding

inimum cut. If this slack is less than a predefined degree of vi-

lation (see Section 4.5.1 ), then a violation of (13) is checked for

he set S that is disjoint from the depot and does not contain the

ummy vertex N + 1 . 

.3. Max-time inequalities 

Max-time or max-length inequalities (hereafter MTI) were in-

roduced in 2011 for the min-max k -vehicles windy rural postman

roblem [13] . Since then, they have been effectively used in exact

olution frameworks for solving arc routing problems. Some rep-

esentative problem examples include the Team Orienteering Arc

outing Problem (TOARP) [7] and the UCGRPP [2] . 

Max-time inequalities are defined as follows: let F ⊂ V 

′ be a sub-

et of vertices, and let σ ( F ) be the optimal value of the Traveling

alesman Problem (TSP) over the complete graph G ( F ), that is de-

ned by the depot and all the vertices in F . If σ (F ) > T max , then

he following inequalities hold: 

1. All the requests in F cannot be visited by only one vehicle.

Therefore, every feasible solution of (1) –(10) must satisfy the

following inequality: ∑ 

(u, v ) ∈ E(F ) 

x k u v ≤ | E(F ) | − 1 ∀ k ∈ K (15) 

where E(F ) = 

{
(i, j) ∈ E ′ : i ∈ F , j ∈ F 

}
. 

2. If all the vertices inside F are visited ( 
∑ 

k ∈ K 
∑ 

i ∈ F z k i 
= | F | ), then

at least two vehicles need to come in F and go out from F .

Therefore, every feasible solution of (1) –(10) must satisfy the

following inequality: 

∑ 

k ∈ K 

∑ 

(i, j) ∈ δ(F ) 

x ∗k 
i j ≥ 4 

( ∑ 

k ∈ K 

∑ 

i ∈ F 
z k i − | F | + 1 

) 

∀ F ⊆ V 

′ 
, 

such that σ (F ) > T max , (16) 

where, for a non-empty subset F ⊆ V 
′ 
, δ( F ) is the non-empty

edge cut-set associated with F . More generally, let n v (F ) =⌈ 

σ (F ) 
T max 

⌉ 

be the minimum number of vehicles needed to serve all 

vertices in F , where σ (F ) > T max , the general form of (16) is: 

∑ 

k ∈ K 

∑ 

(i, j) ∈ δ(F ) 

x ∗k 
i j ≥ 2 n v (F ) 

( ∑ 

k ∈ K 

∑ 

i ∈ F 
z k i − | F | + 1 

) 

∀ F ⊆ V 

′ 
, 
such that σ (F ) > T max (17) a  
Max–time inequalities are worth considering only when

 v ( F ) > 1 for a set of vertices F , and computing n v ( F ) involves solv-

ng a TSP which is known to be N P -complete. However, despite

he inherent computational difficulty of solving TSP instances and

he number of times this task needs to be accomplished, it is al-

ays highly possible that optimal solutions can be obtained within

easonable computation times by building TSP models and solv-

ng them on-the-fly. Clearl y, this is due to the fact that most of

he TSP instances generated during the separation procedure are

f reasonable magnitude. In the case when a subset F is found for

hich a corresponding inequality (15) is violated, a further check

f whether an aggregate max-length inequality (17) is violated for

he same set of vertices F follows. 

.4. Symmetry breaking inequalities 

Each feasible solution of our problem can be reshuffled on the

ehicle indices of the x variables and produce other |K| ! − 1 solu-

ions with exactly the same objective value. For example, given a

easible solution, an instance with just seven vehicles can produce

! = 5040 equivalent solutions that can be obtained by re-indexing

he vehicle indices of the x variables. To break all these symme-

ries that typically slow down the branch-and-bound search pro-

ess [39] , we introduce the symmetry breaking inequalities (used

lso in [12] ) ∑ 

(i, j) ∈ E 
c i j x 

∗k 
i j ≥

∑ 

(i, j) ∈ E 
c i j x 

∗k +1 
i j 

∀ k ∈ K \{|K |} (18) 

These inequalities do not allow the re-occurrence of symmet-

ic solution structures by forcing the x ∗k 
i j 

variables with smaller k

ndices to obtain higher values first. In other words, vehicle k + 1

s allowed to be dispatched if and only if vehicle k is already in

se. Since there are only |K| − 1 such inequalities, we decided to

dd them all in the initial LP formulation at the root node of the

ranch-and-cut tree. 

.5. The overall algorithm 

.5.1. The algorithm and separation strategy 

To design a computationally efficient branch-and-cut algorithm,

t is important to select which inequalities are checked for viola-

ion and exactly when this occurs during the search process. After

onducting several computational experiments, we came up with

he following two observations: (1) adding all the symmetry break-

ng constraints in the initial LP at the root node does not worsen

he overall performance, as there are only |K| − 1 of them; and

2) the root node is a special node when compared to the other

odes of the branch-and-cut tree. More specifically, and based on

he computational overhead of each separation routine, we found

hat separating all the remaining families of valid inequalities at

ach node of our search tree is not necessarily beneficial. Rather, it

eems that separating all of them only at the root node is compu-

ationally advantageous. The main reason is that, when the branch-

ng takes place, a lot of z k 
i 

variables are assumed to have integer

alues and the probability of finding violated capacity inequali-

ies may increase during the branch-and-cut tree exploration. More

pecifically, at the root node, fractional capacity inequalities (13) ;

arity inequalities (11) and (12) ; and max-time inequalities (15) –

17) are checked for violation and inserted into our model dynam-

cally. Aggregate parity inequalities (12) are checked for violation

nly if no disaggregate parity inequalities (11) are found, and max-

ime inequalities (17) are checked for violation only if there is at

east one violated inequality of type (16) . All these inequalities help

o strengthen the lower bound at the root node of the branch-

nd-cut tree, and then to reduce branching as much as possible.
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Fig. 1. Effect of families of valid inequalities on closing the optimality gap at the root node for the 180 synthetic instances. 
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Finally, fractional capacity inequalities (13) are checked for viola-

tion at each node of the branch-and-cut tree and added dynami-

cally, together with constraints (4) . A limit of 150 total max-time

inequalities was imposed. This decision was based on the obser-

vation that the improvement produced after a certain number of

inequalities was minor compared to the computation time needed

to separate them. Finally, subtour elimination constraints and all

valid inequalities are considered to be violated only if the slack is

less than 0.001. Note that the slack of each inequality represents

the positive difference between the two sides of the inequality. 

4.5.2. Branching and node selection 

For branching we use the strong branching strategy imple-

mented in the ILOG CPLEX library. Strong branching is a technique

to find the best local variable for branching, and has been proven

to work very well in practice. The library allows to assign different

priorities to the variables and, at the current iteration, branches

on a fractional variable. Variables with higher priority are the first

ones checked for branching. For our problem, the priority of vari-

ables z k 
i 

is higher than the priority of variables x ∗k 
i j 

. Each variable z k 
i 

and x ∗k 
i j 

is further associated with an index that corresponds to its

position in the data structure in which it is stored. Therefore, vari-

ables z k 
i 

are ordered in a non-increasing way according to these

indices. Then, a decreasing priority is assigned to the elements of

this list. A second list is composed by variables x ∗k 
i j 

that are still

ordered in the same way, but starting from a priority level that is

less than the smallest priority in the first list. Our approach utilizes

the best bound first node selection strategy in which the selected

node is guaranteed to be that with the biggest dual bound. This

strategy is known to produce small-sized branch-and-bound trees. 

5. Computational experiments 

In this section we test our branch-and-cut algorithm and ex-

amine the performance of the proposed valid inequalities from

Section 4 . To this end, we generate 180 synthetic instances derived

from [18] and then present a real-life case of coin and banknote

distribution from the Dutch cash supply chain. All synthetic in-

stances are derived from seven instances in which a big part of our

model’s input parameters is provided. For the synthetic instances,

we further present a sensitivity analysis associating, among others,

the computational difficulty and the objective values obtained with

a portion of our model’s input parameters. 

Our proposed branch-and-cut algorithm was implemented in

Java (JDK 8) and tested on a single core of an Intel Core i7-6700U
unning at 4.00 GHz, equipped with 24 GB of memory. All in-

tances were solved by using CPLEX 12.7, for which all default cuts

ere activated. A CPU time limit (TL) of two hours was imposed

or the branch-and-cut algorithm. The respective gap between the

est dual bound and the best solution found until TL is also re-

orted as equal to | θ−θ | 
| θ | · 100% , where θ is the best dual bound

roduced by CPLEX and θ the best solution found within the TL.

he computational results for the synthetic and real-life instances

re shown in Figs. 1 and 3 and in Tables 2–4 and 6 , where the

eaning of column headings is as follows: 

Name Name of the problem instance 

opt best dual bound computed within the TL 

pre-UB initial linear relaxation value of the problem 

#r-PI number of parity inequalities added at root node 

#r-CI number of capacity inequalities added at root node 

#r-MTI number of max-time inequalities added at root node 

r-UB best dual bound obtained at root node 

r-time (s) total computing time (in seconds) spent at root node 

%-UB percentage ratio | r-UB −opt | 
| opt | 

#CI number of capacity inequalities added after root node 

%g-SEC number of exact subtour elimination constraints added in the 

branch–and–cut tree 

%g-LSEC number of lazy subtour elimination constraints added in the 

branch–and–cut tree 

nodes number of nodes in the branch-and-cut tree 

%-visited percentage of fulfilled requests for customers of type a and b

(see Section 5.1 ) 

solved number of instances solved out of a set of instances 

%-gap percentage gap 

time (s) total computing time (in seconds) 

.1. Synthetic instance generation 

To test the computational behavior of our branch-and-cut al-

orithm we derive 180 instances by making use of five Distance-

onstrained CVRP (DCCVRP) instances that can be found in

hristofides et al. [18] (available in http://vrp.atd- lab.inf.puc- rio.

r/index.php/en/ ). These instances (namely CMT6, CMT7, CMT8,

MT9, and CMT10) provide information about (1) the number of

vailable vehicles; (2) the capacity of the vehicles; (3) the con-

traint on the maximum duration for each vehicle; and (4) the

uclidean 2-dimensional coordinates and demands of the requests

nd of the depot (only coordinates). In each of the five instance

ets, comprised of 36 instances, the selected service point requests

ere chosen randomly. Furthermore, larger instances belonging to

he same instance set always contain the service points of the

maller instances. Similarly to the decision of the authors in [3,5] ,

http://vrp.atd-lab.inf.puc-rio.br/index.php/en/
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Fig. 2. Coin distribution instance (CDI3) with 21 retailer requests without any SLR (black dots), 9 requests for coin replenishment with an SLR equal to 80% (pinned locations), 

and 2 obligatory request from a casino and a retailer whose request is soon to reach the maximum-allowed periods without delivery (black rectangles with a white dot in 

the middle). 

Table 1 

General structure of the instances given a specific SLR and penalty for the type b customer. 

CMT6 CMT7 CMT8 CMT9 CMT10 

| V ′ | Q = 160, T max = 200 |K| Q = 140, T max = 160 |K| Q = 200, T max = 230 |K| Q = 20 0, T max = 20 0 |K| Q = 20 0, T max = 20 0 |K| 
d 1 : 14 ( a ), 5 ( b ), 1 ( c ) d 1 : 14 ( a ), 5 ( b ), 1 ( c ) d 1 : 14 ( a ), 5 ( b ), 1 ( c ) d 1 : 14 ( a ), 5 ( b ), 1 ( c ) d 1 : 14 ( a ), 5 ( b ), 1 ( c ) 

20 d 2 : 12 ( a ), 6 ( b ), 2 ( c ) 3 d 2 : 12 ( a ), 6 ( b ), 2 ( c ) 4 d 2 : 12 ( a ), 6 ( b ), 2 ( c ) 2 d 2 : 12 ( a ), 6 ( b ), 2 ( c ) 2 d 2 : 12 ( a ), 6 ( b ), 2 ( c ) 2 

d 3 : 10 ( a ), 7 ( b ), 3 ( c ) d 3 : 10 ( a ), 7 ( b ), 3 ( c ) d 3 : 10 ( a ), 7 ( b ), 3 ( c ) d 3 : 10 ( a ), 7 ( b ), 3 ( c ) d 3 : 10 ( a ), 7 ( b ), 3 ( c ) 

d 1 : 17 ( a ), 6 ( b ), 2 ( c ) d 1 : 17 ( a ), 6 ( b ), 2 ( c ) d 1 : 17 ( a ), 6 ( b ), 2 ( c ) d 1 : 17 ( a ), 6 ( b ), 2 ( c ) d 1 : 17 ( a ), 6 ( b ), 2 ( c ) 

25 d 2 : 15 ( a ), 7 ( b ), 3 ( c ) 4 d 2 : 15 ( a ), 7 ( b ), 3 ( c ) 4 d 2 : 15 ( a ), 7 ( b ), 3 ( c ) 3 d 2 : 15 ( a ), 7 ( b ), 3 ( c ) 3 d 2 : 15 ( a ), 7 ( b ), 3 ( c ) 3 

d 3 : 12 ( a ), 8 ( b ), 5 ( c ) d 3 : 12 ( a ), 8 ( b ), 5 ( c ) d 3 : 12 ( a ), 8 ( b ), 5 ( c ) d 3 : 12 ( a ), 8 ( b ), 5 ( c ) d 3 : 12 ( a ), 8 ( b ), 5 ( c ) 

d 1 : 21 ( a ), 7 ( b ), 2 ( c ) d 1 : 21 ( a ), 7 ( b ), 2 ( c ) d 1 : 21 ( a ), 7 ( b ), 2 ( c ) d 1 : 21 ( a ), 7 ( b ), 2 ( c ) d 1 : 21 ( a ), 7 ( b ), 2 ( c ) 

30 d 2 : 18 ( a ), 9 ( b ), 3 ( c ) 4 d 2 : 18 ( a ), 9 ( b ), 3 ( c ) 5 d 2 : 18 ( a ), 9 ( b ), 3 ( c ) 3 d 2 : 18 ( a ), 9 ( b ), 3 ( c ) 3 d 2 : 18 ( a ), 9 ( b ), 3 ( c ) 3 

d 3 : 15 ( a ), 10 ( b ), 5 ( c ) d 3 : 15 ( a ), 10 ( b ), 5 ( c ) d 3 : 15 ( a ), 10 ( b ), 5 ( c ) d 3 : 15 ( a ), 10 ( b ), 5 ( c ) d 3 : 15 ( a ), 10 ( b ), 5 ( c ) 
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Fig. 3. Effect of valid inequalities on closing the optimality gap at the root node for three coin distribution instances (top: effect of PI, middle: effect of CI, bottom: effect of 

MTI). 
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and [15] , our decision to utilize this set of DCCVRP instances was

based on the fact that most of the input parameters of our model

are present in the data set. However, we decided to keep the origi-

nal number of vehicles and change it only proportionally based on

the size of the 36 instances derived from each DCCVRP instance. 

Given the novel nature of our problem, we modify these orig-

inal instances by determining our problem’s specific input param-

eters. We follow the guidelines of [4] and [5] for assigning profits

to the service point requests of the customers. Both of the above-

mentioned papers make use of instances that can be also be found
n [18] for generating synthetic instances with suitable structures

or the CTOP (and the variant of CTOP in which split deliveries are

llowed) and for the CPTP. 

We further consider three types of customers ( a, b , and c ) with

ifferent service level requirements. Customers of type a impose

o SLR at all, while customers of type c are associated with an

LR equal to 100% and an infinite-valued penalty when not re-

eiving service. Finally, the type b customer is associated with an

LR equal either to 50% ( α1 = 0 . 5 ) or 80% ( α2 = 0 . 8 ). Both SLRs for

he type b customer are associated with penalty values equal to
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0 ( p 1 ) and 150 ( p 2 ) units. For each of the five original instances,

6 were generated by considering all combinations of the follow-

ng input data: (1) three different instance sizes (i.e., with 20, 25,

nd 30 service point delivery requests); (2) three different alloca-

ion rules ( d 1 , d 2 , and d 3 ) for the requests between the three cus-

omer types; (3) two different SLRs ( α1 and α2 ); and (4) 2 differ-

nt penalty values ( p 1 and p 2 ) for not meeting the SLR of the type

 customer. In d 1 , requests were distributed by allocating 
 0.7| V 

′ | �
o customers of type a , 
 0.25| V 

′ | � to customer of type b , and | V ′ | −
 0 . 7 | V ′ |� − 
 0 . 25 | V ′ |� to type c customers. In d 2 , 
 0.6| V 

′ | � requests

ere assigned to customers of type a , 
 0.3| V 

′ | � to customer of

ype b , and | V ′ | − 
 0 . 6 | V ′ |� − 
 0 . 3 | V ′ |� to type c customers. Finally,

n d 3 , 
 0.5| V 

′ | � requests were assigned to customers of type a ,

 0.35| V 

′ | � to customer of type b , and | V ′ | − 
 0 . 5 | V ′ |� − 
 0 . 35 | V ′ |�
o type c customers. The profit of each request was set equal to

p i = (0 . 5 + h ) d i , where h is a random number between 0 and 1

nd d i is the demand of service point i ∈ V 

′ . A general description

f the instances regarding the allocation of requests among the dif-

erent customer types and the instance-specific input parameters is

iven in Table 1 . 

.1.1. Synthetic instance results 

Tables 2–4 report on the average computational behavior of our

ranch-and-cut algorithm for a total set of 180 synthetic instances.

he numbers are rounded to one decimal point. These results do

ot take into account the values of #g-SEC and #g-LSEC for four in-

tances (CMT7-30- d 2 − α1 − p 1 , CMT7-30- d 2 − α1 − p 2 , CMT7-

0- d 2 − α2 − p 1 , and CMT7-30- d 2 − α2 − p 2 ) for which a feasi-

le solution was not found by CPLEX within the TL, even if one

oes exist for all of them. 

The name of each instance provides information about (1) the

riginal instance; (2) the distribution rule for allocating the re-

uests among the three types of customers; (3) the SLR of the type

 customer; and (4) the penalty that needs to be incurred by the

SP in case of missing the SLR of the type b customer. For example,

MT6-20- d 1 − α1 − p 1 is an instance produced by CMT6 in which

0 requests were allocated to customers based on the d 1 rule, and

n which the LSP incurs a penalty equal to p 1 in case of missing

he SLR of the type b customer which is equal to α1 . CMT6- > 10-

0- d 1 − α1 − p 1 , accordingly, reports the average computational

esults of CMT6 up to CMT10 given a fixed number of total service

oints, the distribution rule, the SLR of the type b customer, and

he penalty for missing this specific SLR. For more detailed com-

utational results see Tables A7 –A11 in the Appendix A . 

Fig. 1 highlights the reason behind our decision to separate the

hree families of valid inequalities at the root node without ex-

luding any of them. Along the horizontal axis, we report the fam-

lies of valid inequalities added during the cutting plane phase at

he root node of the branch–and–cut algorithm. More precisely,

I stands for parity inequalities (disaggregate and aggregate), CI

tands for fractional or generalized capacity inequalities, and MTI

tands for max-time inequalities. Along the vertical axis, we report

he average gap between the objective values related to the initial

inear relaxations and the objective values of the linear relaxations

n which all the corresponding violated inequalities are added. The

verage time needed for the separation routines is also reported

ext to the average gap for each family. Each average gap and av-

rage time spent (in seconds) is computed based on the gaps and

imes of all 180 synthetic instances. 

We observe that the impact produced by separating all families

f valid inequalities is better compared to that produced by sepa-

ating just CI, while the MTI alone do not provide any significant

ontribution. This is probably due to the fact that when consider-

ng these set of instances, the capacity of the vehicles is more criti-

al compared to the maximum route duration limitation, which, in

urn, results in a much higher chance of finding violated CI instead
f violated MTI. This is also a further reason behind our decision

o separate CI dynamically at each node of the branch-and-cut tree.

I also do not seem to produce any result either when used in the

bsence of CI and MTI. Our previous observation about the effec-

iveness of the CI are verified when observing the gaps produced

y incorporating any two families of valid inequalities. However, it

ppears that all (PI, CI, and MTI) together manage to close the op-

imality gap better. This indicates that there are synergistic effects

hen they are separated in the order described in Section 4.5.1 .

inally, it seems that PI and MTI do not produce any significant

mpact in closing the gap for the synthetic instances. As we will

ee later, this is different when considering the coin distribution

nstances of Section 5.2.1 . There it seems that PI and MTI together

ork synergistically and manage to close the optimality gap satis-

actorily in four out of five instances. 

Table 2 presents our main findings. Each row of this table re-

orts the average value of five different instances (coming from

ifferent original instances) given a fixed (1) number of vertices;

2) allocation of the requests among the different customer types;

3) SLR for the type b customer; and (4) penalty for missing the

LR of the type b customer. 

Overall, the computational performance of our branch-and-cut

lgorithm is satisfactory. We manage to solve 135 out of the 180

nstances to optimality within the two-hour time limit and with an

verage gap of 9.6%. This average gap, however, drops to 3.5% and

he ratio of optimally solved instances to 123/144 when the 36 in-

tances derived from the CMT7 (DCCVRP instance) are excluded.

MT7 (closely associated with the CVRP instance E-n76-k10) is

nown to be the most difficult of the instances of Christofides

t al. [18] . For more details see the computational results of the

 instances in [9] and [33] . Additionally, none of the five DCCVRP

nstances (CMT6-CMT10) with a minimum of 50 service point re-

uests has been solved to optimality by utilizing a pure branch-

nd-cut solution framework. Thus, solving the more complicated

RPPSLR instances with 30 service points can be considered a

hallenge. For a more complete picture of branch-and-cut solution

ramework capabilities see [37] . More specifically, we are able to

olve 35 out of the 36 instances of families CMT8 and CMT10, 29

ut of 36 instances of family CMT9, 24 out of 36 instances of fam-

ly CMT6, and 12 out of 36 instances of family CMT7 (for a more

etailed presentation of these results see Appendix A ). 

According to Table 3 , SLRs (and their associated penalties) seem

o play a very important role in defining the difficulty of the prob-

em, as in most cases the SLR of the type b customer is fulfilled

nly because of the associated penalty for missing it. We observe

hat when the SLR of the type b customer is equal to 50% it is ful-

lled with an average excess of 18.7%. On the other hand, when the

ame SLR is equal to 80% it is fulfilled with an average excess of

nly 0.1%. This indicates that, for this set of 180 problem instances,

he LSP would be on average indifferent in an SLR between 0.0%

nd 68.7%. Additionally, different SLRs for the type b customer re-

ult clearly in different profitability levels for the LSP, as indicated

y the difference in the “opt” and “%-gap” columns. Furthermore,

ore demanding SLRs can increase the difficulty of the problem,

s this is mainly implied by the different values in the “%-UB”,

nodes”, “%-gap”, and “time” columns. All in all, it seems that the

ifficulty of the problem generally increases as the SLR of the type

 customer increases and the number of service points served does

ot necessarily increase proportionally to the given SLR for the

ype b customer. 

Table 4 reports on the effect of the two different penalty val-

es for missing the SLR of the type b customer. We observe that

here are cases in which it is more beneficial for the LSP to ful-

ll only the most beneficial requests of the type b customer with-

ut meeting the SLR. This is implied by the different values of the

opt” and “%-gap” columns for the two different penalty values. On
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Table 2 

Summary of the computational results for the 180 instances. 

Name Opt Pre-UB #r-PI #r-CI #r-MTI r-UB r-time %-UB #CI #g-SEC #g-LSEC nodes %-visited %-gap solved Time 

CMT6- > 10-20- d 1 − α1 − p 1 65.9 146.0 196.0 22.4 37.0 80.4 18.6 25.1 117.2 3231.6 12.2 4369.8 (47.0,72.0) 0.0 5/5 89.0 

CMT6- > 10-20- d 1 − α1 − p 2 65.9 146.0 189.8 22.4 37.8 80.4 18.3 25.1 142.4 4164.0 12.4 5545.0 (54.3,76.0) 0.0 5/5 127.7 

CMT6- > 10-20- d 1 − α2 − p 1 62.5 141.5 223.2 16.8 39.4 77.6 17.5 33.2 116.8 2147.4 7.0 3601.0 (52.8,80.0) 0.0 5/5 61.2 

CMT6- > 10-20- d 1 − α2 − p 2 62.5 141.1 213.2 16.0 39.4 78.8 15.1 40.4 156.0 2066.4 7.8 3157.4 (48.9,76.0) 0.0 5/5 48.2 

CMT6- > 10-20- d 2 − α1 − p 1 64.3 141.3 240.0 35.0 49.0 77.4 19.6 22.8 86.4 1362.4 10.4 1777.6 (51.7,65.3) 0.0 5/5 48.9 

CMT6- > 10-20- d 2 − α1 − p 2 64.3 141.3 238.6 35.0 49.0 77.5 19.5 22.9 227.0 3953.4 11.0 4495.0 (51.7,63.3) 0.0 5/5 186.1 

CMT6- > 10-20- d 2 − α2 − p 1 57.2 140.6 249.0 21.8 53.8 74.0 19.3 43.2 202.6 2811.0 8.6 3741.0 (50,8.66.0) 0.0 5/5 90.8 

CMT6- > 10-20- d 2 − α2 − p 2 57.2 140.0 234.0 17.0 45.0 73.2 17.1 41.1 177.8 2611.4 7.8 3468.8 (53.3,83.3) 0.0 5/5 86.7 

CMT6- > 10-20- d 3 − α1 − p 1 58.0 131.9 221.2 19.2 45.8 74.5 17.2 39.5 190.6 3271.4 6.8 4464.4 (46,7.54.0) 0.0 5/5 100.1 

CMT6- > 10-20- d 3 − α1 − p 2 58.0 128.9 214.6 19.4 41.4 75.4 15.9 43.4 216.4 3511.2 5.0 5366.8 (46,7.54.0) 0.0 5/5 107.4 

CMT6- > 10-20- d 3 − α2 − p 1 52.1 149.6 160.8 16.2 41.0 69.2 16.9 55.0 232.4 3140.0 6.8 3776.6 (50.0,85.7) 0.0 5/5 88.9 

CMT6- > 10-20- d 3 − α2 − p 2 52.1 148.6 184.6 16.8 38.8 69.7 15.6 54.8 148.4 2338.0 6.0 2785.4 (52.0,82.8) 0.0 5/5 59.0 

CMT6- > 10-25- d 1 − α1 − p 1 103.3 202.3 376.4 33.2 56.4 123.5 41.7 23.7 441.6 17283.6 13.6 18607.6 (60.0,76.7) 4.2 4/5 1587.4 

CMT6- > 10-25- d 1 − α1 − p 2 103.4 202.3 376.4 33.2 56.4 123.5 42.0 23.7 414.0 16467.0 14.6 17949.2 (56.4,70.0) 8.4 4/5 1550.0 

CMT6- > 10-25- d 1 − α2 − p 1 100.7 202.4 389.8 27.8 73.6 118.2 49.8 20.6 544.2 19592.4 16.2 20553.0 (64.7,86.6) 4.7 4/5 1734.6 

CMT6- > 10-25- d 1 − α2 − p 2 101.1 202.4 360.2 27.2 68.6 118.2 45.9 20.3 412.8 17433.0 12.2 17621.6 (62.3,80.0) 6.7 4/5 1587.9 

CMT6- > 10-25- d 2 − α1 − p 1 100.2 195.6 303.0 27.2 56.2 120.5 41.3 27.9 656.2 23029.0 15.6 26556.4 (54.66,71.4) 11.0 4/5 1810.4 

CMT6- > 10-25- d 2 − α1 − p 2 100.2 190.1 303.0 27.2 56.2 120.5 41.2 27.9 494.0 19684.6 17.4 21786.2 (60.0,68.5) 11.1 4/5 1607.7 

CMT6- > 10-25- d 2 − α2 − p 1 95.2 196.1 473.8 25.2 100.4 114.1 52.4 27.0 513.0 18679.2 8.2 19511.4 (62.7,82.8) 5.8 4/5 1652.4 

CMT6- > 10-25- d 2 − α2 − p 2 95.2 196.0 346.8 31.2 79.2 114.2 59.2 27.0 347.0 16837.4 11.4 18037.0 (62.7,88.6) 3.1 4/5 1568.2 

CMT6- > 10-25- d 3 − α1 − p 1 95.7 193.0 328.0 23.4 53.6 114.2 43.2 27.4 422.8 20572.8 12.8 23445.0 (63.3,62.5) 8.7 4/5 1692.2 

CMT6- > 10-25- d 3 − α1 − p 2 95.7 190.6 328.0 23.4 53.6 114.2 43.0 27.4 465.6 24533.8 11.4 28973.8 (65.0,55.0) 5.7 4/5 1960.6 

CMT6- > 10-25- d 3 − α2 − p 1 87.4 173.7 381.4 34.6 81.8 106.9 46.3 37.0 424.8 18571.8 9.6 20032.0 (60.0,67.5) 9.9 4/5 1586.9 

CMT6- > 10-25- d 3 − α2 − p 2 83.3 173.6 449.6 29.2 116.6 103.7 62.7 147.9 315.8 16923.0 11.4 18771.6 (61.6,85.0) 10.7 4/5 1591.8 

CMT6- > 10-30- d 1 − α1 − p 1 152.0 241.7 962.2 45.6 119.8 171.7 85.5 14.5 1056.8 29777.2 16.8 30798.2 (66.7,68.5) 9.4 2/5 4529.6 

CMT6- > 10-30- d 1 − α1 − p 2 151.7 241.7 962.2 45.6 119.8 171.7 85.9 14.8 1124.2 29355.0 17.8 29218.2 (59.0,65.7) 16.3 2/5 4566.8 

CMT6- > 10-30- d 1 − α2 − p 1 148.3 240.7 1002.0 51.2 125.2 168.6 92.1 15.0 1160.8 34647.2 18.0 36818.2 (59.1,71.4) 26.9 1/5 5795.7 

CMT6- > 10-30- d 1 − α2 − p 2 148.4 246.9 1010.8 51.6 127.8 168.8 102.9 14.9 964.2 31358.0 11.8 33636.2 (55.2,77.1) 21.5 2/5 5021.2 

CMT6- > 10-30- d 2 − α1 − p 1 151.1 248.2 719.2 55.4 111.4 171.0 79.7 13.8 1151.8 28795.8 9.8 31206.0 (61.1,69.4) 15.4 2/5 4937.0 

CMT6- > 10-30- d 2 − α1 − p 2 150.0 246.5 719.2 55.4 111.4 171.0 79.5 15.1 1001.2 28661.8 12.6 31314.6 (58.4,77.8) 8.1 2/5 4 84 8.4 

CMT6- > 10-30- d 2 − α2 − p 1 143.9 244.5 744.2 44.2 122.2 162.7 95.2 14.5 945.2 28966.2 14.0 29421.2 (61.1,80.6) 14.4 2/5 4676.4 

CMT6- > 10-30- d 2 − α2 − p 2 136.5 245.8 699.2 38.6 125.6 158.8 95.0 20.4 948.4 30849.8 18.2 39051.4 (62.5,83.4) 4.8 3/5 4793.5 

CMT6- > 10-30- d 3 − α1 − p 1 145.0 246.4 989.2 53.8 127.4 164.4 107.9 14.6 715.0 22254.4 18.0 23512.2 (6 8.0,6 8.0) 13.9 3/5 3509.3 

CMT6- > 10-30- d 3 − α1 − p 2 145.0 244.4 989.2 53.8 127.4 164.4 108.2 14.6 822.0 25911.2 22.6 27322.8 (62.7,70.0) 9.0 3/5 3894.4 

CMT6- > 10-30- d 3 − α2 − p 1 140.6 243.5 733.6 48.0 122.8 163.2 84.5 18.5 854.2 31240.0 14.6 39451.8 (64.0,78.0) 16.9 3/5 4459.4 

CMT6- > 10-30- d 3 − α2 − p 2 138.8 243.8 835.2 53.4 146.0 162.3 122.9 20.8 1058.8 38580.0 10.6 44285.0 (65.3,76.0) 18.0 2/5 6004.0 

Average 18.3 9.6 2168.3 

#Optima 135/180 
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Table 3 

Aggregated computational results based on the two different service level requirements. 

Name Opt Pre-UB #r-PI #r-CI #r-MTI r-UB r-time %-UB #CI Nodes %-visited %-gap Time 

Average ( α1 ) 99.6 176.3 464.9 34.0 69.4 117.4 47.1 14.4 526.0 18262.9 (57.3,68.7) 6.4 2064.1 

#optima ( α1 ) 68/90 

Average ( α2 ) 93.9 174.9 466.6 30.6 82.6 112.4 52.7 22.3 513.4 19409.7 (58.2,80.1) 12.8 2272.6 

#optima ( α2 ) 67/90 

Table 4 

Aggregated computational results based on the two different penalties. 

Name Opt Pre-UB #r-PI #r-CI #r-MTI r-UB r-time %-UB #CI Nodes %-visited %-gap Time 

Average ( p 1 ) 97.1 175.7 466.8 32.4 75.4 115.0 48.3 16.2 530.7 18980.2 (57.9,74.0) 9.5 2136.1 

#optima ( p 1 ) 67/90 

Average ( p 2 ) 96.4 175.5 464.7 32.2 76.7 114.7 51.6 20.4 508.7 19146.7 (57.8,74.2) 9.7 2200.5 

#optima ( p 2 ) 68/90 

Table 5 

General description of the seven real-life instances. 

Name | V ′ | |K| Q (coins) T max (h) Distribution SLR b P b 

CDI1 26 3 250.0 0 0 8 17 (a), 7 (b), 2 (c) 80% 500 

CDI2 32 2 250.0 0 0 8 21 (a), 9 (b), 2 (c) 80% 500 

CDI3 32 4 250.0 0 0 8 21 (a), 9 (b), 2 (c) 80% 500 

CDI4 35 2 250.0 0 0 8 26 (a), 7 (b), 2 (c) 80% 500 

CDI5 35 4 250.0 0 0 8 26 (a), 7 (b), 2 (c) 80% 500 

BDI1 29 3 - 8 19 (a), 7 (b), 3 (c) 80% 700 

BDI2 32 2 - 8 25 (a), 5 (b), 2 (c) 80% 700 
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1 Geldmaat has this role in the scope of the Netherlands. 
op of this, the highest penalty value seems to make the problem

lightly more difficult as this is indicated by the different values of

olumns “%-UB” and “%-gap”. 

.2. Case study instances 

To assess the behavior of our branch-and-cut algorithm and

he possible advantageous or disadvantageous structure of real-life

roblems, we conducted a case study of the Dutch cash supply

hain. The case study is separated into two parts; coin and ban-

note distribution. The main difference between these two parts

s that vehicle capacities must be considered only in coin distri-

ution problems. For banknote distribution, there is a maximum

mount of banknotes that are officially allowed to be delivered.

owever, this amount is never reached, due to the maximum route

uration constraints imposed by the working regulations. On top

f this, coin and banknote distributions require different types of

ehicles. 

Banks are among the most important customers of the CIT com-

anies. This is due to (1) the number of requests for coin or Au-

omated Teller Machine (ATM) cash replenishment a CIT receives

n a daily basis; and (2) the high average revenue for replenishing

oin or ATM devices. CITs, however, are responsible for the deliv-

ry of coins and banknotes to several other types of customers, in-

luding, but not limited to retailers, casinos, and foreign exchange

arkets. Typically, requests for coin or ATM cash replenishment

hat come from banks do impose an SLR slightly below 100% while

etailer requests do not impose any SLR. When a retailer request

s not fulfilled on the desired day, it typically moves to the next

orking day (or period). The maximum-allowed number of con-

ecutive working days a retailer request can be missed is described

n the agreement between the retailer and the CIT. Our model ad-

resses this issue arising in the Dutch cash supply chain by turn-

ng these delayed requests into obligatory requests just prior to

heir deadline. Finally, there is a third category of customers im-

osing, among others, obligatory requests that they should never

e missed. These customer types typically include banks request-

ng ATM cash replenishment for devices located in airports, casino

ompanies, and foreign exchange markets. 
A general description of the seven real-life coin and banknote

istribution instances (CDI and BDI, respectively) can be found in

able 5 . Fig. 2 depicts a coin distribution instance (CDI3) with a

otal of 32 requests of which: 21 come from 4 retailers without

LRs at all; 9 are bank requests for coin replenishment of dedicated

evices with an SLR of 80%; 1 comes from a customer with an SLR

f 100% and an infinite-valued financial penalty for missing it; and

 is a delayed retailer request that is soon to reach the maximum-

llowed periods without delivery. In this set of real-life instances,

he type b customer is considered to be the entity representing a

umber of banks, which, through a joint venture 1 , send requests

o the CITs for ATM cash replenishment. 

.2.1. Case study results 

Fig. 3 highlights the effect of the families of valid inequalities

n closing the optimality gap at the root node for the three most

ifficult coin distribution instances. To do so, a representation ex-

loring all possible combinations of families of valid inequalities is

onsidered. 

Our main observation is that no family of valid inequalities is

ble to close the optimality gap at the root node effectively when

sed in the absence of the other two. Similarly, the same holds

hen we consider the optimality gaps produced by using any two

amilies of valid inequalities. For example, CI and MTI are very ef-

ective when used together in CDI1 and CDI3 but not in CDI5. The

ame holds when considering using PI and MTI for the same set

f instances. This implies that synergistic effects play an impor-

ant role in this set of instances as well. No significant contribution

s observed by incorporating either PI or MTI (or both applied to-

ether) in the banknote distribution instances. Hence, we decided

o exclude them from this analysis. 

Table 6 reports the performance of our branch-and-cut algo-

ithm for a set of five coin and two banknote distribution in-

tances. Numbers are again rounded to one decimal place. For

he coin distribution instances, our branch-and-cut algorithm has

roved able to solve instances with up to 35 service point re-
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Table 6 

Computational results for the seven real-life instances. 

Name Opt Pre-UB #r-PI #r-CI #r-MTI r-UB r-time (s) %-UB #CI #g-SEC #g-LSEC nodes %-visited %-gap Time (s) 

CDI1 3623.5 3960.0 1135 41 150 3748.6 132.6 3.5 973 72,538 17 71,634 (88.2,85.7) 0.5 TL 

CDI2 4412.9 4414.6 6364 71 0 4413.2 1781.9 0.0 492 65,923 27 64,243 (100.0,100.0) 0.0 TL 

CDI3 4156.2 4414.6 8841 336 150 4219.1 2046.2 1.5 138 21,964 31 21,317 (85.7,88.9) 2.1 TL 

CDI4 5213.7 5283.8 2398 42 0 5261.7 985.3 0.0 689 38,459 40 37,418 (92.3,100.0) 0.0 TL 

CDI5 5131.2 5392.0 5465 94 150 5146.8 752.2 0.3 204 24,148 28 23,788 (76.9,71.4) 42.4 TL 

BDI1 2891.7 2898.2 75 – 7 2891.8 6.9 0.0 – 30,477 11,636 56,745 (94.7,85.7) 6.4 TL 

BDI2 3083.4 3162.9 51 – 8 3083.7 42.2 0.0 – 25,285 1268 61,460 (92.0,100.0) 3.6 TL 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

p  

e

 

1  

t  

t  

t  

c  

i  

p  

w  

f  

i  

t  

c  

s  

t  

a  

0  

3  

(  

r  

i  

l  

p

 

t  

t  

p  

i  

t  

i  

r  

r

A

 

s

F

 

[

A

 

b  

E  

d  

M  

(  

r  

t  
quests, with a relatively small gap. For CDI1, CDI2, and CDI4 our

code was able to find a solution with a maximum gap of 0.5%,

while for CDI3, a solution with a gap of 2.1% was produced within

the time limit of two hours. Finally, it is no surprise that we are

not able to solve CDI5 with a reasonably small gap, as 35 service

point requests seems beyond the capabilities of our code, as in-

dicated in the results of Section 5.1.1 ) for the synthetic instances

with three or more vehicles. This computational limit, however,

does not have any practical consequences as real-life instances are

normally smaller in size. This is in part due to the fact that the

country is split into geographical regions in which up to four ve-

hicles are responsible for the coin distribution tasks. On average,

CITs in the Netherlands face coin distribution scenarios with an

minimum of 20 and a maximum 32 coin delivery requests per day

(CDI4 and CDI5 were artificially created by utilizing CDI2 and CDI3

to show the limitations of our solution framework). Both banknote

distribution instances were solved with relatively small gaps. More

specifically, BDI1 and BDI2 were solved with gaps equal to 6.4%

and 3.6%, respectively. We observe that the difficulty in solving

CDI1, CDI3, BDI1, and BDI2 to optimality comes mainly from the

fact that we are not able to compute better primal bounds. On the

other hand, we observe that strong dual bounds are computed in

relatively short times. Overall, computational experiments on the

real-life instances confirm the algorithm’s performance for the syn-

thetic problem instances. 

6. Conclusion 

In this paper, we introduced and studied a new routing problem

with profits, namely the Capacitated Routing Problem with Profits

and Service Level Requirements (CRPPSLR). We proposed a binary

programming formulation and described a branch-and-cut algo-

rithm for solving it by utilizing and adapting sets of valid inequali-

ties derived from the literature. A computational study showed the

effectiveness of our algorithm through extensive experimentation

on 180 synthetic and seven real-life instances. 

Our contributions to the literature are several. In terms of

problems, and to the best of our knowledge, this was the first

study incorporating a real-life Key Performance Indicator (KPI) in

the Vehicle Routing Problem-related literature, extending well-

known problems such as the Prize-Collecting Traveling Salesman

Problem (PCTSP), the Prize-Collecting Vehicle Routing Problem

(PCVRP), and the Capacitated Profitable Tour Problem (CPTP). On

top of this, we extended the single-vertex single-customer pattern

by considering single customers represented by (possibly) many

vertices. From a methodological point of view, we developed a

branch-and-cut solution framework by incorporating families of

valid inequalities with proven effectiveness for problems with

similar polyhedral structures; we also provided detailed explana-

tions of their exact and heuristic separation procedures. A set of

180 synthetic instances with up to 30 service points was derived

from the well-know instances of Christofides et al. [18] . Compu-

tational testing showed the benefits of separating parity, capacity,

and max-time inequalities at the root node, and only capacity

inequalities thereafter. Furthermore, the impact of model input
arameters on the difficulty and profitability of the problem was

xamined. 

Our branch-and-cut algorithm was able to solve 135 out of the

80 synthetic instances within two-hour time limit and with a

otal average gap of 9.6%. This gap, however, drops to 3.5% and

he portion of optimally solved instances rises to 123/144 when

he family of 36 instances derived from instance CMT7 is ex-

luded. This instance has previously proved very difficult to solve

n [9] and [33] . To evaluate the performance of the algorithm in

ractice, a real-life case study of coin and banknote distribution

as examined. The results supported our decision to separate all

amilies of valid inequalities at the root node, and only capacity

nequalities thereafter. Our algorithm was able to solve six out of

he seven instances, with up to 35 service point delivery requests

lose to optimality. More specifically, the first coin distribution in-

tance with 26 requests was solved with a gap equal to 0.5% while

he second, third, and fourth coin distribution instances with 32

nd 35 requests were solved with gaps equal to 0.0%, 2.1%, and

.0% respectively. Both banknote distribution instances with 29 and

2 service points requests were solved with relatively small gaps

3.6% and 6.4%). Finally, it was shown how different service level

equirements and penalties affect the difficulty and the profitabil-

ty of the CRPPSLR. More specifically, we show that higher service

evel requirements and penalty values lead to worse computational

erformance and lower profitability levels. 

Given the importance of the quality of service considerations in

he industry, we think it is worthwhile to devote more research ac-

ivity to handling service level requirements in distribution routing

roblems. In particular, research could be directed towards model-

ng different service level measures and alternative penalty struc-

ures. Moreover, deriving new problem formulations and develop-

ng exact and heuristic solution approaches appear promising di-

ections for further research aimed at unlocking the potential of

outing problems with profits and service level requirements. 
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ppendix A. Tables of results 

Tables A7 –A11 report on the computational behavior of our

ranch-and-cut algorithm on a total set for 180 synthetic instances.

ach table reports computational results for the 36 instances pro-

uced by the same original instance, as described in Section 5.1 .

oreover, the name of each instance provides information about

1) the original instance; (2) the distribution rule for allocating the

equests among the three types of customers; (3) the SLR of the

ype b customer; and (4) the penalty that needs to be incurred by
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Table A7 

Computational results for the 36 instances produced by CMT6. 

Name Opt Pre-UB #r-PI #r-CI #r-MTI r-UB r-time (s) %-UB #CI #g-SEC #g-LSEC Nodes %-visited %-gap Time (s) 

CMT6-20- d 1 − α1 − p 1 93.3 145.8 113 16 12 102.8 10.2 10.2 19 63 16 45 (35.0,80.0) 0.0 3.4 

CMT6-20- d 1 − α1 − p 2 93.3 145.8 113 16 12 102.8 10.2 10.2 20 62 16 48 (50.0,80.0) 0.0 3.4 

CMT6-20- d 1 − α2 − p 1 93.3 145.8 136 14 6 101.2 8.5 8.5 14 58 10 47 (50.0,80.0) 0.0 3.0 

CMT6-20- d 1 − α2 − p 2 93.3 145.8 132 12 9 98.9 6.0 6.0 12 52 12 32 (50.0,80.0) 0.0 6.8 

CMT6-20- d 2 − α1 − p 1 93.3 145.8 121 15 14 98.9 6.0 6.0 4 45 8 33 (50.0,66.7) 0.0 8.0 

CMT6-20- d 2 − α1 − p 2 93.3 145.8 121 15 14 99.3 6.4 6.4 5 45 8 33 (50.0,66.7) 0.0 7.9 

CMT6-20- d 2 − α2 − p 1 83.8 144.8 238 27 56 89.9 7.3 7.3 17 83 6 63 (58.3,83.3) 0.0 14.3 

CMT6-20- d 2 − α2 − p 2 83.8 144.8 156 12 23 90.6 8.1 8.1 49 193 7 149 (58.3,83.3) 0.0 10.4 

CMT6-20- d 3 − α1 − p 1 93.3 145.8 237 25 31 99.0 6.1 6.1 15 60 12 10 (40.0,71.4) 0.0 11.6 

CMT6-20- d 3 − α1 − p 2 93.3 145.8 237 25 31 99.0 6.1 6.1 6 53 12 10 (40.0,71.4) 0.0 11.0 

CMT6-20- d 3 − α2 − p 1 83.8 144.8 103 13 14 90.6 8.1 8.1 51 167 7 129 (50.0,85.7) 0.0 7.6 

CMT6-20- d 3 − α2 − p 2 83.8 144.8 196 14 27 90.9 8.5 8.5 42 176 7 127 (50.0,85.7) 0.0 12.0 

CMT6-25- d 1 − α1 − p 1 111.6 165.6 417 17 23 128.4 15.1 15.1 341 2737 18 3047 (41.1,66.7) 0.0 97.5 

CMT6-25- d 1 − α1 − p 2 111.6 165.6 417 17 23 128.4 15.1 15.1 275 1925 21 2806 (41.1,66.7) 0.0 73.6 

CMT6-25- d 1 − α2 − p 1 110.7 165.6 189 26 25 121.7 9.9 9.9 222 1184 13 1334 (64.7,83.3) 0.0 54.1 

CMT6-25- d 1 − α2 − p 2 110.7 165.6 304 23 50 121.8 10.0 10.0 244 2130 10 2087 (64.4,83.3) 0.0 83.8 

CMT6-25- d 2 − α1 − p 1 111.6 165.6 198 18 13 128.4 15.1 15.1 373 3078 10 3957 (33.3,71.4) 0.0 102.7 

CMT6-25- d 2 − α1 − p 2 111.6 165.6 198 18 13 128.4 15.1 15.1 316 2227 12 3352 (33.3,71.4) 0.0 77.7 

CMT6-25- d 2 − α2 − p 1 110.7 165.6 301 26 55 120.2 8.6 8.6 118 904 6 1471 (60.0,85.7) 0.0 53.6 

CMT6-25- d 2 − α2 − p 2 110.7 165.6 284 22 54 121.1 9.4 9.4 130 1039 2 1591 (60.0,85.7) 0.0 55.5 

CMT6-25- d 3 − α1 − p 1 111.6 165.6 210 18 22 128.4 15.1 15.1 305 1888 18 2961 (33.3,50.0) 0.0 70.7 

CMT6-25- d 3 − α1 − p 2 111.6 165.6 210 18 22 128.4 15.1 15.1 358 2214 15 2726 (33.3,50.0) 0.0 81.4 

CMT6-25- d 3 − α2 − p 1 110.7 165.6 184 20 47 121.6 9.8 9.8 181 1161 9 1423 (50.0,87.5) 0.0 54.5 

CMT6-25- d 3 − α2 − p 2 110.7 165.6 435 25 131 120.4 8.8 8.8 146 1001 13 1247 (33.3,87.5) 0.0 78.8 

CMT6-30- d 1 − α1 − p 1 176.5 249.5 2581 36 150 192.0 8.8 8.8 940 50,268 20 51,009 (76.2,71.4) 7.4 TL 

CMT6-30- d 1 − α1 − p 2 176.5 249.5 2581 36 150 192.0 8.8 8.8 1037 50,570 19 51,320 (66.7,85.7) 9.3 TL 

CMT6-30- d 1 − α2 − p 1 175.4 249.0 2289 30 150 192.2 9.6 9.6 854 48,932 19 48,052 (61.9,85.7) 20.1 TL 

CMT6-30- d 1 − α2 − p 2 175.4 248.0 2289 30 150 192.2 9.6 9.6 844 49,613 10 48,707 (71.4,85.7) 21.3 TL 

CMT6-30- d 2 − α1 − p 1 174.2 249.5 1628 85 150 191.0 9.6 9.6 956 48,393 11 47,501 (72.2,77.7) 24.3 TL 

CMT6-30- d 2 − α1 − p 2 174.2 249.5 1628 85 150 191.0 9.6 9.6 969 48,847 16 4 8,04 9 (55.6,100.0) 14.3 TL 

CMT6-30- d 2 − α2 − p 1 173.9 248.0 1187 69 150 189.8 9.1 9.1 697 52,477 4 51,871 (66.7,88.9) 15.5 TL 

CMT6-30- d 2 − α2 − p 2 173.9 248.0 1024 44 150 189.6 9.0 9.0 856 49,165 13 48,360 (66.7,88.9) 19.4 TL 

CMT6-30- d 3 − α1 − p 1 176.0 249.5 2328 32 150 192.2 9.2 9.2 972 47,893 18 48,774 (60.0,70,0) 9.1 TL 

CMT6-30- d 3 − α1 − p 2 176.0 249.5 2328 32 150 192.2 9.2 9.2 873 50,730 16 55,100 (60.0,90.0) 4.9 TL 

CMT6-30- d 3 − α2 − p 1 175.4 248.6 1482 82 150 190.9 8.8 8.8 754 53,691 13 57,105 (60.0,90.0) 3.1 TL 

CMT6-30- d 3 − α2 − p 2 175.4 248.6 1486 82 150 190.9 8.8 8.8 742 54,084 9 61,877 (60.0,90.0) 3.1 TL 

Average 9.7 5.9 2427.3 

#Optima 24/36 
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Table A8 

Computational results for the 36 instances produced by CMT7. 

Name opt pre-UB #r-PI #r-CI #r-MTI r-UB r-time (s) %-UB #CI #g-SEC #g-LSEC nodes %-visited %-gap time (s) 

CMT7-20- d 1 − α1 − p 1 84.0 197.1 477 29 114 115.2 47.7 37.1 356 14,860 4 20,771 (35.7,80.0) 0.0 414.5 

CMT7-20- d 1 − α1 − p 2 84.0 197.1 477 29 114 115.2 46.7 37.1 463 19,327 4 26,420 (57.1,100.0) 0.0 594.0 

CMT7-20- d 1 − α2 − p 1 81.6 197.1 738 30 150 114.2 57.2 40.0 307 7918 4 13,296 (50.0,80.0) 0.0 254.4 

CMT7-20- d 1 − α2 − p 2 81.6 197.1 738 30 150 114.2 57.7 40.0 159 4636 12 8477 (57.1,80.0) 0.0 149.5 

CMT7-20- d 2 − α1 − p 1 76.0 197.1 683 72 150 107.6 52.8 41.6 236 5832 3 8006 (50.0,83.3) 0.0 193.5 

CMT7-20- d 2 − α1 − p 2 76.0 197.1 682 72 150 107.6 51.9 41.6 936 18,848 2 21,613 (50.0,83.3) 0.0 880.1 

CMT7-20- d 2 − α2 − p 1 76.0 197.1 719 33 150 108.8 63.3 43.2 503 9667 2 11,349 (41.7,66.7) 0.0 349.4 

CMT7-20- d 2 − α2 − p 2 76.0 197.1 719 33 150 108.8 62.9 43.2 548 10,166 2 13,086 (50.0,83.3) 0.0 383.3 

CMT7-20- d 3 − α1 − p 1 76.0 197.1 592 21 150 110.6 56.6 45.5 499 13,315 0 18,434 (40.0,85.7) 0.0 443.3 

CMT7-20- d 3 − α1 − p 2 76.0 197.1 592 21 150 110.6 57.0 45.5 512 13,480 0 20,017 (40.0,85.7) 0.0 463.0 

CMT7-20- d 3 − α2 − p 1 76.0 197.1 395 21 106 110.8 38.5 45.8 636 10,176 2 11,565 (50.0,85.7) 0.0 342.8 

CMT7-20- d 3 − α2 − p 2 76.0 197.1 395 21 106 110.8 39.4 45.8 381 8098 5 9529 (40.0,85.7) 0.0 224.3 

CMT7-25- d 1 − α1 − p 1 140.6 252.5 663 46 150 163.2 97.2 16.1 997 66,892 8 66,383 (70.6,100.0) 21.1 TL 

CMT7-25- d 1 − α1 − p 2 140.7 252.5 663 46 150 163.2 97.4 16.0 1010 67,452 8 66,400 (52.9,66.7) 41.8 TL 

CMT7-25- d 1 − α2 − p 1 142.6 252.5 619 49 150 164.9 125.8 15.6 867 65,507 11 64,925 (70.6,100.0) 23.3 TL 

CMT7-25- d 1 − α2 − p 2 144.8 252.5 619 49 150 164.9 126.3 13.9 829 67,914 7 67,110 (70.6,100.0) 33.4 TL 

CMT7-25- d 2 − α1 − p 1 147.7 252.5 683 50 150 164.8 108.1 11.6 1133 75,130 9 73,991 (60.0,100.0) 55.0 TL 

CMT7-25- d 2 − α1 − p 2 147.7 252.5 683 50 150 164.8 108.7 11.6 1131 75,232 9 74,095 (73.3,85.7) 55.7 TL 

CMT7-25- d 2 − α2 − p 1 143.0 252.5 648 41 150 166.0 95.0 16.1 1266 63,869 2 62,766 (66.7,85.7) 28.9 TL 

CMT7-25- d 2 − α2 − p 2 145.3 252.5 648 41 150 166.0 95.0 14.2 1009 69,019 7 64,806 (53.3,100.0) 15.6 TL 

CMT7-25- d 3 − α1 − p 1 143.3 252.5 781 51 150 161.7 100.1 12.8 745 72,836 7 72,100 (75.0,75.0) 43.5 TL 

CMT7-25- d 3 − α1 − p 2 143.4 252.5 781 51 150 161.7 100.6 12.8 785 74,344 5 73,596 (83.3,50.0) 28.5 TL 

CMT7-25- d 3 − α2 − p 1 135.6 252.4 562 32 150 154.0 117.1 13.6 784 70,395 3 69,600 (66.7,50.0) 49.3 TL 

CMT7-25- d 3 − α2 − p 2 133.4 252.4 565 28 150 152.0 138.7 13.9 598 64,724 4 64,102 (58.3,87.5) 99.6 TL 

CMT7-30- d 1 − α1 − p 1 195.0 324.4 685 42 150 211.5 132.4 8.5 693 30,179 6 29,562 (71.4,85.7) 39.7 TL 

CMT7-30- d 1 − α1 − p 2 193.7 324.4 685 42 150 211.5 132.1 9.2 724 25,214 9 24,569 (42.9,57.1) 49.6 TL 

CMT7-30- d 1 − α2 − p 1 191.2 324.4 745 43 150 206.6 125.7 8.1 595 21,876 6 21,4 4 4 (52.4,42.9) 63.0 TL 

CMT7-30- d 1 − α2 − p 2 188.4 324.4 745 43 150 206.6 125.7 9.7 654 19,717 1 19,157 (19.0,42.9) 168.5 TL 

CMT7-30- d 2 − α1 − p 1 191.2 324.4 720 45 150 208.5 149.6 9.0 696 20,042 4 20,004 (-,-) - TL 

CMT7-30- d 2 − α1 − p 2 190.5 324.4 720 45 150 208.5 148.6 9.4 692 19,899 5 19,880 (-,-) - TL 

CMT7-30- d 2 − α2 − p 1 186.8 323.2 733 46 150 199.1 152.1 6.6 706 20,732 8 20,890 (-,-) - TL 

CMT7-30- d 2 − α2 − p 2 181.3 323.2 733 38 150 197.7 155.6 9.0 702 20,334 5 20,844 (-,-) - TL 

CMT7-30- d 3 − α1 − p 1 187.4 324.4 720 43 150 208.0 135.5 11.0 763 21,377 6 20,680 (73.3,60.0) 60.5 TL 

CMT7-30- d 3 − α1 − p 2 187.5 324.4 720 43 150 208.0 137.3 10.9 706 21,481 3 20,834 (46.7,50.0) 40.2 TL 

CMT7-30- d 3 − α2 − p 1 186.5 324.4 600 45 150 205.0 149.7 9.9 555 23,897 6 23,224 (46.7,40.0) 81.4 TL 

CMT7-30- d 3 − α2 − p 2 189.5 324.4 606 41 150 205.9 159.3 8.7 501 24,931 1 24,423 (46.6,40.0) 126.2 TL 

Average 17.1 45.4 4930.3 

#Optima 12/36 
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Table A9 

Computational results for the 36 instances produced by CMT8. 

Name Opt Pre-UB #r-PI #r-CI #r-MTI r-UB r-time (s) %-UB #CI #g-SEC #g-LSEC Nodes %-visited %-gap Time (s) 

CMT8-20- d 1 − α1 − p 1 45.6 94.9 153 15 3 53.3 14.7 16.9 10 67 13 56 (50.0,80.0) 0.0 1.5 

CMT8-20- d 1 − α1 − p 2 45.6 94.9 153 15 3 53.3 14.7 16.9 12 69 14 63 (50.0,80.0) 0.0 14.9 

CMT8-20- d 1 − α2 − p 1 45.6 94.9 56 7 0 49.7 1.4 9.0 7 21 10 24 (50.0,80.0) 0.0 1.5 

CMT8-20- d 1 − α2 − p 2 45.6 94.9 51 12 1 48.9 2.1 7.2 12 38 9 47 (28.6,60.0) 0.0 2.3 

CMT8-20- d 2 − α1 − p 1 45.6 94.9 121 27 2 55.4 6.8 21.5 34 171 15 216 (50.0,66.7) 0.0 7.4 

CMT8-20- d 2 − α1 − p 2 45.6 94.9 115 27 2 55.4 6.4 21.5 71 216 20 200 (50.0,66.7) 0.0 7.1 

CMT8-20- d 2 − α2 − p 1 39.9 94.9 83 13 6 45.4 5.0 13.8 35 102 17 88 (50.0,83.3) 0.0 5.3 

CMT8-20- d 2 − α2 − p 2 39.9 94.9 89 11 0 41.3 2.4 3.5 1 28 8 20 (50.0,83.3) 0.0 2.4 

CMT8-20- d 3 − α1 − p 1 29.5 79.5 65 12 0 41.5 4.0 40.7 103 433 7 789 (50.0,57.1) 0.0 7.0 

CMT8-20- d 3 − α1 − p 2 29.5 79.5 71 20 0 41.5 5.8 40.7 101 249 7 233 (50.0,57.1) 0.0 6.9 

CMT8-20- d 3 − α2 − p 1 27.4 79.5 100 16 13 30.6 6.6 11.7 6 32 9 25 (50.0,85.7) 0.0 6.7 

CMT8-20- d 3 − α2 − p 2 27.4 79.5 142 20 10 29.9 8.0 9.1 8 38 8 5 (50.0,71.4) 0.0 8.1 

CMT8-25- d 1 − α1 − p 1 65.8 107.7 221 29 13 82.4 39.9 25.2 139 655 27 735 (47.1,66.7) 0.0 50.3 

CMT8-25- d 1 − α1 − p 2 65.8 107.7 221 29 13 82.4 40.6 25.2 206 946 29 975 (47.1,66.7) 0.0 56.7 

CMT8-25- d 1 − α2 − p 1 58.7 106.6 268 27 28 66.9 46.2 14.0 125 536 31 469 (41.1,83.3) 0.0 55.3 

CMT8-25- d 1 − α2 − p 2 58.7 106.6 211 21 6 67.0 36.1 14.1 111 435 12 400 (41.1,66.7) 0.0 42.5 

CMT8-25- d 2 − α1 − p 1 43.2 92.4 206 37 29 64.7 32.1 49.8 336 2590 26 3709 (46.7,57.1) 0.0 90.3 

CMT8-25- d 2 − α1 − p 2 43.2 92.4 206 37 29 64.7 32.2 49.8 258 1734 34 2703 (46.7,57.1) 0.0 65.2 

CMT8-25- d 2 − α2 − p 1 34.9 91.3 237 19 53 50.2 42.6 43.8 255 2324 6 2585 (33.3,71.4) 0.0 87.9 

CMT8-25- d 2 − α2 − p 2 34.9 91.3 120 20 16 49.7 19.1 42.4 137 926 13 1558 (46.7,85.7) 0.0 35.2 

CMT8-25- d 3 − α1 − p 1 38.6 92.4 218 16 13 54.8 29.4 42.0 174 1400 22 1824 (50.0,50.0) 0.0 53.1 

CMT8-25- d 3 − α1 − p 2 38.6 92.4 218 16 13 54.8 28.5 42.0 195 1673 20 2068 (50.0,50.0) 0.0 59.8 

CMT8-25- d 3 − α2 − p 1 18.6 91.2 217 21 33 36.3 38.0 95.2 242 1943 28 2568 (50.0,50.0) 0.0 77.0 

CMT8-25- d 3 − α2 − p 2 3.6 91.2 519 25 150 26.8 88.3 644.4 273 6041 24 8080 (83.3,87.5) 0.0 274.6 

CMT8-30- d 1 − α1 − p 1 114.8 184.3 212 22 22 131.9 87.1 14.9 454 3559 20 3497 (47.6,71.4) 0.0 217.8 

CMT8-30- d 1 − α1 − p 2 114.8 184.3 212 22 22 131.9 87.0 14.9 455 3756 21 4418 (47.6,71.4) 0.0 225.3 

CMT8-30- d 1 − α2 − p 1 113.2 183.4 341 48 26 126.8 117.1 12.0 302 2075 16 3376 (47.6,85.7) 0.0 178.4 

CMT8-30- d 1 − α2 − p 2 113.2 183.4 253 28 39 127.3 88.1 12.5 190 1865 16 3131 (47.6,85.7) 0.0 142.5 

CMT8-30- d 2 − α1 − p 1 114.8 184.3 298 40 37 129.7 111.1 13.0 422 3036 8 2805 (50.0,55.6) 0.0 210.1 

CMT8-30- d 2 − α1 − p 2 114.8 184.3 298 40 37 129.7 110.4 13.0 310 1841 8 2606 (50.0,55.6) 0.0 167.5 

CMT8-30- d 2 − α2 − p 1 94.8 182.3 331 31 79 109.9 125.7 15.9 619 4086 21 4763 (50.0,55.6) 0.0 286.5 

CMT8-30- d 2 − α2 − p 2 67.4 182.3 440 35 103 93.3 154.8 38.4 1006 34,667 31 49,329 (61.1,88.9) 0.0 4627.8 

CMT8-30- d 3 − α1 − p 1 104.8 183.2 847 106 127 117.8 264.2 12.4 269 3328 28 5813 (60.0,50.0) 0.0 361.7 

CMT8-30- d 3 − α1 − p 2 104.8 183.2 847 106 127 117.8 264.0 12.4 492 6771 57 6671 (60.0,50.0) 0.0 517.0 

CMT8-30- d 3 − α2 − p 1 89.8 182.1 416 45 73 115.8 111.3 29.0 613 21,187 32 29,960 (66.7,80.0) 0.0 1438.9 

CMT8-30- d 3 − α2 − p 2 80.2 182.1 446 46 130 110.4 180.3 37.7 1222 46,910 12 59,666 (66.7,80.0) 2.9 TL 

Average 22.3 0.1 460.3 

#Optima 35/36 
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Table A10 

Computational results for the 36 instances produced by CMT9. 

Name Opt Pre-UB #r-PI #r-CI #r-MTI r-UB r-time (s) %-UB #CI #g-SEC #g-LSEC nodes %-visited %-gap Time (s) 

CMT9-20- d 1 − α1 − p 1 32.8 107.9 119 37 42 49.3 17.8 50.3 180 1114 22 950 (57.1,60.0) 0.0 23.2 

CMT9-20- d 1 − α1 − p 2 32.8 107.9 119 37 42 49.3 17.8 50.3 184 1284 23 1143 (57.1,60.0) 0.0 23.9 

CMT9-20- d 1 − α2 − p 1 24.1 105.8 134 26 34 47.6 18.7 97.5 241 2703 9 4611 (57.1,80.0) 0.0 45.7 

CMT9-20- d 1 − α2 − p 2 24.1 105.8 74 17 15 57.6 7.1 139.0 592 5579 2 7206 (51.7,80.0) 0.0 79.5 

CMT9-20- d 2 − α1 − p 1 32.8 107.9 198 48 65 44.2 30.2 34.8 141 720 15 610 (58.3,50.0) 0.0 33.1 

CMT9-20- d 2 − α1 − p 2 32.8 107.9 198 48 65 44.2 30.4 34.8 106 614 14 606 (58.3,50.0) 0.0 32.8 

CMT9-20- d 2 − α2 − p 1 23.1 105.8 141 22 44 55.7 18.6 141.1 441 4157 15 7182 (50.0,83.3) 0.0 82.3 

CMT9-20- d 2 − α2 − p 2 23.1 105.8 73 14 14 55.5 6.6 140.3 286 2637 13 4071 (50.0,83.3) 0.0 31.9 

CMT9-20- d 3 − α1 − p 1 25.1 106.7 158 29 40 49.2 17.8 96.0 292 2471 13 3052 (60.0,57.1) 0.0 37.0 

CMT9-20- d 3 − α1 − p 2 25.1 106.7 119 22 18 54.0 8.9 115.1 435 3711 3 6545 (60.0,57.1) 0.0 54.2 

CMT9-20- d 3 − α2 − p 1 16.3 100.0 130 18 51 47.7 29.0 192.6 449 5214 11 7044 (60.0,85.7) 0.0 84.5 

CMT9-20- d 3 − α2 − p 2 16.3 95.1 104 17 39 47.0 20.2 188.3 303 3343 8 4242 (70.0,85.7) 0.0 48.3 

CMT9-25- d 1 − α1 − p 1 54.4 164.1 311 45 61 81.5 41.6 49.8 597 15,039 7 20,960 (76.4,83.3) 0.0 554.1 

CMT9-25- d 1 − α1 − p 2 54.4 164.1 311 45 61 81.5 41.1 49.8 445 10,917 7 17,652 (76.4,83.3) 0.0 383.4 

CMT9-25- d 1 − α2 − p 1 54.4 164.1 187 17 39 81.4 26.6 49.6 1246 28,703 12 33,724 (76.4,83.3) 0.0 1282.8 

CMT9-25- d 1 − α2 − p 2 54.4 164.1 187 17 39 81.4 28.7 49.6 684 15,490 14 17,357 (70.6,83.3) 0.0 561.9 

CMT9-25- d 2 − α1 − p 1 54.4 164.1 217 16 63 81.7 38.8 50.2 1181 32,238 12 48,954 (80.0,57.1) 0.0 1605.0 

CMT9-25- d 2 − α1 − p 2 54.4 164.1 217 16 63 81.7 38.4 50.2 547 17,791 18 27,081 (86.7,57.1) 0.0 655.7 

CMT9-25- d 2 − α2 − p 1 50.4 157.6 314 18 94 76.5 66.9 51.8 638 24,200 18 28,243 (86.7,85.7) 0.0 830.5 

CMT9-25- d 2 − α2 − p 2 50.4 157.0 365 50 81 76.6 139.8 52.0 284 11,809 9 20,593 (86.7,85.7) 0.0 490.5 

CMT9-25- d 3 − α1 − p 1 48.0 158.9 240 15 52 75.6 58.3 57.5 793 26,220 7 39,524 (83.3,75.0) 0.0 1115.6 

CMT9-25- d 3 − α1 − p 2 48.0 158.9 240 15 52 75.6 58.6 57.5 893 43,918 7 65,663 (83.3,62.5) 0.0 2441.1 

CMT9-25- d 3 − α2 − p 1 52.8 156.0 164 14 29 75.8 24.0 43.6 491 12,320 7 17,485 (83.3,62.5) 0.0 369.7 

CMT9-25- d 3 − α2 − p 2 50.4 155.7 291 26 68 76.1 53.3 51.0 317 10,005 7 16,885 (83.3,87.5) 0.0 313.2 

CMT9-30- d 1 − α1 − p 1 98.6 191.3 672 88 127 126.0 138.2 27.8 2156 53,287 23 56,097 (71.4,57.1) 7.8 TL 

CMT9-30- d 1 − α1 − p 2 98.1 191.3 672 88 127 126.0 138.5 28.4 2180 53,116 22 52,877 (76.2,71.4) 22.7 TL 

CMT9-30- d 1 − α2 − p 1 97.3 188.0 727 54 150 123.9 149.0 27.3 1656 53,944 19 52,571 (66.7,57.1) 48.2 TL 

CMT9-30- d 1 − α2 − p 2 97.7 187.3 852 111 150 123.5 225.4 26.4 1450 56,617 12 56,823 (71.4,85.7) 18.2 TL 

CMT9-30- d 2 − α1 − p 1 106.3 191.3 653 84 135 127.2 94.3 19.7 2528 48,843 11 47,137 (66.7,66.7) 37.3 TL 

CMT9-30- d 2 − α1 − p 2 101.1 191.3 653 84 135 127.2 93.6 25.8 1732 51,083 16 51,762 (72.2,77.8) 18.2 TL 

CMT9-30- d 2 − α2 − p 1 95.7 186.3 416 49 82 119.9 117.3 25.3 1404 50,481 13 49,272 (66.7,88.9) 42.2 TL 

CMT9-30- d 2 − α2 − p 2 92.5 184.1 349 42 75 119.7 91.8 29.4 697 29,506 29 49,040 (66.7,77.8) 0.0 2882.4 

CMT9-30- d 3 − α1 − p 1 92.5 186.1 339 30 60 117.1 69.2 26.6 802 27,702 23 29,709 (80.0,90.0) 0.0 1958.0 

CMT9-30- d 3 − α1 − p 2 92.5 186.1 339 30 60 117.1 68.9 26.6 1284 39,195 27 39,362 (80.0,90.0) 0.0 3695.9 

CMT9-30- d 3 − α2 − p 1 92.5 183.6 312 43 91 117.9 90.5 27.5 774 25,176 11 44,080 (80.0,90.0) 0.0 2375.2 

CMT9-30- d 3 − α2 − p 2 89.8 183.0 780 73 150 118.0 204.6 31.4 1680 48,771 14 48,735 (86.7,80.0) 0.0 6628.3 

Average 44.1 9.2 2197.8 
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Table A11 

Computational results for the 36 instances produced by CMT10. 

Name Opt pre-UB #r-PI #r-CI #r-MTI r-UB r-time (s) %-UB #CI #g-SEC #g-LSEC nodes %-visited %-gap Time (s) 

CMT10-20- d 1 − α1 − p 1 73.6 125.8 118 15 14 81.6 2.5 10.9 21 54 6 27 (57.1,60.0) 0.0 2.6 

CMT10-20- d 1 − α1 − p 2 73.6 125.8 87 15 18 81.6 2.1 10.9 33 78 5 51 (57.1,60.0) 0.0 2.4 

CMT10-20- d 1 − α2 − p 1 67.8 120.8 52 7 7 75.4 1.5 11.2 15 37 2 27 (57.1,80.0) 0.0 1.6 

CMT10-20- d 1 − α2 − p 2 67.8 118.7 71 9 22 74.5 2.6 9.9 5 27 4 25 (57.1,80.0) 0.0 2.7 

CMT10-20- d 2 − α1 − p 1 73.6 125.8 77 13 14 81.1 2.4 10.2 17 44 11 23 (50.0,60.0) 0.0 2.5 

CMT10-20- d 2 − α1 − p 2 73.6 125.8 77 13 14 81.1 2.4 10.2 17 44 11 23 (50.0,50.0) 0.0 2.5 

CMT10-20- d 2 − α2 − p 1 63.4 121.8 64 14 13 70.2 2.3 10.7 17 46 3 23 (50.0,66.7) 0.0 2.5 

CMT10-20- d 2 − α2 − p 2 63.4 118.7 133 15 38 70.0 5.3 10.4 5 33 9 18 (58.3,83.3) 0.0 5.4 

CMT10-20- d 3 − α1 − p 1 65.9 111.6 54 9 8 72.1 1.5 9.4 44 78 2 37 (40.0,71.4) 0.0 1.8 

CMT10-20- d 3 − α1 − p 2 65.9 111.6 54 9 8 72.1 1.5 9.4 28 63 3 29 (40.0,71.4) 0.0 1.7 

CMT10-20- d 3 − α2 − p 1 57.0 111.6 76 13 21 66.5 2.4 16.7 20 111 5 120 (40.0,85.7) 0.0 2.8 

CMT10-20- d 3 − α2 − p 2 57.0 111.6 86 12 12 69.7 2.1 22.3 8 35 2 24 (50.0,85.7) 0.0 2.2 

CMT10-25- d 1 − α1 − p 1 144.3 208.6 270 29 35 161.9 14.8 12.2 134 1095 8 1913 (64.7,66.7) 0.0 35.2 

CMT10-25- d 1 − α1 − p 2 144.3 208.6 270 29 35 161.9 15.6 12.2 134 1095 8 1913 (64.7,66.7) 0.0 36.1 

CMT10-25- d 1 − α2 − p 1 137.1 208.6 686 20 126 156.1 40.6 13.9 261 2032 14 2313 (70.6,83.3) 0.0 80.8 

CMT10-25- d 1 − α2 − p 2 137.1 208.6 480 26 98 155.9 28.4 13.7 196 1196 18 1154 (64.7,66.7) 0.0 51.3 

CMT10-25- d 2 − α1 − p 1 144.3 208.6 211 15 26 162.7 12.2 12.8 258 2109 21 2171 (53.3,71.4) 0.0 53.9 

CMT10-25- d 2 − α1 − p 2 144.3 208.6 211 15 26 162.7 11.8 12.8 218 1439 14 1700 (60.0,71.4) 0.0 40.0 

CMT10-25- d 2 − α2 − p 1 137.1 208.6 869 22 150 157.6 49.1 15.0 288 2099 9 2492 (66.7,85.7) 0.0 89.9 

CMT10-25- d 2 − α2 − p 2 134.7 208.6 317 23 95 157.4 32.5 16.9 175 1394 26 1637 (66.7,85.7) 0.0 59.8 

CMT10-25- d 3 − α1 − p 1 137.1 205.8 191 17 31 150.3 13.3 9.6 97 520 10 816 (75.0,62.5) 0.0 21.7 

CMT10-25- d 3 − α1 − p 2 137.1 205.8 191 17 31 150.3 12.1 9.6 97 520 10 816 (75.0,62.5) 0.0 20.5 

CMT10-25- d 3 − α2 − p 1 119.1 203.3 780 86 150 146.6 42.8 23.1 426 7040 1 9084 (50.0,87.5) 0.0 233.5 

CMT10-25- d 3 − α2 − p 2 118.3 203.3 438 42 84 143.3 24.2 21.1 245 2844 9 3544 (50.0,75.0) 0.0 92.4 

CMT10-30- d 1 − α1 − p 1 175.3 258.8 661 40 150 197.3 60.8 12.5 1041 11,593 15 13,826 (66.7,57.1) 0.0 830.1 

CMT10-30- d 1 − α1 − p 2 175.3 258.8 661 40 150 197.3 63.1 12.5 1225 14,119 18 12,907 (61.9,42.9) 0.0 1008.9 

CMT10-30- d 1 − α2 − p 1 164.2 258.8 908 81 150 193.7 59.3 18.0 2397 46,409 30 58,648 (66.7,85.7) 3.0 TL 

CMT10-30- d 1 − α2 − p 2 167.2 258.8 915 46 150 194.4 65.7 16.3 1683 28,978 20 40,363 (66.7,85.7) 0.0 3363.6 

CMT10-30- d 2 − α1 − p 1 169.2 258.8 297 23 85 198.7 34.0 17.4 1157 23,665 15 38,583 (55.6,77.8) 0.0 2875.0 

CMT10-30- d 2 − α1 − p 2 169.2 258.8 297 23 85 198.7 35.1 17.4 1303 21,639 18 34,276 (55.6,77.8) 0.0 2474.3 

CMT10-30- d 2 − α2 − p 1 168.5 258.8 1054 26 150 194.9 71.8 15.7 1300 17,055 24 20,310 (61.1,88.9) 0.0 1495.4 

CMT10-30- d 2 − α2 − p 2 167.2 258.8 950 34 150 193.7 64.0 15.8 1481 20,577 13 27,684 (55.6,77.8) 0.0 2057.4 

CMT10-30- d 3 − α1 − p 1 164.3 255.9 712 58 150 187.0 61.6 13.8 769 10,972 15 12,585 (66.7,70.0) 0.0 826.7 

CMT10-30- d 3 − α1 − p 2 164.3 255.9 712 58 150 187.0 61.8 13.8 755 11,379 10 14,647 (66.7,70.0) 0.0 859.0 

CMT10-30- d 3 − α2 − p 1 158.9 255.9 858 25 150 186.4 62.3 17.3 1575 32,249 11 42,890 (66.7,90.0) 0.0 4082.8 

CMT10-30- d 3 − α2 − p 2 158.9 255.9 858 25 150 186.4 61.5 17.3 1149 18,204 17 26,724 (66.7,90.0) 0.0 1791.7 

Average 14.4 0.1 825.3 
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the LSP in case of missing the SLR of the type b customer. The

meaning of the remaining column headings is as follows: 
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