70 research outputs found

    Transverse-momentum-dependent Multiplicities of Charged Hadrons in Muon-Deuteron Deep Inelastic Scattering

    Get PDF
    A semi-inclusive measurement of charged hadron multiplicities in deep inelastic muon scattering off an isoscalar target was performed using data collected by the COMPASS Collaboration at CERN. The following kinematic domain is covered by the data: photon virtuality Q2>1Q^{2}>1 (GeV/cc)2^2, invariant mass of the hadronic system W>5W > 5 GeV/c2c^2, Bjorken scaling variable in the range 0.003<x<0.40.003 < x < 0.4, fraction of the virtual photon energy carried by the hadron in the range 0.2<z<0.80.2 < z < 0.8, square of the hadron transverse momentum with respect to the virtual photon direction in the range 0.02 (GeV/c)2<PhT2<3c)^2 < P_{\rm{hT}}^{2} < 3 (GeV/cc)2^2. The multiplicities are presented as a function of PhT2P_{\rm{hT}}^{2} in three-dimensional bins of xx, Q2Q^2, zz and compared to previous semi-inclusive measurements. We explore the small-PhT2P_{\rm{hT}}^{2} region, i.e. PhT2<1P_{\rm{hT}}^{2} < 1 (GeV/cc)2^2, where hadron transverse momenta are expected to arise from non-perturbative effects, and also the domain of larger PhT2P_{\rm{hT}}^{2}, where contributions from higher-order perturbative QCD are expected to dominate. The multiplicities are fitted using a single-exponential function at small PhT2P_{\rm{hT}}^{2} to study the dependence of the average transverse momentum PhT2\langle P_{\rm{hT}}^{2}\rangle on xx, Q2Q^2 and zz. The power-law behaviour of the multiplicities at large PhT2P_{\rm{hT}}^{2} is investigated using various functional forms. The fits describe the data reasonably well over the full measured range.Comment: 28 pages, 20 figure

    High-statistics measurement of Collins and Sivers asymmetries for transversely polarised deuterons

    Full text link
    New results are presented on a high-statistics measurement of Collins and Sivers asymmetries of charged hadrons produced in deep inelastic scattering of muons on a transversely polarised 6^6LiD target. The data were taken in 2022 with the COMPASS spectrometer using the 160 \gevv\ muon beam at CERN, balancing the existing data on transversely polarised proton targets. The first results from about two-thirds of the new data have total uncertainties smaller by up to a factor of three compared to the previous deuteron measurements. Using all the COMPASS proton and deuteron results, both the transversity and the Sivers distribution functions of the uu and dd quark, as well as the tensor charge in the measured xx-range are extracted. In particular, the accuracy of the dd quark results is significantly improved

    Collins and Sivers transverse-spin asymmetries in inclusive muoproduction of ρ0\rho^0 mesons

    Get PDF
    The production of vector mesons in deep inelastic scattering is an interesting yet scarsely explored channel to study the transverse spin structure of the nucleon and the related phenomena. The COMPASS collaboration has performed the first measurement of the Collins and Sivers asymmetries for inclusively produced ρ0\rho^0 mesons. The analysis is based on the data set collected in deep inelastic scattering in 20102010 using a 160GeV/c160\,\,\rm{GeV}/c μ+\mu^+ beam impinging on a transversely polarized NH3\rm{NH}_3 target. The ρ0\rho^{0} mesons are selected from oppositely charged hadron pairs, and the asymmetries are extracted as a function of the Bjorken-xx variable, the transverse momentum of the pair and the fraction of the energy zz carried by the pair. Indications for positive Collins and Sivers asymmetries are observed

    Spin Density Matrix Elements in Exclusive ρ0\rho ^0 Meson Muoproduction

    Full text link
    We report on a measurement of Spin Density Matrix Elements (SDMEs) in hard exclusive ρ0\rho ^0 meson muoproduction at COMPASS using 160~GeV/cc polarised μ+ \mu ^{+} and μ \mu ^{-} beams impinging on a liquid hydrogen target. The measurement covers the kinematic range 5.0~GeV/c2c^2 <W<< W < 17.0~GeV/c2c^2, 1.0 (GeV/cc)2^2 <Q2<< Q^2 < 10.0 (GeV/cc)2^2 and 0.01 (GeV/cc)2^2 <pT2<< p_{\rm{T}}^2 < 0.5 (GeV/cc)2^2. Here, WW denotes the mass of the final hadronic system, Q2Q^2 the virtuality of the exchanged photon, and pTp_{\rm{T}} the transverse momentum of the ρ0\rho ^0 meson with respect to the virtual-photon direction. The measured non-zero SDMEs for the transitions of transversely polarised virtual photons to longitudinally polarised vector mesons (γTVL\gamma^*_T \to V^{ }_L) indicate a violation of ss-channel helicity conservation. Additionally, we observe a dominant contribution of natural-parity-exchange transitions and a very small contribution of unnatural-parity-exchange transitions, which is compatible with zero within experimental uncertainties. The results provide important input for modelling Generalised Parton Distributions (GPDs). In particular, they may allow one to evaluate in a model-dependent way the role of parton helicity-flip GPDs in exclusive ρ0\rho ^0 production

    Corrigendum to "Transverse extension of partons in the proton probed in the sea-quark range by measuring the DVCS cross section" [Phys. Lett. B 793 (2019) 188]

    Get PDF
    n/

    Triangle Singularity as the Origin of the a1(1420)

    Get PDF
    The COMPASS Collaboration experiment recently discovered a new isovector resonancelike signal with axial-vector quantum numbers, the a(1)(1420), decaying to f(0)(980)(pi). With a mass too close to and a width smaller than the axial-vector ground state a(1)(1260), it was immediately interpreted as a new light exotic meson, similar to the X, Y, Z states in the hidden-charm sector. We show that a resonancelike signal fully matching the experimental data is produced by the decay of the a(1) (1260) resonance into K* (-> K pi) (K) over bar and subsequent rescattering through a triangle singularity into the coupled f(0)(980)p channel. The amplitude for this process is calculated using a new approach based on dispersion relations. The triangle-singularity model is fitted to the partial-wave data of the COMPASS experiment. Despite having fewer parameters, this fit shows a slightly better quality than the one using a resonance hypothesis and thus eliminates the need for an additional resonance in order to describe the data. We thereby demonstrate for the first time in the lightmeson sector that a resonancelike structure in the experimental data can be described by rescattering through a triangle singularity, providing evidence for a genuine three-body effect

    Double J/ψJ/\psi production in pion-nucleon scattering at COMPASS

    Get PDF
    We present the study of the production of double J/ψJ/\psi mesons using COMPASS data collected with a 190 GeV/cc π\pi^- beam scattering off NH3_{3}, Al and W targets. Kinematic distributions of the collected double J/ψJ/\psi events are analysed, and the double J/ψJ/\psi production cross section is estimated for each of the COMPASS targets. The results are compared to predictions from single- and double-parton scattering models as well as the pion intrinsic charm and the tetraquark exotic resonance hypotheses. It is demonstrated that the single parton scattering production mechanism gives the dominant contribution that is sufficient to describe the data. An upper limit on the double intrinsic charm content of pion is evaluated. No significant signatures that could be associated with exotic tetraquarks are found in the double J/ψJ/\psi mass spectrum.Comment: 12 pages, 4 figure

    Measurement of P T -weighted Sivers asymmetries in leptoproduction of hadrons

    Get PDF
    The transverse spin asymmetries measured in semi-inclusive leptoproduction of hadrons, when weighted with the hadron transverse momentum PT , allow for the extraction of important transverse-momentumdependent distribution functions. In particular, the weighted Sivers asymmetries provide direct information on the Sivers function, which is a leading-twist distribution that arises from a correlation between the transverse momentum of an unpolarised quark in a transversely polarised nucleon and the spin of the nucleon. Using the high-statistics data collected by the COMPASS Collaboration in 2010 with a transversely polarised proton target, we have evaluated two types of PT -weighted Sivers asymmetries, which are both proportional to the product of the first transverse moment of the Sivers function and of the fragmentation function. The results are compared to the standard unweighted Sivers asymmetries and used to extract the first transverse moments of the Sivers distributions for u and d quark

    Longitudinal double-spin asymmetry A1pand spin-dependent structure function g1pof the proton at small values of x and Q2

    Get PDF
    We present a precise measurement of the proton longitudinal double-spin asymmetry Ap1 and the proton spin-dependent structure function gp 1 at photon virtualities 0.006 (GeV/c)2 < Q 2 < 1 (GeV/c)2 in the Bjorken x range of 4 7 10 125 < x < 4 7 10 122. The results are based on data collected by the COMPASS Collaboration at CERN using muon beam energies of 160 GeV and 200 GeV. The statistical precision is more than tenfold better than that of the previous measurement in this region. In the whole range of x, the measured values of Ap1 and gp1 are found to be positive. It is for the first time that spin effects are found at such low values of
    corecore