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Abstract. Multitrip vehicle-routing problems (MTVRPs) generalize the well-known VRP by
allowing vehicles to perform multiple trips per day. MTVRPs have received a lot of at-
tention lately because of their relevance in real-life applications—for example, in city
logistics and last-mile delivery. Several variants of the MTVRP have been investigated in
the literature, and a number of exact methods have been proposed. Nevertheless, the
computational results currently available suggest that MTVRPs with different side con-
straints require ad hoc formulations and solution methods to be solved. Moreover, solving
instances with just 25 customers can be out of reach for such solution methods. In this
paper, we proposed an exact solution framework to address four different MTVRPs
proposed in the literature. The exact solution framework is based on a novel formulation
that has an exponential number of variables and constraints. It relies on column generation,
column enumeration, and cutting plane. We show that this solution framework can solve
instances with up to 50 customers of four MTVRP variants and outperforms the state-of-
the-art methods from the literature.

Supplemental Material: The online appendix is available at https://doi.org/10.1287/opre.2019.1874.

Keywords: multitrip vehicle routing • time windows • column generation • exact methods • dynamic programming

1. Introduction
Most of the literature on the vehicle-routing problem
(VRP) addresses problems where each vehicle is lim-
ited to perform at most one trip per day. The first at-
tempt to investigate VRPs where vehicles are allowed
to perform multiple trips dates back to Fleischmann
(1990). Since then, many contributions on multitrip
vehicle-routing problems (MTVRPs) have been pub-
lished, especially in the last decade, as observed in the
recent survey of Cattaruzza et al. (2016b). Such an
increasing interest inMTVRPs is due, for example, to the
need of new practices in city logistics and last-mile de-
livery. The demand of limiting noise and pollution in
city centers requires the usage of small vans, electric
vehicles, and/or unmanned aerial vehicles (commonly
known as drones) and forbids heavy large trucks from
entering city centers. The limited capacity and autonomy
of these small vehicles force them to perform multiple
trips and to return to the depot to reload multiple times
over the day.

In the literature, MTVRPs with different features
are addressed in different papers, and awide range of
solutionmethods (both exact and heuristic) have been

proposed. Nevertheless, we can identify a common
underlying problem, the capacitated MTVRP with
time windows (CMTVRPTW), that is a special case of
the problems investigated in many papers, such
as Hernandez et al. (2014, 2016), Cattaruzza et al.
(2016a), and Cheng et al. (2018). The features of this
CMTVRPTW are the following: (a) The goal is to
minimize the routing costs; (b) all customers must be
served; (c) multiple homogeneous vehicles are avail-
able; (d) vehicles are capacitated; and (e) time win-
dow constraints are imposed on the customer visits.
Yet different papers consider additional side con-
straints on top of the CMTVRPTW, such as loading
times to reload the vehicles at the depot (Hernandez
et al. 2014, 2016), limited trip duration (Hernandez
et al. 2014), release date on the availability of the
goods to deliver (Cattaruzza et al. 2016a), drone
battery capacity, and load-dependent battery con-
sumption (Cheng et al. 2018). These four side con-
straints give rise to four different problems—namely,
theCMTVRPTWwith loading times (CMTVRPTW-LT), the
CMTVRPTWwith limited trip duration (CMTVRPTW-LD),
the CMTVRPTW with release dates (CMTVRPTW-R),
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and the drone-routing problem (DRP), respectively. For
the sake of brevity, in the following, we will refer
to these four problems as “the four variants of the
CMTVRPTW.”

The exact methods currently available for these
four variants of the CMTVRPTW are based on several
different mathematical formulations, which makes it
unclear which formulation is most suitable to solve a
CMTVRPTW. Moreover, in spite of the effort devoted
to develop exact solution methods for CMTVRPTWs,
the literature indicates that small instances with 25
customers cannot be consistently solved, and it could
take a few hours of computing time to solve them.

With this paper, we aim at closing part of this re-
search gap. We propose an exact solution framework
(hereafter referred to as ESF) based on a novel
mathematical model that can solve medium-sized
instances with up to 50 customers of the four vari-
ants of the CMTVRPTW, significantly outperforming
the state-of-the-art exact methods tailored for the
single variants. We describe the ESF by focusing on
the CMTVRPTW, and we show later how it can be
tailored to solve the four variants by simply adapting
one of its steps. The main contributions of this paper
are the following: (a) We propose a novel mathe-
matical model with an exponential number of vari-
ables and constraints that is valid for the CMTVRPTW
and its four variants; (b) we describe two relaxations
of this mathematical model that provide good lower
bounds and can be efficiently computed; (c) we de-
scribe a seven-step ESF for the CMTVRPTW based on
these two lower bounds and on a branch-and-cut
algorithm, with an embedded branch-and-price to
separate violated inequalities, to close the gap; (d) we
illustrate how the ESF can be applied to solve each of
the four variants of the CMTVRPTW by simply spe-
cializing one of the seven steps; and (e) we provide a
computational proof that the ESF can solve instances
with up to 50 customers and outperforms the state-of-
the-art exact methods for the four individual variants
of the CMTVRPTW.

The paper is organized as follows. Section 2 reviews
the main contributions from the literature on exact
methods for MTVRP with time windows. Section 3
formally introduces the CMTVRPTW and presents
two column-generation-based formulations from the
literature. Section 4 describes the novel formula-
tion for the CMTVRPTW and its variants. Section 5
presents two lower bounds derived from the novel
formulation. Section 6 provides an outline of the ESF
and describes how to apply it to solve the CMTVRPTW.
Section 7 describes the steps of the ESF in detail.
Section 8 illustrates how the ESF can be tailored to
solve each of the four variants of the CMTVRPTW.
A computational analysis to show the effectiveness of
the ESF and a comparison of its performance with the

literature is provided in Section 9. Finally, conclusions
are drawn in Section 10.

2. Literature Review
This section reviews the main exact methods pro-
posed for MTVRPs with time windows. For the sake
of brevity, we omit contributions on exact methods
for MTVRPs without time windows and on heuristic
methods. For a recent overview of the literature on
these two topics, the reader is referred to Cattaruzza
et al. (2016b).
In the remainder of the paper, we refer to a structure

as a sequence of customers that can be visited con-
secutively by a vehicle between two visits at the
depot, such that capacity constraints (and possibly
other side constraints) are fulfilled and a departure
time from the depot can be scheduled in such a way
that all time windows are satisfied. Moreover, fol-
lowing the convention of Cattaruzza et al. (2016b), we
refer to a trip as a structurewith afixed departure time
from the depot, andwe refer to a journey as a sequence
of nonoverlapping trips assigned to the same vehicle.
It is worth mentioning that, as stated in Cattaruzza
et al. (2016b), different authors use different terms to
refer to trips and journeys.
Azi et al. (2007) study a single-vehicle variant of the

CMTVRPTW where it is not mandatory to serve all
customers and the objective function is first to maximize
the number of customers served and second to mini-
mize the routing cost. Moreover, a limited trip-duration
constraint (called deadline constraint) on the maxi-
mum time that the goods can stay on board before they
are delivered at customers and a setup time to load the
vehicle are considered. They propose a two-phase exact
algorithm. In the first phase, all feasible nondominated
trips are generated by complete enumeration, which is
possible when time windows and limited trip-duration
constraints are tight. In the secondphase, feasible routes
are generated by combining the trips generated in the
first phase. The algorithm is tested on a set of instances
adapted from the well-known Solomon instances for
the VRPTW (Solomon 1987) with up to 100 customers.
The results show that the algorithm is very sensitive
to the limited trip-duration constraint. Indeed, if this
constraint is not tight, it is impossible to enumerate
all feasible trips in the first phase.
Azi et al. (2010) investigate themultivehicle version

of the problem considered in Azi et al. (2007). The
authors propose a branch-and-price algorithm based
on a set-packing formulation, where each column
represents a feasible journey. The pricing problem
corresponds to an elementary shortest-path problem
with resource constraints (ESPPRC). The algorithm is
tested on instances with 25 and 40 customers derived
from the Solomon VRPTW instances. The results show
that instanceswith 25 customers can be routinely solved,
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but the complexity of the problem strongly depends on
the tightness of limited trip-duration constraints.

Macedo et al. (2011) study the same problem of Azi
et al. (2010). They propose an iterative two-phase
algorithm. In the first phase, all feasible trips are
generated. The second phase corresponds to a pseudo-
polynomial network flowmodel where nodes represent
time instants and arcs represent feasible vehicle trips
and is solved using a commercial solver. To create the
network, a time discretization is needed. The model
is iteratively solved until the current discretization
provides a feasible solution. Computational results
show that the proposed algorithm outperforms the
two-phase method of Azi et al. (2010).

Hernandez et al. (2014) address the CMTVRPTW-
LD, which differs from the problem considered in Azi
et al. (2010) and Macedo et al. (2011) in that all cus-
tomersmust be served and the objective function aims
at minimizing the total routing cost. They propose
a two-phase exact algorithm. In the first phase, all
feasible structures are enumerated by considering
resource constraints. The second phase is a branch-
and-price algorithm based on a set covering formu-
lation with side constraints, where columns represent
trips and side constraints guarantee that each vehicle
is assigned nonoverlapping trips. The pricing prob-
lem can be solved in pseudo-polynomial time. The
algorithm is tested on instances with 25 and 40 cus-
tomers as in Azi et al. (2010) and Macedo et al. (2011).
The computational results show that the algorithm
of Hernandez et al. (2014) performs, on average, better
than the method of Azi et al. (2010) and, on some in-
stances, better than the method of Macedo et al. (2011).

The problem studied in Hernandez et al. (2016)
differs from the problem of Hernandez et al. (2014)
in that limited trip duration is not considered. Two
branch-and-price exact algorithms are proposed,
both based on a set covering formulation. In the first
formulation, each column represents a journey, and
the pricing problem is an ESPPRC, which can be
solved by dynamic programming. In the second
formulation, each column represents a trip, and ad-
ditional side constraints guarantee the feasibility of
the solutions; the pricing problem can again be solved
by dynamic programming, where the concepts of
group of labels and representative labels are exploited.
Computational results on 25-customer instances show
that the second branch-and-price, based on the trip-
formulation, performs better than the first.

Recent contributions in the literature investigate
the usage of truck–drone tandem systems and drone-
only systems to deliver parcels. In particular, drones
can performmultiple trips to deliver parcels by flying
from/to trucks and depots where they can recharge
their battery and pick up packages to deliver. The first
significant contribution devoted to exact methods

for drone-routing problems is owed to Cheng et al.
(2018). They propose two mathematical formula-
tions to solve the (multitrip) drone-routing problem.
The objective function also takes energy consumption
into account in the routing cost. The first formulation
is based ondrone-index variables, whereas the second
formulation does not use such a drone index. Both
formulations are strengthened by valid inequalities.
The authors develop two branch-and-cut algorithms
that are able to solve new benchmark instances with
up to 50 customers. Their computational study shows
that the formulation without the drone index out-
performs the one with the drone index in terms of
number of instances solved to optimality and com-
puting time.

3. Description of the CMTVRPTW and
Formulations from the Literature

In this section, we formally introduce the CMTVRPTW,
which is used in the following sections to describe the
ESF, and describe the two column-generation-based
formulations from the literature.
The CMTVRPTW can be represented on a directed

graph G � (V,A). The vertex set V � {0} ∪N consists
of n + 1 vertices, where 0 represents the depot and
N � {1, 2, . . . ,n} represents a set of n customers to
serve. For each customer i ∈ N, the demand qi, the
service time sti, and a (hard) time window [ai, bi] are
given. A time window [a0, b0] is associated with the
depot. For the depot, we assume that q0 � 0 and
st0 � 0. The arc set A is defined as A � {(i, j) | i, j ∈ V :
ai + tij + sti ≤ bj}, where tij is the travel time from
vertex i to vertex j—without loss of generality, we
assume that tij ≤ tik + stk + tkj, for all i, j, k ∈ V such that
i �� j �� k. A travel cost cij is also associated with each
arc (i, j) ∈ A. Customers can be served by using a fleet
of m vehicles, each one of capacity q, that are located
at the depot.
A trip h is represented as h � (0, i1, i2, . . . , iμh , 0),

where μh is the number of visited customers. A journey
r is represented as a sequence of nonoverlapping
trips r � (0, i1, i2, . . . , iμr1

, 0, i1, i2, . . . , iμr2
, 0, . . . , 0).

The goal of the CMTVRPTW is to find a set of at
mostm journeys of minimum total cost such that each
customer is visited exactly once.
In the literature, two formulations with an expo-

nential number of variables have been proposed: a
trip-based formulation (see Hernandez et al. 2016)
and a journey-based formulation (see Hernandez
et al. 2014, 2016).
Let* be the set of all feasible trips, and let ch be the

cost of trip h ∈ * given by the sum of the traversed
arcs. A trip h ∈ * is described by coefficients αih in-
dicating the number of times trip h visits customer i ∈
N and by binary coefficients τth that are equal to 1 if
trip h is active at time t ∈ [a0, b0], where active means
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that the vehicle performing trip h is either travel-
ing between two vertices or serving/waiting at a
customer. Let xh ∈ {0, 1} be a binary variable equal to 1
if trip h ∈ * is selected (0 otherwise). The trip-based
formulation, F*, is the following:

z(F*) � min
∑
h∈*

chxh, (1a)

s.t.
∑
h∈*

αihxh � 1 i ∈ N, (1b)∑
h∈*

τthxh ≤ m t ∈ [a0, b0], (1c)

xh ∈ {0, 1} h ∈ *. (1d)

The objective function (1a) aims at minimizing the
cost of the selected trips. Constraints (1b) ensure that
each customer is visited exactly once. Constraints (1c)
guarantee that at most, m trips are active at any point
in time. Constraints (1d) are integrality constraints.

Let 5 be the set of all feasible journeys. Moreover,
let cr be the cost of journey r ∈ 5 given by the sum of
the costs of its individual trips, and let αir be a co-
efficient indicating the number of times journey r ∈ 5
visits customer i ∈ N. Let xr ∈ {0, 1} be a binary vari-
able equal to 1 if journey r ∈ 5 is selected (0 other-
wise). The journey-based formulation, F5, is the
following:

z(F5) � min
∑
r∈5

crxr, (2a)

s.t.
∑
r∈5

αirxr � 1 i ∈ N, (2b)∑
r∈5

xr ≤ m, (2c)

xr ∈ {0, 1} r ∈ 5. (2d)

The objective function (2a) aims at minimizing the
cost of the selected journeys. Constraints (2b) ensure
that each customer is visited exactly once. Constraint
(2c) guarantees that at most m journeys are selected.
Constraints (2d) are integrality constraints.

Both formulations F* and F5 have an exponential
number of variables that cannot be enumerated a
priori, even for small instances. Therefore, both for-
mulations can be used to solve the CMTVRPTW only
if a column-generation framework is applied. Earlier
contributions from the literature (see, e.g., Azi et al.
2010 and Hernandez et al. 2014, 2016) show that the
lower bound provided by the linear relaxation of both
formulations is of high quality. Nevertheless, solving
the pricing problem of both formulations is particu-
larly challenging, so it could take hours of computing
time to find an optimal solution, even for instances
with only 25 customers.

4. The Novel Structure-Based Formulation
Because of the computational complexity of using for-
mulations F* and F5, we introduce a novel structure-

based formulation that has an exponential number of
variables and constraints, but involves much fewer
variables than both F* and F5.
Let a structure s � (0, i1, i2, . . . , iμs , 0) be an ordered

set of μs customers that can be visited by a vehicle in
between two visits at the depot and can start from the
depot within a time interval [es, �s], such that: (i) Ca-
pacity constraints are satisfied; (ii) the duration ds and
the cost cs are constant for each departure time from
the depot within [es, �s]; and (iii) the duration ds is the
minimum duration to serve the set of customers in the
given order. Let 6 be the set of all feasible structures,
and let αis be a coefficient equal to the number of times
customer i ∈ N is served by structure s ∈ 6. Let xs ∈
{0, 1}be a binary variable equal to 1 if structure s ∈ 6 is
selected (0 otherwise). The structure-based formula-
tion, F6, is the following:

z(F6) � min
∑
s∈6

csxs, (3a)

s.t.
∑
s∈6

αisxs � 1 i ∈ N, (3b)∑
s∈̂6

xs ≤ ηm(6̂) 6̂ ⊆ 6, (3c)

xs ∈ {0, 1} s ∈ 6, (3d)

where ηm(6̂) is the maximum number of structures of
the set 6̂ that can be simultaneously in a solution
given the number of vehicles m.
The objective function (3a) aims at minimizing the

cost of the selected structures. Constraints (3b) ensure
that each customer is visited exactly once. Constraints
(3c) (hereafter called structure feasibility constraints
(SFCs)) guarantee that the set of selected structures
can be performed by the m vehicles. Constraints (3d)
are integrality constraints.
Notice that the number of variables of F6 can be

significantly lower than the number of variables of F*
and, in turn, of F5. Indeed, formulation F* has a bi-
nary variable for each structure s ∈ 6 and each instant
of time t ∈ [es, �s]. Moreover, each feasible solution of
F6 can correspond to multiple (possibly an infinite
number of) solutions of formulation F*. Indeed, given
the set of structures of a feasible solution of F6, it is
possible to obtain a feasible solution of F* by fixing the
departure time from thedepot of each of these structures
within the corresponding time interval [es, �s].

5. Lower Bounds Based on the
Structure-Based Formulation

In this section, we describe two lower bounds derived
from formulation F6 that are used by the ESF and are
described in the following sections. The first lower
bound is based on a continuous relaxation of F6 that
ignores SFC and therefore provides a lower bound
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for the CVRPTW without the multitrip feature. The
second lower bound is based on a relaxed version of
SFC that can be enumerated by inspection.

5.1. First Lower Bound: CVRPTW Lower Bound
The first lower bound, which we call CVRPTW-LB
in the following, corresponds to the optimal solution
of the linear relaxation of formulation F6 without
SFC—that is, it corresponds to the optimal value
z(P16) of the following problem P16:

z(P16) � min
∑
s∈6

csxs, (4a)

s.t.
∑
s∈6

αisxs � 1 i ∈ N, (4b)

xs ∈ R+ s ∈ 6. (4c)

As P16 is the continuous relaxation of a set-partitioning
problem that does not consider SFC, it provides a
lower bound to a VRP with capacity and time window
constraints.

5.2. Second Lower Bound: Relaxed SFC
Lower Bound

The second lower bound, which we call RSFC-LB in
the following, is obtained from F6 by replacing SFC
with a relaxed version and by adding a set of valid
inequalities as follows.

Let τhs ∈ {0, 1} be a binary coefficient defined for each
structure s ∈ 6 and each instant of time h ∈ [a0, b0] as
follows:

τhs � 1 if �s < h< es + ds
0 otherwise;

{
that is, τhs is equal to 1 if structure s ∈ 6 is active at
time h for any possible departure time from the depot.
A relaxed version of SFC (hereafter referred to as
relaxed SFC, or, in short, RSFC) is therefore given by

(RSFC) ∑
s∈6

τhsxs ≤ m h ∈ [a0, b0] , (5)

which indicate that, at any point in time, at most m
structures (and thus vehicles) can be active.

To better explain constraints (5), let us consider
two structures s1, s2 ∈ 6 with the following features:
[es1 , �s1] � [10, 20], ds1 � 15, [es2 , �s2] � [18, 22], ds2 � 10.
The only coefficients τhs equal to 1, for structure s1, are
τ21,s1 , τ22,s1 , and τ23,s1 , τ24,s1 , and, for structure s2 τ23,s2 ,
τ24,s2 , τ25,s2 , τ26,s2 , and τ27,s2 . Therefore, of all con-
straints (5) with h ∈ [21, 27], the tightest constraints
are those with h � 23, 24 that are xs1 + xs2 ≤ m.

RSFC-LB also uses a subset of the well-known
subset-row (SR) inequalities, introduced by Jepsen

et al. (2008) for the VRPTW. In particular, for each
triplet of customers {i, j, k} ∈ N and for each structure
s ∈ 6, let βijks be a binary coefficient defined as

βijks � 1 if αis + αjs + αks ≥ 2
0 otherwise,

{
which is, βijks is equal to 1 if at least two of the cus-
tomers of the set {i, j, k} are visited by structure s (0
otherwise). SR inequalities are defined as∑

s∈6
βijksxs ≤ 1 {i, j, k} ∈ N. (6)

RSFC-LB corresponds to the optimal value z(P26) of
the following problem P26:

z(P26) � min
∑
s∈6

csxs, (7a)

s.t.
∑
s∈6

αisxs � 1 i ∈ N, (7b)∑
s∈6

τhsxs ≤ m h ∈ [a0, b0], (7c)∑
s∈6

βijksxs ≤ 1 {i, j, k} ∈ N, (7d)

xs ∈ R+ s ∈ 6. (7e)

6. Outline of the ESF
This section provides an outline of the ESF described
for the CMTVRPTW. We assume that a feasible so-
lution of the CMTVRPTW exists. The algorithm uses
the following notation:
• ub* is the best upper bound (if any) found;
• ubguess is a guess upper bound on the value of the

optimal solution cost;
• gapguess is a guess on the gap in percentage be-

tween the optimal CMTVRPTW solution cost and
CVRPTW-LB;
• gap0guess is the initial value of gapguess;
• gapstep is the increase, at each iteration, of gapguess;
• status is the status of the solution process, which

can take one of the following three values: optimal
(i.e., an optimal solution of cost ub* was found),
feasible (i.e., a feasible solution of cost ub* was found,
but it may not be optimal), and nil (i.e., no solution has
been found yet).
The algorithm consists of the following seven steps:
1. Initialization: Set status � nil and gapguess �

gap0guess;
2. CVRPTW-LB Computation (see Section 5.1 for an

overview and Section 7.1 for the details): Solve
problem P16 by column generation and compute
its optimal solution cost z(P16); set ubguess � z(P16) *
(1 + gapguess);

3. Structure Enumeration (see Section 7.2 for the
details): Enumerate the set 61 of all the structures
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having reduced costs not greater than ubguess − z(P16)
with respect to the dual solution corresponding to
lower bound z(P16);

4. RSFC-LB Computation (see Section 5.2 for an
overview and Section 7.3 for the details): Solve
problem P261 obtained from P26 by replacing the set
of structures 6 with its subset 61. Let z(P261) be the
optimal cost of P26.

5. Structure Reduction (see Section 7.4): Compute
the set of structures 62 ⊆ 61 obtained from 61 by
removing all the structures having reduced cost
greater than ubguess − z(P261) with respect to the dual
solution of cost z(P261) of problem P261 .

6. Branch-and-Cut to Close the Gap (see Section 7.5):
By using a branch-and-cut method, solve problem F62

obtained from F6 by replacing the set of structures 6
with its subset 62. If F62 contains feasible solutions,
let z(F62) be the cost of an optimal solution.

7. Iterative Step: There are three possible cases:
(a) A feasible solution of F62 exists

(a1) If z(F62) ≤ ubguess: such a solution is an
optimal CMTVRPTW solution; set status � optimal,
ub* � z(F62), and terminate;

(a2) If z(F62)> ubguess: such a solution is a valid
upper bound to the CMTVRPTW; set status � feasible,
ub* � z(F62), ubguess � z(F62), and go to Step 3;

(b) F62 does not have any feasible solution: set
gapguess � gapguess+gapstep, ubguess�z(P16) * (1+ gapguess),
and go to Step 3.

7. Detailed Description of Steps 2–6 of
the ESF

7.1. Step 2: CVRPTW-LB Computation
Step 2 of the ESF requires solving problem P16 to
compute its optimal value z(P16). As the set of
structures 6 increases exponentially with the number
of customers, problem P16 must be solved via column
generation. The column-generation procedure we pro-
pose initializes the master problem with the single-
customer structures and solves it via a general-purpose
solver. At each iteration, at most col iter (where col iter
is a parameter) negative reduced-cost structures are
added to the master problem. Such negative reduced-
cost structures are priced out by using dynamic pro-
gramming as follows.

Let ui ∈ R be the dual variable associated with
constraint (4b) of customer i ∈ N. Let c̃ij be the reduced
cost of arc (i, j) ∈ A with respect to u ∈ Rn defined as

c̃ij �
cij − 1

2 (ui + uj) if i �� 0 and j �� 0
cij − 1

2 uj if i � 0
cij − 1

2 ui otherwise (i.e., if j � 0).

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩ (8)

Let f � (0, i1, . . . , iμf � i f ) be an elementary forward
path that starts from the depot at time a0, visits the

set of customers Nf � {i1, . . . , i f } each within its time
window, ends at customer i f at time t f , such that the
total demand q f of the visited customers does not
exceed the vehicle capacity. Let c̃ f be the reduced cost
of path f , defined as the sum of the reduced costs of
the traversed arcs.
We associate a label Lf � (N f , q f , t f , i f , c̃ f )with each

path f � (0, i1, . . . , i f ). Because of capacity and time
window constraints, a label Lf � (N f , q f , t f , i f , c̃ f ) is
feasible only if Nf ⊆ N, q f ≤ q, t f ∈ [ai f , bi f ], and
i f ∈ N f . Clearly, each path f � (0, i1, . . . , i f ) such that
i f � 0 and c̃ f < 0 corresponds to a negative reduced-
cost structure.
To generate such structures, the following initial-

ization and extension are needed:
Initialization: A single label Lf � (Nf , q f , t f , i f , c̃ f ) is

generated, where Nf � Ø, q f � 0, t f � a0, i f � 0, and
c̃ f � 0.
Extension: Extend each label Lf � (N f , q f , t f , i f , c̃ f )

such that either (a) i f ∈ N or (b) i f � 0 and N f � Ø
toward any vertex j ∈ V \N f and generate label
Lf ′ � (Nf ′ , q f ′ , t f

′
, i f

′
, c̃ f

′ ), where

Nf ′ � Nf ∪ {j} (if j ∈ N) or Nf ′ � N f (if j � 0)
q f

′ � q f + qj
t f

′ � max{aj, t f + sti f + ti f j}
i f

′ � j
c̃ f

′ � c̃ f + c̃i f j.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
To speed up the solution process and limit the
number of labels to generate, the following domi-
nance rule can be applied: Given two labels
Lf1 � (Nf1 , q f1 , t f1 , i f1 , c̃ f1) and Lf2 � (Nf2 , q f2 , t f2 , i f2 , c̃ f2),
Lf2 is dominated if N f1 ⊆ Nf2 , q f1 ≤ q f2 , t f1 ≤ t f2 , i f1 � i f2 ,
and c̃ f1 ≤ c̃ f2 . Moreover, we also apply two other well-
known techniques—that is, ng-path relaxation (see
Baldacci et al. 2011) and completion bounds (see
Baldacci et al. 2012)—to further limit the number of
labels to generate. For the sake of brevity, we omit
the details on this matter.
Let u1 � (u11,u12, . . . ,u1n) be the optimal dual solution

of cost z(P16) achieved by Step 2.

7.2. Step 3: Structure Enumeration
Step 3 requires enumerating the set 61 all the struc-
tures having reduced costs not greater than ubguess −
z(P16) with respect to the dual solution u1 of cost
z(P16). The set61 can be generated with the following
dynamic programming recursion, which is similar to
the recursions proposed by Hernandez et al. (2014,
2016), and Tilk and Irnich (2017).
Let b � (0, i1, . . . , iμb � i b) be an elementary back-

ward path that can start from the depot not earlier than
gb, visits the set of customers Nb each within its time
window, ends at customer i b not later than �b, has a
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duration equal to db, and such that the total demand of
the visited customers is equal to qb. Let c̃ b be the re-
duced cost of path bwith respect of the dual solution
u1, given by the sum of the reduced costs of the tra-
versed arcs computed as in (8).

With each path b � (0, i1, . . . , i b), we associate a label
Lb � (Nb, qb, �b, gb, db, i b, c̃ b). A label Lb � (Nb, qb, �b, gb,
db, i b, c̃ b) is feasible if the following conditions hold:

Nb ⊆ N

qb ≤ q

ai b ≤ �b ≤ bi b
a0 ≤ gb ≤ b0
i b ∈ Nb.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
(9)

A structure s ∈ 6 corresponds to an elementary back-
ward path b � (0, i1, . . . , i b) (and the corresponding
label Lb � (Nb, qb, �b, gb, db, i b, c̃ b)), such that i b � 0, and
where �s � �b, es � gb − db, ds � db, cs � c̃ b +∑

i∈N b u1i ,
and αis � 1, ∀i ∈ Nb (0 if i ∈ N \Nb).

To generate the set of structures 61, the following
initialization and extension are needed:

Initialization: A single label Lb � (Nb, qb, �b, gb, db,
i b, c̃ b) is generated, where Nb � Ø, qb � 0, �b � b0,
gb � a0, db � 0, i b � 0, and c̃ b � 0.

Extension: Extend each label Lb � (Nb, qb, �b, gb, db,
i b, c̃ b) such that either (a) i b ∈ N or (b) i b � 0 and
Nb � Ø toward any vertex j ∈ V \Nb to generate
label Lb

′ � (Nb′ , qb
′
, �b

′
, gb

′
, db

′
, i b

′
, c̃ b

′ ), where

Nb′ � Nb ∪ {j} (if j ∈ N) or Nb′ � Nb (if j � 0)
qb

′ � qb + qj
�b

′ � min{bj, �b − tji b − stj}
gb

′ � max{aj + db + tji b + stj, gb}
db

′ � max{db + tji b + stj, gb − bj}
i b

′ � j

c̃ b
′ � c̃ b + c̃ji b .

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
(10)

To speed up the enumeration phase and limit the
number of generated labels, the following dom-
inance rule can be applied: Given two labels
Lb1 � (Nb1 ,qb1 , �b1 ,gb1 ,db1 , i b1 , c̃ b1) and Lb2 � (Nb2 , qb2 , �b2 ,

gb2 , db2 , i b2 , c̃ b2), Lb2 is dominated if Nb1 � Nb2 (and
thus qb1 � qb2 ), �b1 ≥ �b2 , gb1 ≤ gb2 , db1 ≤ db2 , i b1 � i b2 ,
and c̃ b1 ≤ c̃ b2 .

The number of labels can further be limited by
using completion bounds based on the ng-path re-
laxation, as described in Baldacci et al. (2011, 2012).

7.3. Step 4: RSFC-LB Computation
In Step 4, problem P261 is solved to compute its op-
timal solution value z(P261). Problem P261 is obtained
from P26 by replacing the set of structures 6 with its

subset 61 generated in Step 3. As the set of columns is
known, no column generation is needed. At the begin-
ning of Step 4, problem P261 is solved with a linear-
programming solver without imposing constraints
(7c) and (7d). These constraints are subsequently iter-
atively added in a cutting-plane fashion.
The separation of both (7c) and (7d) can easily be

done by inspection, given the current optimal solu-
tion x̃. Let 6̃ � {s ∈ 6 | x̃s > 0} be the set of structures in
the solution x̃. The violation of (7c) is checked only for
instants of times h ∈ [a0, b0] for which it exists s ∈ 6̃
such that h � �s, whereas the violation of constraints
(7d) is checked simply for all triplets of customers
{i, j, k} ∈ N.
At the end of Step 4, an optimal dual solution

(u2,v2,w2) of P261 of cost z(P261) is available, where u2,
v2, andw2 are the vectors of dual variables associated
with constraints (7b), (7c), and (7d), respectively.

7.4. Step 5: Structure Reduction
Step 5 aims at deriving the set of structures 62 ⊆ 61
that is obtained from 61 by removing all structures
with a reduced cost greater than ubguess − z(P261)with
respect to the dual solution (u2,v2,w2) of cost z(P261)
of problem P261 achieved at Step 4. The set62 is easily
derived by inspection of the set 61.

7.5. Step 6: Branch-and-Cut to Close the Gap
Step 6 attempts to find an optimal CMTVRPTW so-
lution by applying a branch-and-cut method. In Steps 4
and 5, a limited set of structures 62 has been gener-
ated. This set contains optimal CMTVRPTW solutions
under the assumption that ubguess is a valid upper
bound to the CMTVRPTW. Step 6 solves problem F62

obtained from F6 by replacing the set of structures 6
with its subset 62. It applies a branch-and-cut algo-
rithm because all columns of F62 are known, so only
SFC constraints (3c) may be missing. The SFC con-
straints are added in a cutting-plane fashion as fol-
lows. Notice that as the separation problem is NP-
hard; it is performed on integer solutions only.
Let us assume that we have an integer solution x̃ of

F62 , and we want to check its feasibility by separating
violated SFC constraints. Let 6̃ ⊆ 62 be the subset of
structures in a solution (i.e., 6̃ � {s ∈ 62 | x̃s � 1}). The
right-hand side of constraint (7c) corresponding to the
set 6̃ is equal to the maximum number of structures
of the set 6̃ that can be simultaneously in solution.
The separation problem of determining if the struc-
tures of the set 6̃ represent a feasible CMTVRPTW so-
lutioncanbe then formulatedasa teamorienteeringproblem
with time windows (TOPTW) (see, e.g., Vansteenwegen
et al. 2009 and Archetti et al. 2014), where (a) each
node is a structure to assign to a vehicle; (b)m vehicles
are available; (c) each structure has a unit profit and a
time window [es, �s]; and (d) the goal is to maximize
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the number of structures that can be assigned to them
vehicles, which is achieved by maximizing the profit
of the TOPTW.

Therefore, the separation problem of SFC on the set
6̃ can be formulated on a support graph G̃ � (Ṽ, Ã)
defined as follows. The vertex set Ṽ contains a node
for each structure of 6̃ plus a dummy node o (i.e.,
Ṽ � {o} ∪ 6̃). The arc set Ã is defined as Ã� {(o,s)|s∈
6̃}∪{(s1,s2) |s1,s2 ∈ 6̃,s1 �� s2,es1 +ds1 ≤�s2}∪ {(s,o) |s∈ 6̃}.
With each arc (s1,s2) ∈ Ã, we associate a travel time t̃s1s2
defined as t̃s1s2 �ds1 if s1 ��o, and t̃s1,s2 �0 if s1� o. For
example, let us assume that S̃� s1,s2,{ s3,s4,s5,s5,s6}
and es1 � �s1 � 119.7, ds1 � 145.6; es2 � 264, �s2 � 276,
ds2 � 136.3; es3 � �s3 � 415.5, ds3 � 166.5; es4 � �s4 � 607.4,
ds4 � 240.8; es5 � �s5 � 142.1, ds5 � 257.1; es6 � �s6 � 437.9,
ds6 � 298.1. The corresponding support graph G̃ is re-
presented in Figure 1.

Let 5̃ be the set of all elementary journeys of graph
G̃ that start and end at node o and such that the se-
quence of visited nodes/structures can be assigned
to the same vehicle. For each journey r � (s1, s2, . . . ,
sμr) ∈ 5̃, let αsr be a binary coefficient equal to 1 if
structure s ∈ 6̃ is assigned to journey r. Moreover, let
yr ∈ {0, 1} be a binary variable equal to 1 if journey r ∈
5̃ is selected (0 otherwise). The separation problem
of SFC can be formulated as

ηm(6̃) � max
∑
r∈5̃

∑
s∈6̃

αsr

( )
yr, (11a)

s.t.
∑
r∈5̃

αsryr ≤ 1 s ∈ 6̃, (11b)∑
r∈5̃

yr ≤ m, (11c)

yr ∈ {0, 1} r ∈ 5̃. (11d)

The objective function (11a) aims at maximizing the
number of structures used in the selected journeys.
Constraints (11b) ensure that each structure is not
assignedmore than once. Constraint (11c) guarantees
that at mostm journeys are selected. Constraints (11d)
are integrality constraints.

The cardinality of the set 5̃ clearly increases ex-
ponentially with the number of structures of the set 6̃,
so problem (11a)–(11d) can be solved by using column
generation. The master problem corresponds to the
linear relaxation of (11a)–(11d). The pricing problem
corresponds to finding journeys of the set 5̃ having
negative reduced cost with respect to the dual solu-
tion (u, v) of the master problem, where u ∈ R

|6̃|
+ and

v ∈ R+ are the dual variables associated with con-
straints (11b) and (11c), respectively.

7.5.1. Solving the Pricing Problem. The pricing prob-
lem can be solved by using dynamic programming
as follows. Let f � (o, s1, . . . , sμf � s f ) be an elementary

forward path of graph G̃ that starts from node o, visits
the set of nodes S̃ f � {s1, . . . , s f }, and ends at node s f at
time ẽ f . Let c̃ f be the reduced cost of path f with re-
spect to the dual solution (u, v). We associate a label
Lf � (S̃ f , s f , ẽ f , c̃ f ) with each path f � (o, s1, . . . , s f ).
A label Lf � (S̃ f , s f , ẽ f , c̃ f ) is feasible if S̃ f ⊆ Ṽ, s f ∈ S̃ f ,
and ẽ f ∈ [es f , �s f ]. Each label Lf � (S̃ f , s f , ẽ f , c̃ f ) with
s f � o and c̃ f < 0 corresponds to a negative reduced-
cost journey.
To generate such negative reduced-cost journeys,

the following initialization and extension are needed:
Initialization: A label Lf � (S̃ f , s f , ẽ f , c̃ f ) is generated,

where S̃ f � ø, s f � o, ẽ f � a0, c̃ f � −v.
Extension: Each label Lf � (S̃ f , s f , ẽ f , c̃ f ), for which

either (a) s f ∈ 6̃ or (b) s f � o and S̃ f � Ø is extended
toward any node s ∈ Ṽ \ S̃ f and generates label
Lf

′ � (S̃ f ′ , s f
′
, ẽ f

′
, c̃ f ′ ), where

• S̃ f ′ � S̃ f ∪ {s},
• s f

′ � s,
• ẽ f

′ � max{ẽ f + t̃s f s, es},
• c̃ f

′ � c̃ f + 1 − us (if s ∈ 6̃) or c̃ f
′ � c̃ f (if s � o).

To speed up the solution process and limit the number
of labels to generate, the following dominance rule can
be applied: Given two labels Lf1 � (S̃ f1 , s f1 , ẽ f1 , c̃ f1 ) and
Lf2 � (S̃ f2 , s f2 , ẽ f2 , c̃ f2 ), Lf2 is dominated if S̃ f1 � S̃ f2 , s f1 � s f2 ,
ẽ f1 ≤ ẽ f1 , and c̃ f1 ≤ c̃ f1 .

7.5.2. Branching Scheme. Given a fractional solution
ỹ of problem (11a)–(11d) three types of branching are
performed in a hierarchical way to find an integer
solution.
Branching on Structures: A binary branching is

performed on the structure s′ that is closest to be used
0.5 times—that is, s′ � argmins∈6̃(ỹ){|

∑
r∈5̃ αsrỹr− 0.5|},

where 6̃(ỹ) � {s ∈ 6̃ | 0< ∑
r∈5̃ αsrỹr < 1}. In the first

branch, structure s′ must be used—that is,
∑

r∈5̃αs′rỹr � 1.
In the second branch, structure s′ cannot used—that
is,

∑
r∈5̃αs′rỹr � 0;

Branching on Arcs: A binary branching is performed
on the arc (s, s′) ∈ Ã that is closest to be traversed 0.5
times by the journeys in solution ỹ—that is, (s, s′) �
argmin(s1,s2)∈Ã(ỹ){|

∑
r∈5̃ γs1s2rỹr − 0.5|}, where Ã(ỹ) �

{(s1, s2) ∈ Ã | 0< ∑
r∈5̃ γs1s2rỹr < 1} and γs1s2r is the num-

ber of times arc (s1, s2) ∈ Ã is traversed by journey

Figure 1. Example of a Support Graph G̃ � (Ṽ, Ã) with Six
Structures
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r ∈ 5̃. In the first branch, arc (s, s′) is removed from the
arc set Ã. In the second branch, arc (s, s′) is forced to be
in solution if structures s and s′ are visited, which is
achieved by removing (a) all arcs {(s1, s′) ∈ Ã | s1 �� s}
and {(s, s2) ∈ Ã | s2 �� s′} if s, s′ ∈ 6̃, (b) all arcs {(s1, s′) ∈
Ã | s1 �� o} if s � o, and (c) all arcs {(s, s2) ∈ Ã | s2 �� o} if
s′ � o.

Branching on the Number of Vehicles: A binary branch-
ing is performed on the number of selected journeys—
that is, on

∑
r∈5̃ ỹr. In the first branch, constraint∑

r∈5̃ yr ≤ ⌊∑
r∈5̃ ỹr

⌋
is added. In the second branch, con-

straint
∑

r∈5̃ yr ≥ ⌈∑
r∈5̃ ỹr

⌉
is added.

In the search tree, the best-bound-first policy is ap-
plied to identify the next node to branch on.

7.5.3. Acceleration Techniques. To speed up the so-
lution process, we embed three more features in the
branch-and-price to solve problem (11a)–(11d):

• Relaxed SFC inequalities (7c) are added in a
cutting-plane fashion and separated both on integer
and fractional solutions as described in Section 7.3.

• The pricing problem is relaxed by dropping re-
source S̃ f , so nonelementary journeys are allowed.

•The computation of ηm(6̃) is stopped as soon as the
highest upper bound (let us call this upper bound
ηm(6̃)) of all unexplored nodes in the search tree is
strictly less than |6̃|. Indeed, this condition is sufficient
to add constraint

∑
s∈6̃ xs ≤ �ηm(6̃)�, which cuts off the

integer solution x̃.

8. Tailoring the ESF to Solve the Four
Variants of the CMTVRPTW

As mentioned in Section 1, the CMTVRPTW can be
specialized by adding side constraints that determine
the feasibility of the structures and therefore define
the set 6. Notice that CVRPTW-LB remains a valid
lower bound, even if these side constraints are added.
Notice also that, once the set of structures 61 is enu-
merated in Step 3, the remaining steps are not affected
by the constraints that define the feasibility of a
structure, but just rely on having the set of feasible
structures 61. Therefore, the ESF can be tailored to
solve the four variants of the CMTVRPTW by sim-
ply modifying the dynamic programming recursion
of Step 3 to enumerate the structures in the gap
ubguess − z(P16). In the following sections, we de-
scribe how Step 3 (described in Section 7.2 for the
CMTVRPTW) can be modified to tackle each of the
four variants.

8.1. Structure Enumeration for the CMTVRPTW-LT
The CMTVRPTW-LT proposed by Hernandez et al.
(2016) considers the time to load the vehicle before it
can depart from the depot. In particular, given the
loading time lti for the goods requested by customer

i ∈ N, the total loading time of a vehicle performing a
given structure is equal to the sum of the individual
loading times of the customers in the structure. For
each label Lb � (Nb, qb, �b, gb, db, i b, c̃ b), let us define its
total loading time lt b as lt b � ∑

i∈N b lti.
The structure enumeration for the CMTVRPTW-LT

requires just two changes with respect to the one for
the CMTVRPTW. The first change is in the feasibility
of a label, and the second change is in the extension
of a label to the depot.
A label Lb � (Nb, qb, �b, gb, db, i b, c̃ b) with i b �� 0 is

feasible if conditions (9) are satisfied and the fol-
lowing condition holds:

�b − t0i b − lt b ≥ a0 . (12)

Indeed, condition (12) ensures that there is enough
time to close the path by returning to the depot and
to reload the vehicle.
When a label Lb � (Nb, qb, �b, gb, db, i b, c̃ b) is extended

to a customer, extension functions (10) are still valid.
Whereas when a label Lb � (Nb, qb, �b, gb, db, i b, c̃ b)
is extended to the depot to generate label Lb

′ � (Nb′ ,qb
′
,

�b
′
,gb

′
,db

′
, i b

′
, c̃ b

′ ), functions (10) are replaced with the
following functions

Nb′ � Nb

qb
′ � qb

�b
′ � �b − t0i b − lt b

gb
′ � max{a0 + db + t0i b + lt b, gb}

db
′ � max{db + t0i b + lt b, gb − b0}

i b
′ � 0

c̃ b
′ � c̃ b + c̃0i b ,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
which take into account the total loading time of a
structure in computing the time to leave from the
depot, return to the depot, and in the total duration.

8.2. Structure Enumeration for the CMTVRPTW-LD
In the CMTVRPTW-LD studied by Hernandez et al.
(2014), a limited trip duration d is considered, which
represents a maximum limit on the time that goods
can be on board the vehicle before being delivered.
This does not include loading times, the service time
of the last customer of a structure, or the travel time to
return to the depot.We accept the definition of limited
trip duration given by Hernandez et al. (2014), even
though we believe it is misleading and it should be
called differently, for example, maximum goods travel
time; indeed,we think it ismore intuitive to call limited
trip duration the maximum amount of time that the
vehicle can be traveling in each trip from the de-
parture from the depot to the return to it.
The structure enumeration of the CMTVRPTW-LD

differs from the one for the CMTVRPTW because
an additional resource is necessary, and feasibility
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conditions and dominance rulesmust take the limited
trip duration into account.

With each backward path b � (0, i1, . . . , i b), we as-
sociate a label Lb � (Nb, qb, �b, gb, db, i b, i b1 , c̃

b), where i b1
represents the first customer visited by the backward
path. Let dgb be the goods travel time computed as
dgb � db − t0i1 − sti1 − lt b. A label is feasible if it satisfies
conditions (9) and (12) and the additional condition
dgb ≤ d.

Moreover, dominance rules need to be adjusted as
follows. Given two labels Lb1 � (Nb1 , qb1 , �b1 , gb1 , db1 , i b1 ,
i b11 , c̃ b1) and Lb2 � (Nb2 , qb2 , �b2 , gb2 , db2 , i b2 , i b21 , c̃ b2), Lb2 is
dominated if Nb1 � Nb2 (and thus qb1 � qb2 ), �b1 ≥ �b2 ,
gb1 ≤ gb2 , db1 ≤ db2 , i b1 � i b2 , i b11 � i b21 , and c̃ b1 ≤ c̃ b2 .

8.3. Structure Enumeration for the CMTVRPTW-R
Cattaruzza et al. (2016a) introduce the concept of
release dates in the CMTVRPTW and study the
CMTVRPTW-R. Each customer i ∈ N has an associ-
ated release date rdi that indicates the instant of time
when the goods to deliver to customer i become
available at the depot; therefore, the vehicle that
serves customer i cannot depart from the depot be-
fore rdi.

Similar to the case of the CMTVRPTW-LT, the
structure enumeration for the CMTVRPTW-R re-
quires two changes with respect to the one for the
CMTVRPTW: the first in the feasibility conditions of
a label and the second change in the extension of a
label to the depot.

Let us indicate with rdb the maximum release date
of the customers serve by a backward path b �
(0, i1, . . . , i b)—that is, rdb � maxi∈N b{rdi}. The label
Lb � (Nb, qb, �b, gb, db, i b, c̃ b) associated with path b �
(0, i1, . . . , i b) is feasible if it satisfies the following
conditions

Nb ⊆ N
qb ≤ q
ai b ≤ �b ≤ bi b
rdb ≤ gb ≤ b0
i b ∈ Nb.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
When a label Lb � (Nb, qb, �b, gb, db, i b, c̃ b) is extended
to the depot to generate label Lb

′ � (Nb′ , qb′ , �b
′
, gb

′
, db

′
,

i b
′
, c̃ b

′ ), functions (10) are replaced with the following
extension functions:

Nb′ � Nb

qb′ � qb

�b
′ � �b − t0i b

gb
′ � max{max{rdb′ , a0} + db + t0i b , gb}

db
′ � max{db + t0i b , gb − b0}

i b
′ � 0

c̃ b
′ � c̃ b + c̃0i b .

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

8.4. Structure Enumeration for the DRP
The drone-routing problem studied by Cheng
et al. (2018) can be seen as a generalization of the
CMTVRPTW, where vehicles are drones and specific
features of the drones must be taken into account. In
particular, unlike standard vehicles, drones have a
limited battery capacitywhose consumption depends
on the load carried. Therefore, energy consumption
and energy cost should be considered when opti-
mizing drone-based distribution systems.
The energy consumed by a drone to traverse arc (i, j) ∈

A depends both on the distance traveled and the
weight transported while traversing the arc. Let enijq
and ceijq be the energy consumption and the energy
costs, respectively, associated with (i, j) ∈ Awhen the
drone is carryingweight q. Each drone has to return to
the depot before running out of battery. Let us call
en the drone battery capacity. Moreover, following
Cheng et al. (2018), let us also assume that each drone
starts each trip equippedwith a fully charged battery.
Let us associate with each backward path b �

(0, i1, . . . , i b) a label Lb � (Nb, qb, �b, gb, db, i b, enb, c̃ b),
where enb is the energy consumption of path b. A
label Lb � (Nb, qb, �b, gb, db, i b, enb, c̃ b) is feasible if the
following conditions hold:

Nb ⊆ N
qb ≤ q
ai b ≤ �b ≤ bi b
a0 ≤ gb ≤ b0
enb ≤ en
ib ∈ Nb.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
The enumeration is initialized with a single label
Lb � (Nb, qb, �b, gb, db, i b, enb, c̃ b), where Nb � Ø, qb � 0,
�b � b0, gb � a0, db � 0, enb � 0, and c̃ b � 0. Each label
Lb � (Nb, qb, �b, gb, db, i b, c̃ b) for which either (a) i b ∈
N or (b) i b � 0 and Nb � Ø is extended toward
any vertex j ∈ V \Nb to generate label Lb

′ � (Nb′ , qb
′
, �b

′
,

gb
′
, db

′
, i b

′
, enb′ , c̃ b

′ ), where

Nb′ � Nb ∪ {j} (if j ∈ N) or Nb′ � Nb (if j � 0)
qb

′ � qb + qj
�b

′ � min{bj, �b − tji b − stj}
gb

′ � max{aj + db + tji b + stj, gb}
db

′ � max{db + tji b + stj, gb − bj}
enb′ � enb + enji bq b

i b
′ � j

c̃ b
′ � c̃ b + cji b + ceji bq b − u1j (if j ∈ N) or

c̃ b
′ � c̃ b + cji b + ceji bq b (if j � 0).

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
Finally, dominance rules should be adjusted as fol-
lows. Given two labels Lb1 � (Nb1 , qb1 , �b1 , gb1 , db1 , i b1 ,
enb1 , c̃ b1) and Lb2 � (Nb2 , qb2 , �b2 , gb2 , db2 , i b2 , enb2 , c̃ b2), Lb2
is dominated if Nb1 � Nb2 , i b1 � i b2 , �b1 ≥ �b2 , gb1 ≤ gb2 ,
db1 ≤ db2 , enb1 ≤ enb2 , and c̃ b1 ≤ c̃ b2 .
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9. Computational Results
In this section, we report a summary of the compu-
tational results achieved by the ESF on the CMTV-
RPTW and its four variants, and, when available, we
compare its performance with the state-of-the-art
exact methods. Detailed computational results are
reported in the online appendix. The ESF is coded in
C and compiled with Microsoft Visual C++ compiler.
Cplex 12.8 is used to solve the master problem in
Step 2, in Step 4, and for the branch-and-cut in Step 6.
For Step 2 and Step 4, we set Cplex to use the primal
and the dual simplex method, respectively; for all
the other parameters, we use the default setting. For
Step 6, we disable the presolve phase and the cutting-
plane generation is embedded in the callback of the
solver; all the other parameters are set to the default
setting of Cplex. The tests are performed, in single-
thread mode, on a Windows server equipped with
six virtual CPUs running at 2.59 GHz and with 16 GB
of RAM.A time limit of 3 hours per instance is set. All
computing times are in seconds. The same parameter
setting is used in all tests—namely, col iter � 100,
gap0guess � 0.05, and gapstep � 0.05.

The first five subsections are devoted to the
CMTVRPTW, CMTVRPTW-LD, CMTVRPTW-LT,
CMTVRPTW-R, and DRP, respectively. In each sub-
section, we describe the instances first and then
provide the results achieved by our solution method.
The following subsections are devoted to the com-
parison with the literature. Finally, the impact of time
windows’ width on the performance of ESF is in-
vestigated in Section 9.7.

Tables 1–6 summarize the results by group of in-
stances, and the following information is indicated:
group of instances (Group), number of customers (n),
number of instances (Inst), number of instances
solved (Solved), average gap between z(P16) and the
optimal solution cost (P16%), average time to com-
pute z(P16) (TP1), average cardinality of the set 61
(|61|), average gap between z(P261) and the optimal
solution cost (P261%), average cardinality of the set
62 (|62|), average gap between the root node relaxation

of z(F62) and the optimal solution cost (LF6%), aver-
age number of SFC added (nSFC), average number of
nodes explored (Nds), average time spent to execute
Step 6 (TB&C), and average total computing time (Ttot).
Notice that, as Steps 3–7 may be iterated because of
the conditions in Step 7, all information about Steps
3–7 refer to the last iteration. Table 3 has an addi-
tional column (d) reporting the maximum trip dura-
tion, and Table 4 has an additional column (κ) in-
dicating the type of release date (κ). The last row of
each table indicates the total number of instances,
the total number of instances solved, and the average
values of each column computed over the instances
solved only.
In the literature, different authors use different

ways to compute travel times and costs, even when
solving the same set of instances. Indeed, travel times
and costs are either truncated or rounded to the first,
second, or another decimal digit. The computational
results in the literature show that this does not affect
the complexity of the problem. Therefore, in the ex-
periments reported in Tables 1–6, travel time and
costs are truncated to one decimal digit, as done in
Solomon (1987), who introduced the test instances
used (or extended) bymost papers on vehicle routing.
All test instances used in this section are available

in the online appendix.

9.1. Computational Results on the CMTVRPTW
The benchmark set consists of 81 instances, derived
from the type 2 Solomon instances by using a pro-
cedure similar to Hernandez et al. (2014, 2016). We
consider type 2 instances only because the short
planning horizon and the tight time windows of in-
stances of type 1 prevent the vehicles from performing
multiple trips. There are three groups of instances
(C, R, and RC) differing in the customer distribution
(i.e., clustered, random, and randomly clustered, re-
spectively). We consider instances with 25, 40, and
50 customers by selecting the first customers from the
original Solomon instances. Instances with 25 cus-
tomers feature two vehicles, whereas instances with

Table 1. Summary of the Computational Results for the CMTVRPTW

Group n Instance Solved P16% TP1 |61 | P261% |62| LF6% nSFC Nds TB&C Ttot

C 25 8 8 2.37 11.1 75,662 0.94 6,075 0.69 0 88 1.0 16.1
C 40 8 6 2.71 22.0 1,054,466 1.73 207,049 1.71 0 22,257 1,589.5 2,589.9
C 50 8 2 3.50 21.0 1,820,115 0.95 75,645 0.99 0 1,190 90.3 1,601.1
R 25 11 11 7.76 9.4 1,338,633 1.24 5,018 0.77 1 35 1.3 83.1
R 40 11 10 2.53 21.1 2,777,514 0.36 31,561 0.42 0 17 2.7 377.7
R 50 11 0
RC 25 8 8 12.88 4.0 124,067 2.14 4,143 1.75 5,695 4,036 70.9 175.7
RC 40 8 8 11.95 9.4 3,935,229 0.45 97,816 0.66 304 4,241 479.7 1,223.7
RC 50 8 7 5.95 23.3 1,966,892 0.61 14,038 0.61 1,011 9,886 279.8 647.6
All 81 60 6.55 14.1 1,655,251 1.03 45,449 0.90 918 4,543 268.8 654.9
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40 and 50 customers feature four vehicles. The vehicle
capacity is set equal to 100.

Table 1 summarizes computational results on the
CMTVRPTW. It shows that the ESF can solve all 25-
customer instances and all but three 40-customer
instances. Instances with 50 customers represent the
limit of the ESF, as only 9 out of 27 instances are
solved. Overall, 60 of the 81 instances are solved in an
average computing time of 11 minutes.

9.2. Computational Results on the CMTVRPTW-LT
Hernandez et al. (2016) introduce 27 instances of the
CMTVRPTW-LT, generated by considering the first
25 customers of the Solomon instances of type 2. The
fleet size is equal to two, and vehicle capacity equals
100. The loading time of each customer i ∈ N is
computed as lti � 0.2sti. Following the procedure of
Hernandez et al. (2016), we introduce 54 additional
instances with 40 and 50 customers. We set capacity
and loading times as in Hernandez et al. (2016), but
we set the fleet size equal to four.

Table 2 summarizes the results on the 81CMTVRPTW-
LT instances. The ESF can solve all original 25-cus-
tomer instances and all but two 40-customer instances.
Ten of the 27 50-customer instances can be solved. All
in all, the computational behaviour of the ESF is similar
to that observed on the CMTVRPTW in Table 1.

9.3. Computational Results on the CMTVRPTW-LD
For the CMTVRPTW-LD,we use a set of instances based
on the Solomon instances, with 25, 40, and 50 customers
of groups C2, R2, and RC2, considering a short limited
trip duration (d � dshort) and a long limited trip du-
ration (d � dlong), for a total of 162 instances. As done
inAzi et al. (2010), we set dshort � 75 and dlong � 100 for
instances of type R2 and RC2, and we set dshort � 220
and dlong � 250 for instances of type C2. Travel time,
distances, fleet size, and loading times are set as in
the CMTVRPTW-LT instances of Table 2.
Table 3 shows that the ESF can solve all 162 in-

stances of the data set with an average computing
time of 16.8 seconds.

Table 3. Summary of the Computational Results for the CMTVRPTW-LD

Group n d Instance Solved P16% TP1 |61| P261% |62| LF6% nSFC Nds TB&C Ttot

C 25 220 8 8 5.43 11.2 454 1.47 179 0.11 0 0 0.1 11.4
C 25 250 8 8 2.06 16.3 1,842 0.42 528 0.65 1 45 0.2 16.6
C 40 220 8 8 4.16 25.6 1,161 0.15 397 0.02 0 1 2.1 27.9
C 40 250 8 8 1.24 41.0 5,325 0.50 3,042 0.36 0 1,422 2.8 44.1
C 50 220 8 8 4.38 40.0 1,859 0.51 1,120 0.07 0 0 9.8 50.0
C 50 250 8 8 1.27 65.7 8,977 0.50 5,632 0.37 0 1,224 6.9 73.1
R 25 75 11 11 3.15 1.7 609 0.10 91 0.32 0 0 0.0 1.8
R 25 100 11 11 6.11 2.7 2,886 0.23 273 0.18 0 0 0.0 2.9
R 40 75 11 11 4.70 4.0 3,412 0.50 794 0.16 0 1 0.2 4.3
R 40 100 11 11 5.94 8.1 26,682 0.36 2,972 0.35 0 36 0.1 8.8
R 50 75 11 11 5.06 6.0 5,393 0.44 1,900 0.20 4 42 1.8 8.1
R 50 100 11 11 6.22 12.7 52,811 0.24 7,940 0.24 335 1,507 16.0 31.8
RC 25 75 8 8 15.70 1.4 507 4.52 222 0.22 16 31 0.1 1.8
RC 25 100 8 8 18.93 2.5 2,733 0.69 553 0.75 15 16 0.1 3.0
RC 40 75 8 8 11.86 2.6 631 3.28 356 0.42 0 1 0.7 3.6
RC 40 100 8 8 18.02 6.5 3,614 0.65 1,263 0.18 1 8 0.1 7.1
RC 50 75 8 8 11.04 4.2 1,295 2.64 774 0.47 163 406 5.7 10.1
RC 50 100 8 8 18.20 10.4 10,795 1.74 5,074 0.08 0 1 0.4 12.3
All 162 162 7.66 13.6 8,168 0.97 1,894 0.28 33 263 2.67 16.8

Table 2. Summary of the Computational Results for the CMTVRPTW-LT

Group n Instance Solved P16% TP1 |61 | P261% |62 | LF6% nSFC Nds TB&C Ttot

C 25 8 8 3.08 13.3 73,298 1.35 5,575 0.73 1 71 1.0 19.0
C 40 8 7 2.71 29.4 1,323,350 1.55 190,787 1.51 0 10,877 933.9 2,170.0
C 50 8 3 3.99 35.0 2,429,725 1.35 78,585 1.41 3 5,980 494.7 3,576.6
R 25 11 11 8.00 11.2 1,483,675 0.91 2,992 0.78 2 27 0.8 114.8
R 40 11 10 2.74 22.5 2,821,178 0.31 27,430 0.41 0 7 2.6 417.9
R 50 11 0
RC 25 8 8 13.39 4.7 117,308 2.30 4,658 1.91 7,614 10,379 733.9 879.7
RC 40 8 8 12.04 9.5 3,677,170 0.46 73,755 0.83 299 2,745 186.3 871.9
RC 50 8 7 6.37 17.6 1,965,379 0.60 7,269 0.59 843 2,936 26.5 311.7
All 81 62 6.76 16.2 1,706,204 1.05 41,956 0.96 1,117 3,557 251.8 769.5
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9.4. Computational Results on the CMTVRPTW-R
The only CMTVRPTW-R instances available in the
literature are provided by Cattaruzza et al. (2016a),
who generated a test bed based on the Solomon in-
stances. In particular, for each instance, they consider
four types of release date (for details, see Cattaruzza
et al. 2016a) and set the capacity equal to half of the

original value. Nonetheless, all instances of this test
bed feature 100 customers, which is out of reach for
our method. Therefore, we generate a set of 210 in-
stances starting from the instances of Cattaruzza et al.
(2016a) by considering the first 25, 40, and 50 cus-
tomers only and by considering three types of tighter
and tighter release dates (0.25, 0.5, and 0.75). As for

Table 5. Summary of the Computational Results for the DRP (Type A Instances)

Group n Instance Solved P16% TP1 |61 | P261% |62 | LF6% nSFC Nds TB&C Ttot

A1 10 5 5 11.07 0.2 105 3.43 52 0.59 6 4 0.1 0.5
A1 15 5 5 13.06 0.5 887 2.17 175 1.26 3 110 0.1 0.9
A1 20 5 5 8.69 0.5 930 1.05 229 0.60 58 163 1.2 1.9
A1 25 5 5 9.32 1.2 3,355 1.53 413 1.02 92 333 1.7 3.8
A1 30 5 5 8.25 1.3 9,884 0.83 1,091 0.77 140 323 1.5 4.4
A1 35 5 5 8.53 2.5 19,224 0.59 6,725 0.57 7 1,231 15.4 18.7
A1 40 5 5 8.07 2.8 16,630 0.35 1,525 0.26 71 174 4.3 7.5
A1 45 5 5 8.29 5.6 58,018 0.52 4,139 0.43 90 421 10.1 18.9
A2 10 5 5 11.15 0.1 54 1.92 22 0.21 3 0 0.0 0.4
A2 15 5 5 13.22 0.2 120 2.02 50 1.30 42 25 0.5 1.6
A2 20 5 5 11.28 0.4 432 1.72 125 1.12 73 120 1.2 2.0
A2 25 5 5 9.74 0.7 498 0.91 110 1.06 63 123 1.6 2.5
A2 30 5 5 10.48 1.6 1,798 0.73 578 0.26 25 45 1.0 2.9
A2 35 5 5 10.18 2.3 2,759 0.65 1,089 0.32 5 5 1.4 4.1
A2 40 5 5 9.17 3.3 3,648 0.51 1,279 0.25 89 163 5.8 9.4
A2 45 5 5 9.23 3.3 6,654 0.45 787 0.29 40 85 4.2 7.8
A2 50 5 5 8.82 5.8 6,706 0.53 1,905 0.34 239 573 48.8 54.9
All 85 85 9.91 1.9 7,747 1.17 1,194 0.63 62 229 5.8 8.4

Table 4. Summary of the Computational Results for CMTVRPTW-R

Group n κ Instance Solved P16% TP1 |61 | P261% |62 | LF6% nSFC Nds TB&C Ttot

C 25 0.25 8 8 9.24 8.6 740,684 2.69 6,722 0.64 16 216 3.6 30.4
C 25 0.5 8 8 9.25 9.0 752,587 2.70 6,515 0.64 25 463 7.3 35.1
C 25 0.75 8 8 9.35 8.9 677,542 2.74 6,666 0.67 20 629 9.6 39.3
C 40 0.25 8 6 4.33 20.3 586,585 1.00 23,165 0.89 0 921 13.9 75.3
C 40 0.5 8 6 5.39 20.3 541,465 1.12 21,346 0.96 0 1,417 13.3 72.3
C 40 0.75 8 6 7.05 18.4 595,428 0.92 27,052 0.64 0 593 11.3 73.9
C 50 0.25 8 5 4.49 34.8 459,779 0.72 3,024 0.56 0 975 1.8 59.7
C 50 0.5 8 5 4.86 35.9 534,103 0.61 13,925 0.44 0 361 1.8 104.3
C 50 0.75 8 5 7.13 35.1 729,090 0.26 2,129 0.22 0 4 0.2 86.2
R 25 0.25 11 9 10.77 7.0 1,379,650 0.15 96 0.19 0 0 0.0 18.4
R 25 0.5 11 9 11.42 6.7 1,602,670 0.13 518 0.33 0 0 0.0 20.8
R 25 0.75 11 8 13.82 5.6 1,042,126 0.14 443 0.06 0 0 0.0 25.5
R 40 0.25 11 4 7.64 12.8 5,238,404 0.02 2,761 0.14 0 0 0.1 105.1
R 40 0.5 11 4 7.87 13.4 3,924,628 0.04 1,049 0.21 0 0 0.0 78.1
R 40 0.75 11 2 11.37 10.3 2,280,014 0.00 1,400 0.04 0 0 0.0 48.0
R 50 0.25 11 0
R 50 0.5 11 0
R 50 0.75 11 0
RC 25 0.25 8 8 16.12 3.3 120,983 1.28 3,915 0.98 496 192 1.0 12.1
RC 25 0.5 8 8 16.19 3.1 118,613 1.18 4,287 0.91 443 258 0.9 10.8
RC 25 0.75 8 8 19.92 2.7 112,202 0.41 1,148 0.25 4 4 0.1 5.7
RC 40 0.25 8 7 16.34 8.2 1,750,114 0.44 19,208 0.65 13 9,115 108.1 217.5
RC 40 0.5 8 7 16.41 7.3 1,547,847 0.21 13,625 0.43 336 2,118 42.4 141.6
RC 40 0.75 8 7 21.24 6.9 1,096,531 0.46 2,898 0.47 0 935 1.4 59.7
RC 50 0.25 8 6 10.65 18.3 1,720,962 0.95 9,708 0.64 6,983 16,660 1,038.5 1,221.4
RC 50 0.5 8 5 13.25 17.0 1,768,256 0.43 9,591 0.20 1 5 0.6 173.4
RC 50 0.75 8 5 16.53 16.0 1,875,569 0.59 15,468 0.32 34 155 6.1 271.4
All 210 154 11.21 13.4 1,409,377 0.74 7,581 0.45 319 1334 48.1 118.0
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the CMTVRPTW, instances with 25 customers fea-
ture two vehicles, and instances with 40 and 50 cus-
tomers four vehicles.

Table 4 summarizes the results by instance group,
number of customers, and type of release date. The
ESF can solve 154 of the 210 instances. The complexity
of the problem clearly increases with the number of
customers. Instances of type R are more challenging
than instances of types C and RC. The bottleneck of
the ESF is clearly Step 3—that is, the structure enu-
meration. Indeed, instances cannot be solved when it
is impossible to enumerate all structures, whereas
instances can be solved, on average, in less than 2
minutes when all structures can be enumerated.

9.5. Computational Results on the DRP
We tested the ESF on the two sets (i.e., A andB) of DRP
instances proposed by Cheng et al. (2018). Set A is
created according to the framework presented in
Solomon (1987) andDorling et al. (2017); set B extends
the Solomon instances to take into account the fea-
tures of the drones. Type A instances consists of 85
instances divided in two groups (A1 and A2), which
differ in the depot location; each group contains five
instances with 10, 15, etc., up to 50 customers. Type B
instances are generated by considering the first 25 and
40 customers of the type 2 (C2, R2, and RC2) Solomon
instances, for a total of 54 instances. For further details
about the instances, we refer the reader to Cheng
et al. (2018).

Table 5 summarizes the results on DRP instances of
type A. Results are grouped by instance group and
number of customers. Table 5 shows that all 85 in-
stances can be solvedwith an average computing time
of 8.4 seconds.

Table 6 summarizes the results on the DRP in-
stances of Type B. Results are grouped by customer
distribution (C, R, and RC) and number of customers
(25 and 40). Table 6 shows that all 54 can be solved,
with an average computing time of 2.1 seconds.

9.6. Comparison with the Literature
In this section, we compare the performance of the
ESF with the state-of-the-art exact methods from the
literature. In particular, we compare the ESF with the

methods of Hernandez et al. (2016) (hereafter Hern16)
on the CMTVRPTW-LT, of Hernandez et al. (2014)
(hereafter Hern14) on the CMTVRPTW-LD, and of
Cheng et al. (2018) (hereafter Cheng18) on the DRP.
Notice that these three methods have been designed
and tailored on the problem at hand and have not
been generalized to several CMTVRPTWs as our
proposed ESF.

9.6.1. Comparison with Hernandez et al. (2016) on the
CMTVRPTW-LT. Table 7 compares the performance of
EFS and Hern16 on the 27 25-customer CMTVRPTW-
LT instances proposed by Hernandez et al. (2016). In
particular, as Hernandez et al. (2016) propose two
exact branch-and-price algorithms, the comparison is
done with the better of the two, which relies on a trip-
based formulation. The branch-and-price of Hernandez
et al. (2016) is run on an Intel Core i7 2670QM with
8 GB of RAM. A dash indicates that the instance was
not solved.
Instances are grouped by customer distribution

(C2, R2, and RC2). For each instance, we report the
instance number (Inst); the best-known upper bound
(UB); for ESF, the gap (Gap) between LF6 and the
optimal solution cost, and the total computing time
(Time); and for Hern16, the gap (Gap) between the
linear relaxation of the corresponding trip-based
formulation and the optimal solution cost, and the
total computing time (Time).
Table 7 shows that the ESF can solve all 27 instances,

whereas Hern16 cannot solve instances RC204 and
RC208. Moreover, the ESF is on average several times
faster thanHern16, mainly because of the smaller gaps
provided by the lower bounding procedure.

9.6.2. Comparison with Hernandez et al. (2014) on the
CMTVRPTW-LD. Tables 8 and 9 compare the results
achieved by the ESF and by the branch-and-price of
Hernandez et al. (2014) on the instances having a
feasible solution used by Hernandez et al. (2014) and
introduced in Azi et al. (2010). The branch-and-price
of Hernandez et al. (2014) was run on an Intel Core 2
Duo 2.10 GHz with 2 GB of RAM. Table 8 reports the
results on 27 instances with 25 customers, each one
solved with a short and a long limited trip duration.

Table 6. Summary of the Computational Results for DRP (Type B Instances)

Group n Instance Solved P16% TP1 |61 | P261% |62 | LF6% nSFC Nds TB&C Ttot

C 25 8 8 8.97 0.5 10,377 1.98 577 1.32 0 568 0.4 1.2
C 40 8 8 7.54 1.4 63,146 0.77 6,989 0.44 3 203 1.7 4.9
R 25 11 11 7.11 0.3 5,305 0.02 200 0.13 0 0 0.0 0.5
R 40 11 11 7.04 0.8 43,020 0.03 2,889 0.03 0 0 0.5 1.9
RC 25 8 8 12.46 0.1 1,232 2.20 356 0.07 7 17 0.1 0.5
RC 40 8 8 10.51 0.5 2,105 1.39 1,503 0.14 200 538 3.4 4.2
All 54 54 8.73 0.6 21,231 0.95 2,026 0.32 31 196 0.9 2.1
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Table 9 reports the results on 18 instances with 40
customers, each one solved with a short and a long
limited trip duration. Columns of these two tables
have the same meaning of the columns of Table 7.
Table 8 shows that the ESF can solve all 25-customer

instances, whereas Hern14 cannot solve five of them.
Moreover, the ESF is, on average, much faster than
Hern14 on both instances with short and long limited
duration, in particular on the latter ones.
Table 9 indicates that the ESF can solve all 35 in-

stances, which is 10 more than Hern14. The ESF is
more efficient in particular on instances with a long
limited duration. Also, in terms of computing time,
the ESF is clearly superior.

9.6.3. Comparison with Cheng et al. (2018) on the
DRP. Table 10 compares the results achieved by the
ESF and by the branch-and-cut of Cheng et al. (2018)
based on the mathematical formulation without a
drone index, referred to as R + E( )e|nk in Cheng et al.
(2018). The branch-and-cut of Cheng et al. (2018) is
run on a cluster of Intel Xeon X5650 CPUs with 2.67
GHz and 24 GB of RAM under Linux 6.3.
For each instance type (Type), we report the in-

stance group (Group), the number of customers (n),
and the number of instances (Inst). Columns under
heading ESF report the number of instances solved
(Solved), the average gap (Gap) between LF6% and
the optimal solution cost, and the average computing
time (Time) of the ESF. Columns under heading
Cheng18 report the number of instances solved
(Solved), the gap (Gap) between the root node re-
laxation of R + E( )e|nk and the optimal solution cost,
and the average computing time (Time) of Cheng18.
The average values reported in columns Gap and
Time are computed over the instances solved only.
Table 10 shows that the ESF can solve all 139 in-

stances, whereas Cheng18 can solve 45 instances only.
Moreover, the ESF is on average much faster than
Cheng18, thanks to the smaller gaps provided by the
lower bounding procedure.

9.7. Impact of the Width of the Time Windows
In this section, we investigate the impact of the time
window’s width on the performance of ESF. We test
ESF on the CMTVRPTW instances studied in Section 9.1
by enlarging the original time windows. For each of
the 81 instances, we consider three additional in-
stances: the first featuring time windows that are 50%
larger, the second featuring time windows twice as
large as the initial one, and the third without time
windows. In particular, time windows [a′i , b′i ], i ∈ N,
of these new instances are defined as

a′i � max{a0 + t0i, ai − (bi − ai)δ}� i ∈ N

b′i � �min{b0 − ti0 − sti, bi + (bi − ai)δ}� i ∈ N,T
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and parameter δ is set equal to 0.25, 0.5, and ∞ to
obtain the three instances. Notice that the time win-
dow of the depot remains unchanged.

Table 11 compares the results of ESF on the original
instances (i.e., with δ � 0) with the results on the in-
stances obtained by setting δ � 0.25, 0.50, and ∞. We
report the instances group (Group), the number of
customers (n), and the number of instances (Inst).
For each value of δ, we indicate the number of in-
stances solved (Solved), the average gaps between
the lower bounds and the optimal solution costs
(P16%, P261%, LF6%), and the average total com-
puting time (Ttot).

Table 11 shows that the performance of ESF does
not deteriorate when time windows are enlarged.
Indeed, ESF can solve 73 instances with δ � 0.25, 71
with δ � 0.5, and 70 instances with δ � ∞, whereas
60 instances were solved with δ � 0. Therefore, we
cannot conclude that the width of the time windows
has a consistent impact on the performance of ESF.

Nevertheless, we can observe a general trend in the
quality of the three lower bounds: By increasing
the width of the time windows, the three lower
bounds are often on average better. This is probably

why instances with larger time windows are not al-
ways more difficult to solve in spite of the larger
number of feasible structures involved and the higher
complexity of the pricing problems and enumera-
tion phase.

10. Conclusions
We have presented an exact solution framework for
multitrip vehicle-routing problems with time win-
dows. The ESF relies on a novel mathematical model
with an exponential number of variables and con-
straints. Unlike the other mathematical models from
the literature, the proposed model is based on the
concept of structure. The novel formulation is used to
derive two lower bounds that can be efficiently
computed. These lower bounds are exploited in the
ESF to generate a reduced set of columns containing
any optimal MTVRP solution, which is then found by
using a branch-and-cut. The computational results
show that the ESF can efficiently solve instances, with
up to 50 customers of the CMTVRPTW significantly
outperforming the state-of-the-art exact methods.We
have also shown that the ESF can easily be adapted
to solve four generalizations of the CMTVRPTW, and

Table 8. Comparison with Hernandez et al. (2014) on the CMTVRPTW-LD (Instances with 25 Customers)

Short limited duration Long limited duration

ESF Hern14 ESF Hern14

Inst Upper bound Gap Time Gap Time Upper bound Gap Time Gap Time

C201 659.02 0.00 5.3 1.90 1.3 540.90 0.00 3.6 0.00 0.1
C202 653.37 0.00 14.2 2.85 49.3 533.43 0.00 18.6 1.54 51.4
C203 646.40 0.22 20.1 3.15 265 532.77 0.21 25.6 1.70 335.7
C204 602.46 0.01 28.7 1.73 248 525.46 0.86 35.6 2.29 4734.4
C205 636.39 0.00 7.5 4.48 38.1 529.94 1.49 9.4 1.49 0.9
C206 636.39 0.00 8.3 5.19 692.4 527.84 0.04 12.7 2.21 123.9
C207 603.22 0.00 10.2 2.39 104.7 525.46 1.86 18.4 1.86 31.1
C208 613.20 0.00 9.6 2.59 41.4 525.46 1.86 14.6 1.86 4.7
R201 762.43 0.61 1.2 0.61 0.1 698.18 0.00 1.3 0.99 0.8
R202 645.78 0.00 1.6 0.00 0.6 617.53 0.00 2.9 0.14 4.1
R203 621.97 0.29 2.4 0.16 2.0 577.74 0.00 4.6 0.11 11.6
R204 579.68 0.32 2.9 0.70 4.9 483.3 0.00 4.0 0.54 33.6
R205 634.09 1.12 1.2 1.20 1.0 559.14 0.03 2.2 0.64 3.7
R206 596.74 0.00 1.9 0.00 0.8 523.64 0.00 3.3 0.00 5.7
R207 585.74 0.00 2.7 0.34 3.5 512 0.73 4.1 2.85 418.9
R208 579.68 0.32 3.0 0.70 7.2 483.3 0.49 4.2 1.30 97.8
R209 602.39 0.62 1.7 0.71 1.7 517.69 0.00 2.9 1.11 14.1
R210 636.15 0.00 1.6 2.49 8.5 547.23 0.00 2.8 0.00 2.6
R211 575.91 0.23 2.0 1.28 27.6 474.49 0.00 4.1 0.93 80.4
RC201 988.05 0.15 1.2 0.37 0.9 849.33 2.79 14.3 4.15 3.6
RC202 881.49 0.00 2.2 4.98 24.5 679.86 0.00 3.0 0.00 3.6
RC203 749.15 0.00 2.3 5.87 62.3 593.56 0.07 4.5 0.10 13.1
RC204 744.72 0.00 3.2 — — 587.22 0.01 5.0 — —
RC205 840.35 0.45 2.0 3.78 3.7 702.49 0.54 2.5 0.54 2.6
RC206 761.03 0.08 1.5 4.59 35.7 604.12 0.00 1.9 0.65 2.9
RC207 738.87 0.35 2.1 — — 514.81 0.00 3.2 0.84 45.5
RC208 727.99 5.85 2.8 — — 502.18 0.00 4.6 — —
Average 0.39 5.3 2.17 67.7 0.41 7.9 1.11 241.1

27 instances Solved: 27 Solved: 24 27 instances Solved: 27 Solved: 25
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the corresponding computational results are signifi-
cantly better than those achieved by the best exact
methods from the literature.

As the bottleneck of the ESF is represented by the
enumeration of all structures in the gap given the
CVRPTW lower bound, future research can be directed

Table 9. Comparison with Hernandez et al. (2014) on the CMTVRPTW-LD (Instances with 40 Customers)

Short limited duration Long limited duration

ESF Hern14 ESF Hern14

Instance Upper bound Gap Time Gap Time Upper bound Gap Time Gap Time

C201 1,168.83 1.95 1,068.5 3.79 31.3 966.70 2.38 194.9 3.32 90.4
C202 1,111.15 0.10 218.1 1.19 67.4 919.85 0.00 50.3 0.63 84.2
C203 1,088.55 0.00 43.0 1.04 186.5 915.04 1.27 81.1 — —
C204 1,039.16 0.00 59.9 0.45 145.3 908.24 1.13 115.9 — —
C205 1,083.81 0.00 14.0 0.64 34.1 921.19 0.00 19.6 1.02 66.3
C206 1,081.37 0.00 16.2 0.67 184 919.05 0.25 131.3 0.87 1,539.1
C207 1,055.04 0.12 307.3 1.16 1,491.5 910.43 0.54 46.3 — —
C208 1,071.99 0.00 22.3 0.75 52.6 915.41 0.00 31.0 0.73 2,673.7
R202 Infeasible 961.33 0.38 17.0 — —
R203 962.22 0.49 7.0 — — 816.51 0.34 67.9 1.07 15.5
R204 858.22 0.00 6.7 2.14 4,049.2 708.98 0.76 13.9 — —
R205 1,017.84 2.98 684.3 2.48 1,193.4 873.22 3.68 2313 2.25 2,429.0
R206 927.22 1.05 12.3 0.28 171.5 812.31 0.46 14.5 1.11 926.4
R207 886.22 0.00 5.6 0.39 68.9 764.39 0.27 11.5 — —
R208 858.22 0.66 6.7 2.14 4,954.8 708.01 0.95 14.5 — —
R209 935.81 0.02 4.0 1.00 198.2 768.84 0.44 15.3 1.12 1,511.4
R210 952.92 0.83 272.3 0.98 246.5 822.78 1.50 115.5 — —
R211 869.75 2.32 54.5 2.18 5,093.9 728.94 3.06 549.0 — —
RC204 1,362.34 0.00 8.2 — — 985.98 1.34 13.0 — —
Average 0.58 156.2 1.33 1,135.6 0.99 200.8 1.35 1,037.3

17 instances Solved: 17 Solved: 16 18 instances Solved: 18 Solved: 9

Table 10. Comparison with Cheng et al. (2018) on the DRP

ESF Cheng18

Type Group n Inst Solved Gap Time Solved Gap Time

A 1 10 5 5 0.59 0.5 5 4.07 0.6
A 1 15 5 5 1.26 0.9 1 7.92 22.5
A 1 20 5 5 0.60 1.9 2 1.28 13.6
A 1 25 5 5 1.02 3.8 0 — —
A 1 30 5 5 0.77 4.4 0 — —
A 1 35 5 5 0.57 18.7 0 — —
A 1 40 5 5 0.26 7.5 0 — —
A 1 45 5 5 0.43 18.9 0 — —
A 2 10 5 5 0.21 0.4 5 4.92 0.3
A 2 15 5 5 1.30 1.6 3 4.65 4.2
A 2 20 5 5 1.12 2.0 3 5.29 21.5
A 2 25 5 5 1.06 2.5 0 — —
A 2 30 5 5 0.26 2.9 0 — —
A 2 35 5 5 0.32 4.1 0 — —
A 2 40 5 5 0.25 9.4 0 — —
A 2 45 5 5 0.29 7.8 0 — —
A 2 50 5 5 0.34 54.9 0 — —
B C 25 8 8 1.32 1.2 8 1.85 35.5
B C 40 8 8 0.44 4.9 1 1.64 43.8
B R 25 11 11 0.13 0.5 11 2.82 66.6
B R 40 11 11 0.03 1.9 3 4.56 5,543.3
B RC 25 8 8 0.07 0.5 3 4.42 95.2
B RC 40 8 8 0.14 4.2 0 — —
Average 0.51 5.9 3.55 402.4
Solved 139 139 45
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toward studying valid inequalities to tighten such a
lower bound without affecting the complexity of the
pricing problem.
Moreover, given the performance of the ESF on awell-

studied class of vehicle-routing problems, we consider it
promising to explore the usage of similar mathematical
models with an exponential number of variables and
constraints for other combinatorial optimizationproblems.
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