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a b s t r a c t 

In this paper a general solution framework is presented for optimising decisions in a horizontal logistics 

cooperation. The framework distinguishes between the objective of the group and the objectives of the 

individual partners in the coalition. Although the importance of the individual partner interests is often 

acknowledged in the literature, the proposed solution framework is the first to include these objectives 

directly into the objective function of the optimisation model. The solution framework is applied to a col- 

laborative variant of the clustered vehicle routing problem, for which we also create a set of benchmark 

instances. 

We find that by only considering a global coalition objective, the obtained solution is often suboptimal 

for some partners in the coalition. Providing a set of high quality alternative solutions that are Pareto 

efficient with respect to the partner objectives, gives additional insight in the sensitivity of a solution, 

which can support the decision making process. Our computational results therefore acknowledge the 

importance of including the individual partner objectives into the optimisation procedure. 

© 2017 Elsevier Ltd. All rights reserved. 
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. Introduction 

With every product or service only a couple of clicks away, lo-

istics companies are challenged to rethink their operations. Driven

y the evolution in e-commerce and the fact that many industries

oday rely on next-day and overnight just-in-time delivery services,

he distribution planning tends to be highly dynamic and should,

bove all, be fast and efficient. In the last couple of years, horizon-

al logistics cooperation is increasingly considered to be a viable

pproach to lower cost and increase service levels. This form of

ollaboration can be defined as a long-term agreement between

ompanies with similar or complementary transportation needs

hat aim to exploit synergies by means of active bundling and syn-

hronisation of deliveries [33] . 

Most current research on horizontal logistics cooperation is fo-

used on assessing the costs and benefits of the collaboration, and

he allocation of these benefits among the individual collaborating

artners. To estimate the potential benefits that result from hor-

zontal logistics cooperation, researchers make use of simulation

tudies that are based on either theoretical instances [7,21,22] , or
� This paper was processed by Associate Editor Yagiura. 
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n real life case studies [3,12,16] . For the allocation of the coali-

ion cost or benefits, multiple allocation mechanisms have been

escribed in the literature, ranging from cooperative game theo-

etical approaches to simpler rules of thumb [17,36] . 

Only a limited number of papers addresses operational plan-

ing problems in horizontal logistics cooperation (see Verdonck

t al. [37] for an overview). Those papers generally assume a sit-

ation in which a group of partners, each with a set of delivery

equests, form a coalition in which requests can be exchanged be-

ween partners. When quantifying the cost saving of such logistics

ollaborations, the non-collaborative (stand-alone) scenario is com-

ared with a solution for the coalition. This collaborative solution

s usually determined by aggregating all transportation requests of

he individual partners into one large-scale optimisation problem,

hich is then solved with existing (non-collaborative) techniques.

s a result, existing models do not take into account to which part-

er a transportation request originally belonged. One of the conse-

uences of this is that no distinction is made between the objec-

ive of the coalition and the objective of each individual company.

lthough the coalition as a whole should perform as efficiently as

ossible to exploit the synergies from the collaboration, all collab-

rating partners remain independent entities that tend to favour

 solution that is best according to their own objectives. Defryn

nd Sörensen [11] are the first to argue that both objective lev-

https://doi.org/10.1016/j.omega.2017.11.008
http://www.ScienceDirect.com
http://www.elsevier.com/locate/omega
http://crossmark.crossref.org/dialog/?doi=10.1016/j.omega.2017.11.008&domain=pdf
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els should be taken into account. They do not, however, propose a

modelling framework and solution method to integrate both levels

of decision making. To the best of our knowledge the current paper

is the first to consider both objective levels simultaneously when

optimising the logistics planning of a horizontal collaboration. 

Our proposed solution approach is applied to the case of

a cooperation of courier companies, in which the optimisation

problem is modelled as a clustered vehicle routing problem. In

Section 2 , the current state of the art in operational optimisa-

tion in the context of a horizontal logistics cooperation is sum-

marised. Section 3 contains the problem statement and introduces

the clustered vehicle routing problem ( CluVRP ). Our integrated so-

lution approach is introduced in Section 4 after which it is applied

to the CluVRP . In this section, we also focus on the algorithmic

implementation of the integrated solution approach for the Clu-

VRP after which we elaborate on our obtained simulation results

in Section 5 . Finally, our conclusions and directions for further re-

search are presented in Section 6 . 

2. Literature review 

In the literature on the operational aspects of horizontal lo-

gistics optimisation two main approaches are distinguished: order

sharing and capacity sharing [37] . In the first approach, each col-

laborating partner can decide to share (a selection of) its customer

orders with the group. These pooled orders are then reallocated to

the available vehicle trips. When the optimisation is done by solv-

ing one large-scale vehicle routing problem from the point of view

of a centralised decision maker, this is referred to as joint route

planning [7] . Another commonly used technique to reallocate cus-

tomer orders is an auction-based mechanism , in which partners can

bid on the pooled orders. See for example the framework provided

by Dai and Chen [9] . In a second approach, companies can decide

to share their vehicle capacities. In this way the capital investment

associated with these vehicles can be split among multiple part-

ners [37] . Because capacity sharing is less common in the litera-

ture and the results are similar to order sharing, our paper and

therefore also all remaining references are focused on order shar-

ing applications. 

Usually, the benefits of horizontal logistics cooperation are

qualified by comparing the logistics planning with and without

collaboration. To obtain the collaborative solution, a logistics op-

timisation problem is to be defined and solved for the group of

collaborating partners. Using the Web of Science, 59 journal publi-

cations on the topic of ‘horizontal cooperation’ (or ‘horizontal col-

laboration’) and ‘logistics’ were retrieved. Careful screening on the

title and the abstract yielded a subset of 20 papers for further

study. Moreover, we performed an additional manual search using

the same keywords, resulting in a final set of 24 publications. 

All studied papers are listed in Table 1 . Each reference is cat-

egorised by the objective function used in the logistics optimisa-

tion model and the way in which the individual partner interest

are handled. For the objective functions, four main approaches can

be distinguished of which the minimisation of the distance-based

routing cost (min. dist.) and the minimisation of the total logistics

cost (min. TC) are the most common. Typically, this total logistics

cost consists of the distance-based cost increased with additional

factors such as a time-based cost [2,8,27] , penalties for empty trips

or non-delivery [2,13,19,27] , additional linking costs when combin-

ing multiple transportation requests [1] or costs related to the use

of DCs and warehouses [38,40] . Vanovermeire et al. [35] adopt an

alternative approach in which the cost of a trip between two loca-

tions is calculated by means of a pace list. This means that the cost

of a transport between two locations depends on the load of the

vehicle with typically decreasing marginal costs. The optimisation

model requires the solution of a bin packing problem in which the
umber of required vehicles is minimised (min. veh.) . Instead of

inimising the transportation cost, some authors aim at maximis-

ng the total profit (max. prof.) of the coalition [6,25,42] . When re-

uiring that all transportation requests are executed, this approach

s equivalent to the minimisation of the logistics costs. 

We observe that, in all listed papers, the operational plan for

he coalition is obtained by simply aggregating the transporta-

ion requests of all partners after which the optimisation is done

ith respect to one global objective function. Such a simplification

ight give rise to the following drawbacks and limitations: 

• The coalition as a whole is considered the only entity and, as

a result, the multi-partner nature of the collaboration and the

fact that orders might belong to different com panies are ig-

nored. However, the collaborating partners remain independent

companies that might have a different service strategy (e.g.,

guarantee certain service level, provide fast deliveries, being the

cheapest,...) and evaluate the cooperation in terms of personal

gains differently. 
• Considering only objectives at the level of the coalition, on

which all partners should agree, limits the applicability of the

model in more realistic cases with a heterogeneous set of part-

ners (i.e. partners have different objectives). 
• The most optimal solution for the coalition as a whole is con-

sidered the best and only possible outcome for the collaborative

planning. 

These drawbacks are related to the fact that individual partner

nterests are either not taken into account, or are limited to inter-

sts that only affect the cost of the solution. For this we refer again

o Table 1 . All papers marked in the post column, e.g., only include

 method for dividing the total coalition cost as a post-processing

tep after solving the logistics optimisation model. As a result,

artner interests are not taken into account while constructing the

ollaborative logistics planning. The comp. column shows all pa-

ers in which a (monetary) compensation if given for exchang-

ng a customer order, usually by adopting an auction-based decen-

ralised view. Here, partners can bid on individual transportation

equests pooled by other partners and a transfer price (e.g., based

n the winning bid) is considered together with the request ex-

hange. Such an approach ignores the fact that companies might

ave other objectives that can not be compensated with such a

ide payment. In many cases, e.g., it is undesirable or even infea-

ible for practitioners to translate time window constraints into

osts. Finally, Vanovermeire and Sörensen [34] add the constraint

f individual rationality directly to the logistics optimisation model

see const. column). In this way, the authors ensure that an individ-

al partner is rewarded for allowing a shift in delivery date so the

oalition can achieve a better solution. Although this might help to

artially overcome the third limitation, it does not sufficiently ad-

ress the first two limitations nor is this applicable if the objective

s not cost-related. 

Additionally, it could be that some objectives are not shared

mong the collaborating partners or do not receive the same

eight. For example, it is possible that respecting time windows

s more important for one partner, while the other partners prefer

he lowest cost. Also, a partner might prefer a solution in which

ts allocated cost is minimised above a solution with the lowest

otal cost for the coalition as a whole. We refer to Bailey et al. [4] ,

or a logistics optimisation model for a coalition in which only the

bjective of one particular partner of interest is considered. 

With this paper, we are the first to propose a multi-partner lo-

istics optimisation framework that allows each individual partner

o specify any possible objective. Moreover, by including one or

ultiple coalition objectives, we also consider the common goal(s)

f the coalition during the logistics optimisation. Although this

ill give rise to a multi-objective logistics optimisation approach,
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Table 1 

Classification of the studied literature. 

Objective Partner interests 

Reference min. dist. min. TC min. veh max. prof. post comp. constr. not 

Cruijssen et al. [7] � � 

Krajewska et al. [24] � � 

Berger and Bierwirth [6] � � 

Dahl and Derigs [8] � � 

Lozano et al. [27] � � 

Adenso-Díaz et al. [2] � � 

Adenso-Díaz et al. [1] � � 

Juan et al. [21] � � 

Vanovermeire et al. [35] � � 

Vanovermeire and Sörensen [34] � � 

Wang and Kopfer [39] � � 

Flisberg et al. [15] � � 

Li et al. [25] � � 

Pérez-Bernabeu et al. [29] � � 

Wang et al. [41] � � 

Wang and Kopfer [40] � � 

Yang et al. [42] � � 

Defryn et al. [13] � � 

Guajardo et al. [18] � � 

Hezarkhani et al. [19] � � 

Kimms and Kozeletskyi [23] � � 

Verdonck et al. [38] � � 

Yin et al. [43] � � 

Zibaei et al. [44] � � 
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he added value of the paper is not the development of a multi-

bjective approach as such. Rather, the contribution of this paper

s that (i) it clearly demonstrates the importance of both the coali-

ion and the partner objectives, and (ii) provides a framework to

ake both types of objectives into account simultaneously. We pro-

ide the logistics decision maker with a limited set of solutions

y focusing only on what we consider the most promising area

f the solution space, while ensuring that the obtained solutions

re not only of high quality for the coalition as a whole, but also

atisfy the individual requirements of the collaborating partners.

he framework is generic in the sense that any possible objective

r combination of objectives could be considered at both levels.

oreover, it is designed to be straightforward, intuitive and trans-

arent, so it can easily be implemented in practice. 

. Problem statement: the clustered vehicle routing problem 

The solution framework for the integration of coalition ob-

ectives and partner objectives is defined in a general way in

ection 4 , and can be applied to any logistics optimisation prob-

em. For illustrative purposes, the clustered vehicle routing prob-

em ( CluVRP ) is used to show the principles of the presented so-

ution framework. 

The choice for the CluVRP can be motivated by the fact that

e specifically aim to study horizontal cooperation in a distri-

ution context. The increasing importance of e-commerce makes

ogistics optimisation more challenging, creating more opportuni-

ies for joint route planning. To handle the very large problem in-

tances they face, courier companies use clustering to reduce prob-

em complexity. The use of clusters (often referred to as zones) is

cknowledged by many authors as a way to reduce the problem

ize and to avoid the need for detailed customer information dur-

ng the planning phase [20,26,28,45] . The fact that individual cus-

omers are grouped together in predefined clusters, gives rise to a

pecific logistics optimisation problem, referred to as the clustered

ehicle routing problem. 

Introduced by Sevaux and Sörensen [30] , the CluVRP is a gen-

ralization of the classical capacitated vehicle routing problem

CVRP) in which customers are grouped into predefined clusters.
he problem is more constrained compared to the CVRP, as in the

luVRP all customers that belong to the same cluster should be

erved consecutively by the same vehicle. 

.1. Integer programming formulation 

Consider a complete undirected graph G = (V, E) , where V is

 set of vertices including one depot (denoted as V 0 ) and multi-

le customer nodes. A distance d ij , is associated with each edge ( i,

 ) ∈ E connecting two nodes. We consider K to be a set of homoge-

eous vehicles with a maximum capacity Q each. All vehicles start

nd end their trip at the depot. For each customer i the demand

s denoted by q i . Furthermore, a set of clusters is defined and de-

oted by R . Cluster r 0 ∈ R only contains one node, the depot. All

ther clusters contain at least one customer. The set of customers

n a cluster is denoted as C r = { i ∈ V \ V 0 : r i = r} , ∀ r ∈ R . 

Following the formulation of Expósito-Izquierdo et al. [14] , the

luVRP can be defined by the mathematical model described be-

ow. Consider Z to be any proper subset of V . Then, let δ+ (Z) be

he set of edges ( i, j ) ∈ Z × V \ Z (i.e., the edges connecting all vertices

n Z with the vertices not in Z , referred to as outgoing edges) and
−(Z) the set of edges ( i, j ) ∈ V \ Z × Z (i.e., the edges connecting all

ertices outside of Z with all vertices in Z , referred to as incoming

dges). 

 i jk = 

{
1 vehicle k travels from node i to node j 
0 otherwise 

y ik = 

{
1 customer i is served by vehicle k 
0 otherwise 

in 

∑ 

(i, j) ∈ E 

∑ 

k ∈ K 
d i j x i jk (1) 

ubject to ∑ 

k ∈ K 
y ik = 1 ∀ i ∈ V \ V 0 (2) 
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(a) Stand-alone scenario
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(b) Cooperative scenario with cluster ex-change

Fig. 1. The collaborative result for the clustered vehicle routing problem. 
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t  
∑ 

k ∈ K 
y 0 k = | K| (3)

∑ 

j∈ V \ V 0 
x i jk = 

∑ 

j∈ V \ V 0 
x jik = y ik ∀ k ∈ K, ∀ i ∈ V (4)

∑ 

i ∈ V 
q i y ik ≤ Q ∀ k ∈ K (5)

∑ 

i ∈ Z 

∑ 

j / ∈ Z 
x i jk ≤ y hk ∀ Z ⊆ V \ V 0 , ∀ h ∈ Z, ∀ k ∈ K (6)

∑ 

(i, j) ∈ δ+ (C r ) 

∑ 

k ∈ K 
x i jk = 

∑ 

(i, j) ∈ δ−(C r ) 

∑ 

k ∈ K 
x i jk = 1 ∀ r ∈ R (7)

x i jk ∈ { 0 , 1 } ∀ (i, j) ∈ E, ∀ k ∈ K (8)

y ik ∈ { 0 , 1 } ∀ i ∈ V, ∀ k ∈ K (9)

In the model formulation above, the objective function given

by Eq. (1) minimises the total distance travelled by all vehi-

cles. Eq. (2) ensure that each customer is visited exactly once.

Eq. (3) state that all vehicles should visit the depot. Eq. (4) guar-

antee that the same vehicle that arrives at a customer also leaves

from that customer. Eq. (5) make sure that vehicle capacities are

respected. The subtour elimination constraints are represented by

Eq. (6) . Eq. (7) establish that each cluster is visited exactly once by

a single vehicle (i.e., there is exactly one incoming and one outgo-

ing edge for the cluster r ) and as a result that all customers in

a cluster are visited consecutively. In what follows, the solution

space bounded by Eqs. (2) –(9) is denoted as ζ . A solution vector

x is said to be a feasible solution for the above-mentioned CluVRP

if x ∈ ζ . 

3.2. The collaborative environment 

We consider a grand coalition N , representing a horizontal co-

operation between n courier companies p ∈ N . Let S be any sub-

coalition of N , such that S ⊆N . In contrast to the stand-alone sce-

nario in which all companies are only responsible for serving their

own customer clusters, we allow for the transfer of clusters from

one partner to another partner in the coalition. In this way, we en-

courage that each cluster is served by the partner that can fulfil the

corresponding transportation requests in the most efficient way.
his is visualised in Fig. 1 . Here, a two-partner coalition is repre-

ented. Both companies operate from the central depot depicted by

he square. The first partner, represented in black, needs to deliver

oods to customers located in four clusters (A, B, C and D) using

wo vehicles. The two resulting vehicle trips, obtained by solving

he CluVRP for this partner, are visualised by the black edges. A

imilar approach can be used to calculate the optimal operational

lan for the second (grey) partner in which clusters E, F, G and H

re served. Even though both companies have fully optimised their

wn logistics operations internally, it is likely that a more efficient

perational plan can be constructed when considering a horizontal

ooperation. A collaborative logistics model is to be solved, taking

ll transportation requests of both partners into account. The fol-

owing objectives are identified. 

.3. Coalition objective 

In the non-collaborative definition of the CluVRP , presented in

ection 3.1 , the minimisation of the total distance driven by all ve-

icles is the main (and only) objective. By extrapolating this to the

oalition, we assume that all partners agree on the common objec-

ive to reduce the total distance-based cost of the whole coalition

s much as possible. This objective is referred to as the coalition

bjective F c ( x ) and is calculated as the sum of the distance-based

ost of the CluVRP solution obtained for every partner. 

 c (x ) = 

∑ 

p∈ N 

( ∑ 

(i, j) ∈ E 

∑ 

k ∈ K 
d i j x i jk 

) 

p 

.4. Partner objectives 

With or without horizontal cooperation, the aim of each indi-

idual company will remain to deliver its customers in the most

ost effective way. We therefore argue that a company is likely to

refer the solution that costs him the least. The fraction of the to-

al coalition cost that should be paid by an individual partner is

etermined by the applied cost allocation mechanism and denoted

s ψ p . Given a predefined cost allocation method, for each partner,

he partner objective is defined as the minimisation of the cost to

e paid by that partner. As a result, we obtain a multi-objective

ptimisation model with dimensionality equal to the number of

artners ( n ). 

 p ∈ N : F p (x ) = ψ p 

. Integrated solution approach 

In the current section, the integrated solution approach for

ackling collaborative logistics optimisation problems is presented.
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e first introduce a general framework, after which it is further

pecified for the CluVRP . 

.1. General framework 

We consider a horizontal logistics cooperation of n partners op-

imising their operational planning. The main motivation for the

roup to invest in this long-term relationship is given by a com-

on goal on which all partners agree, i.e., the coalition objective .

he following model shows the (generalised) optimisation model

t the coalition level, 

 c (x ∗) = min ( F c (x ) ) 

Subject to 

x ∈ ζ

n which F c ( x ) is defined as the coalition objective and a solution

ector x ∈ ζ is to be determined such that the coalition objective

s minimised. We will refer to this problem as the Coalition Level

ptimisation Problem (CLOP) . The definition of the solution space ζ
ill depend on the logistics problem studied. Let x ∗ be the best-

nown solution vector and F c ( x 
∗) the corresponding value of the

bjective function. In the cooperative logistics context described

efore, x ∗ can be interpreted as the best possible solution for the

oalition as a whole considering only the coalition objective. 

Now, each collaborating company is given the opportunity to

xpress which characteristics of the solution x it deems important.

his gives rise to another set of objective functions, i.e., the part-

er objectives . These objectives, denoted as F i ( x ), with i = { 1 , . . . , k } ,
hould assure that all partners evaluate the proposed solutions as

eneficial and therefore do not have the intention to leave the

oalition. Each partner is free to impose either none, a single, or

ultiple additional objectives to the optimisation procedure. 

Let d ( a, b ) be a distance measure between two solutions a, b ∈ ζ ,

nd let ε, be a parameter that states the acceptable deviation from

he optimal coalition solution. Now, define the acceptable region of

 

∗ as follows: 

 (x ∗) = { x | d(x, x ∗) ≤ ε} (10)

The acceptable region of x ∗ comprises all solution vectors x ∈ ζ
hat are within a distance ε from x ∗ with respect to the coalition

bjective value. In this paper we will consider the distance be-

ween solutions a, b ∈ ζ to be equal to their difference in coalition

bjective value. 

(a, b) = | F c (a ) − F c (b) | (11)

We now define the Partner Level Optimisation Problem (PLOP)

s a multi-objective optimisation problem that includes all partner

bjectives as follows: 

min 

x ∈ ζ
( F 1 (x ) , . . . , F k (x ) ) 

ubject to 

x ∈ R (x ∗) 

According to Veldhuizen and Lamont [32] , three main ap-

roaches for tackling a multi-objective optimisation problem can

e distinguished: (i) a priori preference articulation , in which the

ifferent objectives are combined in one scalar function prior to

he optimisation process whereafter a single-objective optimisa-

ion problem is solved, (ii) progressive preference articulation , in

hich the preferences of the decision maker are revealed as the

earch progresses, or (iii) posteriori preference articulation , in which

he decision maker is presented a set of Pareto-optimal candi-

ate solutions. In the setting of horizontal cooperation, the im-

ortance (weight) of an individual partner objective will likely be

partially) based on the partner’s negotiation power and position
n and influence on the coalition, and can therefore be consid-

red highly case-based. For this reason, we do not want to make

ny assumptions on the weights before or during the optimisation

rocess, and therefore develop a model with posteriori preference

rticulation. 

The result of this multi-objective optimisation model is a Pareto

et of non-dominated solutions with respect to the individual part-

er objectives. Furthermore, we assure that all reported solutions

emain close to the optimal solution at the coalition level. In this

ay, the size of the solution space is reduced by focusing only on

he most promising solutions that ensure a certain level of effi-

iency for the coalition as a whole. This approach also allows con-

rolling the size of the solution set provided to the decision maker

y varying the size of the acceptable region. The selection of the

nal solution out of the presented Pareto set could be done by

eans of a multi-criteria analysis, but is considered out of the

cope of this paper. 

As a conclusion, the general solution framework requires two

ptimisation problems to be solved. First, in the Coalition Level

ptimisation Problem (CLOP), the routing problem is defined and

olved at the level of the coalition, considering only the coali-

ion objective. Second, the multi-objective Partner Level Optimisa-

ion Problem (PLOP), containing all individual partner objectives,

s to be solved. In the following sections, both problems are stud-

ed in more detail by applying them to the collaborative CluVRP

xample. 

.2. CLUVRP coalition level optimisation problem (CLOP) 

As stated in Section 3.3 , the coalition as a whole considers the

inimisation of the total logistics cost as its only objective. This

otal coalition cost is calculated as the sum of the routing costs in-

urred by each individual partner in the final solution. The aim of

he CLOP is therefore to determine a set of routes for each partner,

n such a way that the total cost of all these routes is minimised.

s we require that all vehicles are used, the number of routes al-

ocated to each partner should equal the number of vehicles each

artner has available. K 

p is the set of vehicles for partner p , so the

et of available vehicles at coalition level K 

c = 

⋃ 

p∈ N K 

p , under the

ssumption that 
⋂ 

p∈ N K 

p = ∅ . Similarly, the aggregated set of all

ustomers that should be visited by all partners in the coalition is

epresented by V c = 

⋃ 

p∈ N V p in which V 

p is the set of vertices that

elong to partner p . Without loss of generality, it is assumed that

ll partners operate from the same depot ( V 0 ) and no customers

re shared. This means that each customer is linked to only one of

he partners. 

The goal of the CLOP is to construct | K 

c | vehicle routes, in such

 way that all transportation requests of all partners in the coali-

ion are executed and the total logistics cost is minimised. From

he perspective of the coalition as a whole, this aggregated prob-

em equals the classic CluVRP , and can therefore be solved by any

non-collaborative) solution technique available in the literature. 

In this paper, we will make use of the two-level solution ap-

roach proposed in Defryn and Sörensen [10] as the algorithm

as been proven to provide good solutions in very short calcula-

ion times. The algorithm exploits the clustered substructure of the

luVRP by dividing the problem in two, less complex, subproblems

hat are solved iteratively until a predefined stopping criterion is

et. First, all customers belonging to the same cluster are aggre-

ated and the CluVRP is defined and solved as a capacitated vehi-

le routing problem at the cluster level. The result of this phase is

 sequence of clusters and forms the input for the second subprob-

em. Second, to create the routes at the level of the individual cus-

omers, a travelling salesman problem is solved within each clus-

er. Each subproblem is solved by a variable neighbourhood search
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Fig. 2. Visual representation of the acceptable region R ( ce ) of the coalition effi- 

cient solution in a two-partner coalition for our CluVRP example. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 2 

Definition of the local search neighbourhoods used for exchang- 

ing the clusters. 

Neighbourhood Definition 

Swap Swap the partner of two clusters. 

Relocate Change the partner of one of the clusters. 
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metaheuristic that makes use of the most common local search op-

erators in vehicle routing. 

The result of this phase is a single solution for the CluVRP de-

fined at the coalition level. This solution is considered the best pos-

sible outcome for the coalition as a whole as it is optimised with

respect to the coalition objective. 

4.3. CLUVRP partner level optimisation problem (PLOP) 

The PLOP can be considered a multi-objective variant of the ag-

gregated logistics optimisation problem defined in Section 4.2 . The

goal is to fulfil all transportation requests from all partners in the

coalition in such a way that all individual partner objectives are

optimised. Due to the multi-objective character of the problem, the

optimal solution set is no longer a singleton, but a Pareto set of

non-dominated solutions. 

The solution space for the CluVRP variant studied in this paper

is visualised in Fig. 2 . For illustrative purposes we limit ourselves

to a two-partner coalition, however our conclusions can easily be

extended to instances with more than two partners. The costs allo-

cated to partner 1 and 2 are denoted on the horizontal and vertical

axis respectively. The result of the stand-alone scenario is denoted

by the point sa , and point ce is the optimal result obtained by solv-

ing the CLOP. The Pareto front is represented by the solid line. Be-

cause we defined the coalition objective as the minimisation of the

total cost, ce is an element of the Pareto set. This is explained by

the fact that the total cost equals the sum of all costs allocated to

the individual partner (in our case F c ( ce ) = ψ 1 + ψ 2 ). Therefore, no

solution exists that has a lower value for both ψ 1 and ψ 2 . 

4.3.1. Optimisation through cluster exchange 

To ensure that all customers belonging to the same cluster re-

main grouped in the same vehicle, we state that only complete

clusters can be exchanged between partners. Therefore, each solu-

tion for the collaborative variant of the CluVRP differs in the way

the clusters are allocated to the individual partners. An allocation

of all clusters to the partners is referred to as a cluster configura-

tion . If � is the set of all possible cluster configurations, then the

aim of the PLOP is to find these routing solutions resulting from

cluster configurations ω i ∈ � for which the individual partner ob-

jectives are Pareto efficient. 

To reduce the search on irrelevant parts of the solution space,

and to provide the decision maker with a set of solutions that
core well on both the coalition objective and the individual part-

er objectives, we focus only on the solutions that stay within

 predefined distance ε from the coalition efficient solution ce

nd therefore belong to its acceptable region R ( ce ) , as defined in

q. (10) and visualised by the grey zone in Fig. 2 . R ( ce ) contains

ll solutions for the coalition with a total logistics cost smaller

han F c (x ) + ε. Instead of constructing the whole Pareto frontier,

he problem is now reduced to finding the set of non-dominated

olutions that belong to R ( ce ) . This means that for the CluVRP the

roblem is reduced to approximating only the part of the Pareto

rontier that forms the border of R ( ce ) . As we expect very similar

onfigurations to result into a comparable total coalition cost, we

ropose a local search based approach to explore alternative clus-

er configurations. 

.3.2. Search strategy 

To approximate the part of the Pareto frontier that belongs to

 ( ce ) , we make use of an iterative procedure. At each iteration, all

luster configurations in the current Pareto optimal solutions are

xplored with respect to the neighbourhoods defined in Table 2 . 

By changing the subset of clusters to be visited by each part-

er, the routing solution should be re-optimised by solving a Clu-

RP for every (affected) partner. As this is done for every cluster

onfiguration that can be reached from all solutions currently in

he Pareto frontier for a given neighbourhood, a set of alternative

ut very similar routing solutions is generated (the difference in

luster configurations is only one move, and the operators are not

ery disruptive). Because of this similarity, we also expect the total

ost of these new solutions to be relatively close to the total cost

f the initial Pareto efficient solution, so it is likely that these new

olutions belong to R ( ce ) . 

. Computational experiments 

.1. Benchmark instances 

In the literature, no benchmark instances are available for a

ulti-partner CluVRP as this problem has never been studied be-

ore. We therefore adapt the GVRP θ3 (set A) instances provided

y Battarra et al. [5] for the traditional CluVRP to comply with

he multi-partner environment by including the following addi-

ional specifications. Coalitions with up to four partners are consid-

red ( n ∈ {2, 3, 4}). It is ensured that the grand coalition size is at

ost equal to the total number of available vehicles (| K 

c |) so each

artner has at least one vehicle. Furthermore, each cluster is allo-

ated to only one partner. This is done in a random way to avoid

hat all clusters that belong to the same partner are geographi-

ally grouped in the same part of the distribution area. However,

he feasibility of the stand-alone scenario is guaranteed by mak-

ng sure that for each partner enough vehicle capacity is available

o serve at least the demand of its own clusters. The instances are

abelled according to the parameters listed in Table 3 . In total, 43

ifferent instances are constructed, which are available upon re-

uest. 



C. Defryn et al. / Omega 82 (2019) 1–12 7 

Table 3 

Instance parameters. 

Parameter Definition 

n Number of nodes (including a single depot) 

k Number of vehicles in the original CVRP variant of the instance 

C Number of clusters 

V Number of vehicles in the CluVRP instance 

P Number of partners in the cooperation 
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.2. Cost allocation method 

To divide the cost of a shared vehicle trip among all partners

nvolved, a volume-based allocation rule is applied. This method

ivides the total coalition cost proportionally to the demand of

ach partner in the current vehicle trip. For each vehicle trip k ∈ K 

c ,

he total cost allocated to partner p is calculated according to

q. (12) . 

 p = 

∑ 

i ∈ V p q i y ik ∑ 

i ∈ V c q i y ik 

∑ 

(i, j) ∈ E 
d i j x i jk (12) 

The volume-based allocation rule is selected because it is

traightforward and often used in industry. This is, however, at the

xpense of certain properties defined in game theory, such as indi-

idual rationality and stability [31] . Choosing another cost alloca-

ion mechanism is likely to significantly alter the allocation results

nd therefore all numerical results presented, however this will

ot affect the general conclusions drawn in this paper. It should

e noted that, when selecting a proportional allocation rule for

hich the weights do not vary for different collaborative solutions

e.g., proportional to the partners’ stand-alone costs, or rather than

llocating the cost of each vehicle trip the total coalition cost is

ivided based on the partners’ shipped volumes), the size of the

areto-set will always equal 1 for our CluVRP example. This is due

o the fact that with fixed weights a larger total coalition cost will

y definition increase the cost allocated to every partner. As a re-

ult, all partners will always prefer the coalition-efficient solution

o minimise their own cost. 

.3. Definition of the acceptable region 

As defined in (10) and (11) , the acceptable region depends on

he parameter ε, which is to be determined by the collaborating

artners and represents the maximum allowed difference in coali-

ion objective compared to the coalition-efficient solution. To en-

ble the comparison between different instances, we define ε rela-

ive to the value of the coalition objective in the coalition-efficient

olution. 

= α × F c ( ce ) (13) 

In this formula, α equals the maximum relative increase for the

oalition objective that will be accepted by the coalition. The value

f α should be interpreted as follows: for α = 0 . 05 , the coalition

s willing to accept solutions for which the total distance driven

y all vehicles has not increased more than 5% compared to the

oalition-efficient solution. 

The higher the value of α, the more solutions in the acceptable

egion. This increases the probability that better solutions can be

ound with respect to the individual partner objectives, but also

owers the quality of the solutions at the coalition level and there-

ore reduces the added value of setting up a horizontal coopera-

ion. 

.4. Simulation results 

The integrated solution framework is tested on the set of gener-

ted benchmark instances. Three different scenarios are considered
n which the coalition accepts a 1%, 5% or 10% increase in total

istance driven by all vehicles compared to the coalition-efficient

olution, which is equivalent to setting the parameter α equal to

.01, 0.05 or 0.1 respectively. All results for α = 0 . 05 are presented

n Tables 4 and 5 . For detailed experimental results for all other

cenarios, we refer the reader to Appendix A . 

For the grand coalition, the summed stand-alone cost of all

artners is given in column sa and the total cost of the best so-

ution at the coalition level is listed in column ce . Our results con-

rm that setting up a horizontal logistics cooperation is beneficial

s double-digit profits are obtained for almost all instances. For the

wo-partner instances, the average coalition profit is around 16.5%.

or the three- and four-partner instances these potential profits in-

rease to around 26% and 34.5% respectively. This increase is ex-

lained by the fact that larger coalitions can create more oppor-

unities for optimisation. For every partner p the relative profit is

alculated by comparing its stand-alone cost c( sa p ) with the allo-

ated cost ψ p according to Eq. (14) . 

rofit(%) = 

c( sa p ) − ψ p 

c( sa p ) 
(14) 

The profit realised by each partner when choosing the coalition

fficient solution is denoted in its column ce . The columns min

nd max give the range in which the relative profit of the partner

aries over all Pareto-efficient solutions returned by the proposed

olution framework. It can be seen that for instances with a Pareto-

ize of 1, the coalition efficient solution ce is the most profitable

ption for all partners, as no alternative solution could be found

ithin the acceptable region R ( ce ) that is Pareto-efficient with re-

pect to all individual partner objectives. In all other scenarios, at

east one partner is able to improve its situation by selecting an-

ther solution from the Pareto set. Consider for example instance

33-k5-C11-V2-p2 in Table 4 . The relative profit realised by part-

er two when selecting the coalition-efficient solution is 17%. The

ax column, however, shows that the partner’s personal profit can

ncrease up to 20% by selecting an alternative solution from the

areto set. 

For all instances marked with a ✗ , the coalition-efficient solu-

ion is even suboptimal for all partners in the coalition. This means

hat from the list of alternative solutions, each partner will pre-

er a solution that is different from ce (i.e., the solution scores

etter on the partner’s individual objective). However, different

artners might (and in our CluVRP example, will) prefer other

olutions. 

For some instances (e.g., n39-k6-C13-V2-p2 and n62-k8-C21-V3-

2 in Table 4 ), the differences in the values of the partner objec-

ives over all Pareto efficient solutions are smaller than 1% for each

ndividual partner. In such situation, the partners are likely to be

ndifferent with respect to all Pareto-efficient solutions. These ad-

itional insights in the sensitivity of a solution, gained by provid-

ng a set of high-quality alternative solutions instead of only ce ,

an support the decision making process. 

The higher the value of α, the larger the acceptable region

 ( ce ) and the higher the probability that all partners can improve

heir individual situation by diverging from the coalition-efficient

olution. Furthermore, we notice that although all solutions guar-

ntee that the global efficiency of the coalition is high (only so-

utions in the acceptable region R ( ce ) are considered), individual

ifferences for the partners can be significant. For example in in-

tance n33-k6-C11-V2-p2 , the relative profit margin for partner 2

anges from -10% up to 16%. These results acknowledge the impor-

ance of including individual partner preferences into the optimi-

ation procedure. 

Although not guaranteed by the volume-based allocation rule,

lmost all solutions satisfy the property of individual rationality.

egardless of the allocation rule used, our framework generates
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Table 4 

Detailed results for the two-partner ColGVRP θ3 instances with α = 0 . 05 . 

Instance Grand coalition Partner 1 Partner 2 Pareto set 

n k C V p Total cost Max. Profit Profit Size 

sa ce profit ce min max ce min max 

32 5 11 2 2 634 522 18% 15% 15% 15% 22% 22% 22% 1 

33 5 11 2 2 578 472 18% 19% 15% 19% 17% 14% 20% 3 

33 6 11 2 2 676 562 17% 24% 16% 27% 6% −10% 16% 4 ✗ 

34 5 12 2 2 651 547 16% 25% 23% 25% 5% 5% 7% 2 

36 5 12 2 2 746 589 21% 26% 26% 26% 15% 15% 15% 1 

37 5 13 2 2 677 569 16% 17% 17% 18% 15% 8% 15% 2 

37 6 13 2 2 733 615 16% 21% 21% 23% 10% 6% 10% 3 

38 5 13 2 2 692 507 27% 37% 37% 37% 13% 13% 13% 1 

39 5 13 2 2 751 618 18% 33% 33% 35% −1% −2% −1% 3 

39 6 13 2 2 765 613 20% 33% 33% 33% 0% −5% 0% 2 

44 6 15 2 2 811 729 10% −1% −2% 3% 19% 18% 23% 3 ✗ 

45 6 15 3 2 776 712 8% 14% 2% 16% −2% −9% 8% 8 ✗ 

45 7 15 3 2 818 664 19% 13% 13% 13% 29% 29% 29% 1 

46 7 16 3 2 801 664 17% 18% 16% 24% 15% 1% 17% 11 ✗ 

48 7 16 3 2 836 683 18% 15% 15% 19% 23% 16% 23% 4 

53 7 18 3 2 817 651 20% 17% 16% 21% 24% 16% 24% 5 

54 7 18 3 2 873 724 17% 15% 6% 16% 20% 13% 30% 8 ✗ 

55 9 19 3 2 795 653 18% 14% 11% 14% 25% 25% 25% 2 

60 9 20 3 2 904 795 12% 8% 4% 8% 19% 21% 22% 2 

61 9 21 4 2 832 682 18% 26% 15% 26% 11% 11% 14% 6 

62 8 21 3 2 910 778 15% 12% 12% 12% 20% 9% 20% 4 

63 9 21 3 2 1029 865 16% 10% 2% 9% 26% 25% 29% 4 ✗ 

63 10 21 4 2 994 801 19% 29% 29% 29% 10% 10% 10% 1 

64 9 22 3 2 906 776 14% 18% 10% 18% 8% 8% 14% 7 

65 9 22 3 2 839 749 11% 6% 8% 8% 18% 22% 22% 1 ✗ 

69 9 23 3 2 931 839 10% 1% −7% 10% 23% 8% 32% 17 ✗ 

80 10 27 4 2 1197 974 19% 36% 26% 38% −1% −8% 6% 17 ✗ 

Table 5 

Detailed results for the ColGVRP θ3 instances with more than two partners with α = 0 . 05 . 

Instance Grand coalition Partner 1 Partner 2 Partner 3 Partner 4 Pareto set 

n k C V p Total cost Max. Profit Profit Profit Profit Size 

sa ce profit ce min max ce min max ce min max ce min max 

45 6 15 3 3 999 712 29% 58% 51% 59% −2% −17% 8% 14% 0% 20% 11 ✗ 

45 7 15 3 3 938 664 29% 31% 26% 37% 29% 17% 29% 27% 13% 27% 8 

46 7 16 3 3 947 664 30% 55% 42% 57% 15% −1% 17% 14% 8% 25% 33 ✗ 

48 7 16 3 3 960 683 29% 41% 32% 43% 23% 8% 23% 22% 17% 30% 24 ✗ 

53 7 18 3 3 986 651 34% 46% 39% 49% 24% 16% 26% 32% 25% 37% 28 ✗ 

54 7 18 3 3 997 724 27% 22% 10% 22% 20% 13% 26% 43% 40% 51% 13 

55 9 19 3 3 998 653 35% 44% 42% 44% 25% 25% 26% 33% 25% 33% 5 

60 9 20 3 3 1051 795 24% 29% 26% 29% 19% 18% 22% 24% 22% 25% 10 

62 8 21 3 3 1050 778 26% 38% 33% 38% 20% 9% 20% 15% 11% 20% 18 

63 9 21 3 3 1076 895 17% 12% 4% 14% 25% 15% 26% 12% 10% 15% 9 ✗ 

64 9 22 3 3 1101 779 29% 39% 29% 42% 8% 0% 14% 36% 22% 42% 42 ✗ 

65 9 22 3 3 996 796 20% 35% 20% 40% 8% −3% 26% 13% 5% 22% 32 ✗ 

69 9 23 3 3 1052 829 21% 26% 12% 29% 23% 18% 33% 13% −4% 19% 38 ✗ 

61 9 21 4 4 1134 682 40% 53% 50% 58% 46% 38% 47% 43% 33% 43% 13% 8% 20% 23 

63 10 21 4 4 1217 801 34% 54% 48% 54% 30% 21% 32% 13% 10% 15% 32% 23% 34% 4 
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a set of alternative solutions which can help the decision mak-

ers to select a solution from the Pareto set that contributes most

to the long-term stability and success of the collaboration. In in-

stance n45-k6-C15-V3-p2 , e.g., the coalition-efficient solution is not

stable (a negative profit is allocated to partner 2), but there exist

alternative solutions in the Pareto set of the acceptable region that

guarantee stability for this cooperation. If such a solution would

not be available (see, e.g., instance n39-k5-C13-V2-p2 in which the

profit for partner 2 is always negative), the cooperation might not

be viable within the initial agreements made (i.e., coalition objec-

tive, individual partner objectives and/or allocation rule). As the

operational problem presented in this paper is solved on a daily

basis (or even more frequently) by the collaborating partners, it

should be questioned whether the property of individual rational-

ity is violated only rarely or on a regular basis. In the latter case,

the partners can renegotiate the agreements governing the collab-
ration (e.g., by negotiating a different allocation rule, by changing

he composition of the consortium,...). 

The effect of parameter α on the constructed Pareto frontier

s visualised in Fig. 3 . In this figure, the average profit obtained

y choosing the coalition efficient solution is compared by respec-

ively the best and the worst average profit for an individual part-

er over all instances. When α equals zero, the acceptable re-

ion R ( ce ) contains only ce . For increasing values of α, the re-

ults for each individual partner start to diverge significantly. We

lso observe that the difference in individual profit tends to be

ore sensitive in the negative direction. This was expected as all

olutions have a total coalition cost that is higher than the cost

f solution ce . Our results show that a small change in the so-

ution, with relatively limited impact on the coalition objective,

ight have a significant impact on the objective function of the

artners in the coalition. A change in total coalition cost of maxi-
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Fig. 3. Average partner profit for all solutions in the Pareto set. 
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um 5% ( α = 0 . 05 ) results in a solution set in which the cost al-

ocated to an individual partner differs by 5.87% on average. For

 three- and four-partner coalition, these individual differences in-

rease to 12.46% and 9.25% respectively. 

. Conclusions and further research 

Existing research on horizontal logistics cooperation has mainly

ocused on assessing costs and benefits, and their allocation to in-

ividual collaborating partners. Our literature review has shown

hat all existing contributions study the logistics optimisation

odel from the perspective of the coalition. Individual partner in-

erests are either taken into account as an independent step or are
ot considered at all. This paper is the first to propose a modelling

ramework and solution method to explicitly take both coalition

evel objectives and partner level objectives into account within

he context of horizontal logistics cooperation. 

With the growing importance of e-commerce, today’s distribu-

ion systems are under high pressure which motivates more and

ore companies to engage in a collaboration. To focus ideas, a hor-

zontal logistics cooperation is considered in which up to four com-

anies jointly optimise their logistics operations. The collaboration

s modelled as a clustered vehicle routing problem, in which cus-

omers belonging to a predefined cluster are served consecutively

y the same vehicle. 

A multi-partner logistics optimisation framework is proposed

hat allows each individual partner to express its (individual) ob-

ectives, additional to a global objective that is defined at the coali-

ion level. The framework requires two optimisation problems to

e solved sequentially, referred to as the coalition level optimisa-

ion problem (CLOP) and the partner level optimisation problem

PLOP) respectively. Similar to the existing approaches studied in

ur literature review, in the CLOP the logistics optimisation prob-

em is studied only from the perspective of the coalition, as all

ransportation requests of all partners are aggregated and only the

oalition objective is considered. As we assumed in our CluVRP ex-

mple the coalition objective to be single-objective, the coalition-

fficient solution ce was a unique solution. The framework, how-

ver, could easily be extended to allow multiple coalition objec-

ives for which a Pareto set of coalition-efficient solutions can be

ound. The PLOP is essentially a multi-objective variant of the CLOP

n which all individual partner objectives are considered and an

dditional constraint is introduced that limits the search to only

olutions within the acceptable region of the coalition-efficient so-

ution. Due to its higher dimensionality, the PLOP tends to be more

omplex compared to the CLOP. A heuristic solution procedure is

roposed for the PLOP that iteratively explores the neighbourhood

f the current Pareto set. 

We conducted extensive computational experiments for the

luVRP on a set of benchmark instances from the literature that

e adapted to comply with the multi-partner context. We ob-

erved that, even if horizontal cooperation is beneficial for the

oalition (double-digit savings are obtained for almost all in-

tances), a slightly inferior solution for the group as a whole might

esult into (much) better solutions for one or more partners in

he coalition. Moreover, we showed that for a large number of

nstances, the coalition-efficient solution was actually inferior for

ll partners in the cooperation. This means that every partner had

he incentive to deviate from the coalition-efficient solution, as this

ould generate a better value for its personal objective. Unlike cur-

ently existing methods in the literature, we are able to provide

ecision makers with a set of alternative solutions which provide

dditional insight into the sensitivity of both the coalition objec-

ive(s) and the individual partner objectives. As daily operations in

ractice might be subject to unexpected changes, and transporta-

ion patterns are likely to evolve over time, this extra information

ight contribute to higher long-term stability and success of the

ollaboration. 

However, including partner objectives increases the complex-

ty of the logistics optimisation problem. We believe that this of-

ers interesting avenues for further research. First, as our solution

ramework will provide the decision makers with a set of alter-

ative solutions, a single final solution should be selected after-

ards. This could be done by means of a multi-criteria analysis.

he result of this multi-criteria analysis will (partly) be based on

he importance (weight) of each individual partner objective and

herefore also on the partner’s negotiation power and its position

n and influence on the coalition. Second, it might be interesting

o extend our simulation study and compare the results for differ-
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ent cost allocation methods. The same goes for the use of different

types and combinations of objective functions (e.g., minimisation

of time window violations, route balancing, ...), both at the coali-

tion and the individual partner level. 

Table A6 

Detailed results for the two-partner ColGVRP θ3 instances with α = 0 . 01 . 

Instance Grand coalition 

n k C V p Total cost Max. 

sa ce profit 

32 5 11 2 2 634 522 18% 

33 5 11 2 2 578 472 18% 

33 6 11 2 2 676 562 17% 

34 5 12 2 2 651 547 16% 

36 5 12 2 2 746 589 21% 

37 5 13 2 2 677 569 16% 

37 6 13 2 2 733 615 16% 

38 5 13 2 2 692 507 27% 

39 5 13 2 2 751 618 18% 

39 6 13 2 2 765 613 20% 

44 6 15 2 2 811 733 10% 

45 6 15 3 2 776 712 8% 

45 7 15 3 2 818 664 19% 

46 7 16 3 2 801 664 17% 

48 7 16 3 2 836 683 18% 

53 7 18 3 2 817 651 20% 

54 7 18 3 2 873 724 17% 

55 9 19 3 2 795 653 18% 

60 9 20 3 2 904 795 12% 

61 9 21 4 2 832 682 18% 

62 8 21 3 2 910 778 15% 

63 9 21 3 2 1058 906 14% 

63 10 21 4 2 994 801 19% 

64 9 22 3 2 906 776 14% 

65 9 22 3 2 864 739 14% 

69 9 23 3 2 931 838 10% 

80 10 27 4 2 1197 977 18% 

Table A7 

Detailed results for the ColGVRP θ3 instances with more than two partners with 

Instance Grand coalition Partner 1 

n k C V p Total cost Max. Profit 

sa ce profit ce min max 

45 6 15 3 3 999 712 29% 58% 57% 58% 

45 7 15 3 3 938 664 29% 31% 31% 36% 

46 7 16 3 3 947 664 30% 55% 53% 55% 

48 7 16 3 3 960 683 29% 41% 40% 41% 

53 7 18 3 3 986 651 34% 46% 46% 46% 

54 7 18 3 3 997 724 27% 22% 18% 22% 

55 9 19 3 3 998 653 35% 44% 44% 44% 

60 9 20 3 3 1051 795 24% 29% 28% 29% 

62 8 21 3 3 1050 778 26% 38% 38% 38% 

63 9 21 3 3 1076 895 17% 12% 6% 14% 

64 9 22 3 3 1101 795 28% 37% 33% 41% 

65 9 22 3 3 996 751 25% 38% 38% 40% 

69 9 23 3 3 1052 820 22% 27% 23% 27% 

61 9 21 4 4 1134 682 40% 53% 53% 53% 

63 10 21 4 4 1217 801 34% 54% 53% 54% 
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ppendix A. Detailed results overview 

ner 1 Partner 2 Pareto set 

t Profit Size 

min max ce min max 

 15% 15% 22% 22% 22% 1 

19% 20% 17% 14% 17% 2 

 24% 24% 6% 6% 6% 1 

 23% 25% 5% 5% 7% 2 

 26% 26% 15% 15% 15% 1 

 17% 17% 15% 15% 15% 1 

 21% 21% 10% 10% 10% 2 

 37% 37% 13% 13% 13% 1 

33% 35% −1% −2% −1% 3 

 33% 33% 0% 0% 0% 1 

6% 6% 12% 12% 12% 1 

 13% 14% −2% −2% −1% 2 

13% 14% 29% 24% 29% 2 

18% 19% 15% 13% 15% 2 

15% 19% 23% 16% 23% 3 

 17% 17% 24% 24% 24% 1 

15% 16% 20% 19% 20% 2 

 14% 14% 25% 25% 25% 1 

8% 8% 19% 18% 21% 2 

 25% 26% 11% 11% 11% 3 

 12% 12% 20% 17% 20% 3 

 10% 10% 23% 23% 23% 1 

 29% 29% 10% 9% 10% 2 

 18% 18% 8% 8% 8% 1 

 12% 12% 18% 18% 18% 1 

−4% 8% 22% 14% 32% 17 ✗ 

 34% 34% 1% 1% 1% 1 

 01 . 

r 2 Partner 3 Partner 4 Pareto set 

Profit Profit Size 

min max ce min max ce min max 

−2% −1% 14% 13% 14% 2 

24% 29% 27% 25% 27% 2 

9% 15% 14% 14% 19% 4 

20% 23% 22% 22% 25% 2 

24% 24% 32% 32% 32% 1 

19% 20% 43% 43% 51% 2 

25% 25% 33% 32% 33% 2 

18% 21% 24% 23% 25% 3 

17% 20% 15% 15% 16% 3 

19% 25% 12% 6% 17% 21 

4% 14% 35% 27% 41% 26 ✗ 

20% 22% 12% 12% 17% 2 ✗ 

23% 29% 9% 9% 17% 9 

45% 47% 43% 42% 43% 13% 12% 14% 6 

30% 31% 13% 10% 13% 32% 32% 33% 2 

https://doi.org/10.13039/501100003130
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Table A8 

Detailed results for the two-partner ColGVRP θ3 instances with α = 0 . 1 . 

Instance Grand coalition Partner 1 Partner 2 Pareto set 

n k C V p Total cost Max. Profit Profit Size 

sa ce profit ce min max ce min max 

32 5 11 2 2 634 522 18% 15% 15% 15% 22% 22% 22% 1 

33 5 11 2 2 578 472 18% 19% 5% 20% 17% 14% 22% 5 ✗ 

33 6 11 2 2 676 562 17% 24% 16% 27% 6% −10% 16% 5 ✗ 

34 5 12 2 2 651 547 16% 25% 23% 25% 5% 5% 7% 2 

36 5 12 2 2 746 589 21% 26% 26% 26% 15% 15% 15% 1 

37 5 13 2 2 677 569 16% 17% 17% 18% 15% 2% 15% 3 

37 6 13 2 2 733 615 16% 21% 21% 23% 10% 6% 10% 3 

38 5 13 2 2 692 507 27% 37% 22% 37% 13% 13% 16% 4 

39 5 13 2 2 751 618 18% 33% 13% 35% −1% −2% 7% 9 ✗ 

39 6 13 2 2 765 613 20% 33% 33% 33% 0% −5% 0% 2 

44 6 15 2 2 811 729 10% −1% −1% −1% 19% 19% 19% 1 

45 6 15 3 2 776 712 8% 14% −8% 16% −2% −9% 12% 10 ✗ 

45 7 15 3 2 818 664 19% 13% 13% 16% 29% 7% 29% 4 

46 7 16 3 2 801 664 17% 18% 16% 22% 15% 6% 16% 7 ✗ 

48 7 16 3 2 836 683 18% 15% 15% 19% 23% 9% 23% 4 

53 7 18 3 2 817 651 20% 17% 7% 21% 24% 16% 25% 9 ✗ 

54 7 18 3 2 873 724 17% 15% −4% 16% 20% 13% 30% 19 ✗ 

55 9 19 3 2 795 653 18% 14% 11% 14% 25% 25% 25% 2 

60 9 20 3 2 904 795 12% 8% −5% 8% 19% 18% 22% 11 

61 9 21 4 2 832 682 18% 26% 15% 26% 11% 11% 14% 6 

62 8 21 3 2 910 778 15% 12% 8% 13% 20% 11% 20% 6 

63 9 21 3 2 1029 865 16% 10% 0% 13% 26% 2% 29% 12 ✗ 

63 10 21 4 2 994 801 19% 29% 10% 29% 10% 1% 13% 5 

64 9 22 3 2 906 776 14% 18% 3% 18% 8% 8% 15% 9 

65 9 22 3 2 839 749 11% 6% 8% 8% 18% 22% 22% 1 ✗ 

69 9 23 3 2 931 839 10% 1% −5% 12% 23% 9% 31% 17 ✗ 

80 10 27 4 2 1197 976 18% 35% 16% 38% 0% −7% 9% 28 ✗ 

Table A9 

Detailed results for the ColGVRP θ3 instances with more than two partners with α = 0 . 1 . 

Instance Grand coalition Partner 1 Partner 2 Partner 3 Partner 4 Pareto set 

n k C V p Total cost Max. Profit Profit Profit Profit Size 

sa ce profit ce min max ce min max ce min max ce min max 

45 6 15 3 3 999 712 29% 58% 27% 60% −2% −31% 12% 14% −7% 27% 71 ✗ 

45 7 15 3 3 938 664 29% 31% 26% 38% 29% 7% 29% 27% 13% 30% 20 

46 7 16 3 3 947 664 30% 55% 34% 57% 15% −11% 20% 14% −5% 27% 68 ✗ 

48 7 16 3 3 960 683 29% 41% 26% 43% 23% 3% 24% 22% 10% 33% 39 ✗ 

53 7 18 3 3 986 651 34% 46% 32% 49% 24% 9% 26% 32% 25% 42% 46 ✗ 

54 7 18 3 3 997 724 27% 22% 0% 26% 20% 0% 30% 43% 22% 51% 33 ✗ 

55 9 19 3 3 998 653 35% 44% 42% 44% 25% 25% 26% 33% 25% 33% 5 

60 9 20 3 3 1051 795 24% 29% 26% 29% 19% 18% 22% 24% 22% 25% 10 

62 8 21 3 3 1050 778 26% 38% 21% 39% 20% 0% 20% 15% 11% 23% 57 

63 9 21 3 3 1076 909 16% 12% −5% 20% 15% −3% 28% 19% −1% 26% 70 ✗ 

64 9 22 3 3 1101 785 29% 37% 18% 45% 8% −22% 17% 37% 10% 47% 217 ✗ 

65 9 22 3 3 996 726 27% 39% 33% 40% 22% 5% 22% 17% 12% 20% 6 

69 9 23 3 3 1052 820 22% 27% 4% 29% 28% 10% 34% 9% −10% 20% 69 ✗ 

61 9 21 4 4 1134 682 40% 53% 36% 58% 46% 22% 49% 43% 17% 48% 13% −12% 27% 404 ✗ 

63 10 21 4 4 1217 801 34% 54% 34% 54% 30% 17% 32% 13% 1% 21% 32% 15% 34% 18 
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