7,751 research outputs found
Magnetic topology and surface differential rotation on the K1 subgiant of the RS CVn system HR 1099
We present here spectropolarimetric observations of the RS CVn system HR 1099
(V711 Tau) secured from 1998 February to 2002 January with the
spectropolarimeter MuSiCoS at the Telescope Bernard Lyot (Observatoire du Pic
du Midi, France). We apply Zeeman-Doppler Imaging and reconstruct brightness
and magnetic surface topologies of the K1 primary subgiant of the system, at
five different epochs. We confirm the presence of large, axisymmetric regions
where the magnetic field is mainly azimuthal, providing further support to the
hypothesis that dynamo processes may be distributed throughout the whole
convective zone in this star. We study the short-term evolution of surface
structures from a comparison of our images with observations secured at
close-by epochs by Donati et al. (2003) at the Anglo-Australian Telescope. We
conclude that the small-scale brightness and magnetic patterns undergo major
changes within a timescale of 4 to 6 weeks, while the largest structures remain
stable over several years. We report the detection of a weak surface
differential rotation (both from brightness and magnetic tracers) indicating
that the equator rotates faster than the pole with a difference in rotation
rate between the pole and the equator about 4 times smaller than that of the
Sun. This result suggests that tidal forces also impact the global dynamic
equilibrium of convective zones in cool active stars.Comment: accepted by MNRA
Predicting radio emission from the newborn hot Jupiter V830 Tau and its host star
Magnetised exoplanets are expected to emit at radio frequencies analogously
to the radio auroral emission of Earth and Jupiter. We predict the radio
emission from V830 Tau b, the youngest (2 Myr) detected exoplanet to date. We
model the host star wind using 3DMHD simulations that take into account its
surface magnetism. With this, we constrain the local conditions around V830 Tau
b that we use to then compute its radio emission. We estimate average radio
flux densities of 6 to 24mJy, depending on the assumed radius of the planet
(one or two Rjupiter). These radio fluxes are present peaks that are up to
twice the average values. We show here that these fluxes are weakly dependent
(a factor of 1.8) on the assumed polar planetary magnetic field (10 to 100G),
opposed to the maximum frequency of the emission, which ranges from 18 to
240MHz. We also estimate the thermal radio emission from the stellar wind. By
comparing our results with VLA and VLBA observations of the system, we
constrain the stellar mass-loss rate to be <3e-9 Msun/yr, with likely values
between ~1e-12 and 1e-10 Msun/yr. The frequency-dependent extension of the
radio-emitting wind is around ~ 3 to 30 Rstar for frequencies in the range of
275 to 50MHz, implying that V830 Tau b, at an orbital distance of 6.1 Rstar,
could be embedded in the regions of the host star's wind that are optically
thick to radio wavelengths, but not deeply so. Planetary emission can only
propagate in the stellar wind plasma if the frequency of the cyclotron emission
exceeds the stellar wind plasma frequency. For that, we find that for planetary
radio emission to propagate through the host star wind, planetary magnetic
field strengths larger than ~1.3 to 13 G are required. The V830 Tau system is a
very interesting system for conducting radio observations from both the
perspective of radio emission from the planet as well as from the host star's
wind.Comment: A&A, in pres
Magnetic field, differential rotation and activity of the hot-Jupiter hosting star HD 179949
HD 179949 is an F8V star, orbited by a giant planet at ~8 R* every 3.092514
days. The system was reported to undergo episodes of stellar activity
enhancement modulated by the orbital period, interpreted as caused by
Star-Planet Interactions (SPIs). One possible cause of SPIs is the large-scale
magnetic field of the host star in which the close-in giant planet orbits.
In this paper we present spectropolarimetric observations of HD 179949 during
two observing campaigns (2009 September and 2007 June). We detect a weak
large-scale magnetic field of a few Gauss at the surface of the star. The field
configuration is mainly poloidal at both observing epochs. The star is found to
rotate differentially, with a surface rotation shear of dOmega=0.216\pm0.061
rad/d, corresponding to equatorial and polar rotation periods of 7.62\pm0.07
and 10.3\pm0.8 d respectively. The coronal field estimated by extrapolating the
surface maps resembles a dipole tilted at ~70 degrees. We also find that the
chromospheric activity of HD 179949 is mainly modulated by the rotation of the
star, with two clear maxima per rotation period as expected from a highly
tilted magnetosphere. In September 2009, we find that the activity of HD 179949
shows hints of low amplitude fluctuations with a period close to the beat
period of the system.Comment: Accepted for publication in Monthly Notices of The Royal Astronomical
Societ
Analysis of the socio-economic impact of the tobacco CMO reform on italian tobacco sector
The Tobacco CMO (Common Market Organization) is involved in a intense debate between the European tobacco industry and those who are against to a crop whose transformed product is dangerous to the health. European institutions have shown a strong interest in this complex issue introducing two Reforms (1992 and 1998) and one revision in 2004. This paper aims to analyse and investigate the socio-economic impact of the tobacco CMO Reform of 2004 in Italy, across the scenarios proposed by the EC Commission (2004), both on the tobacco production and processing sector. The considered socio-economic indicators are harvested surfaces, farm income and overall employment, while the sample of farms used in this research belong to the FADNâItaly sample.Tobacco CMO, CAP reform, decoupling, Positive Mathematical Programming
Temporal fluctuations in the differential rotation of cool active stars
This paper reports positive detections of surface differential rotation on
two rapidly rotating cool stars at several epochs, by using stellar surface
features (both cool spots and magnetic regions) as tracers of the large scale
latitudinal shear that distorts the convective envelope in this type of stars.
We also report definite evidence that this differential rotation is different
when estimated from cool spots or magnetic regions, and that it undergoes
temporal fluctuations of potentially large amplitude on a time scale of a few
years. We consider these results as further evidence that the dynamo processes
operating in these stars are distributed throughout the convective zone rather
than being confined at its base as in the Sun. By comparing our observations
with two very simple models of the differential rotation within the convective
zone, we obtain evidence that the internal rotation velocity field of the stars
we investigated is not like that of the Sun, and may resemble that we expect
for rapid rotators. We speculate that the changes in differential rotation
result from the dynamo processes (and from the underlying magnetic cycle) that
periodically converts magnetic energy into kinetic energy and vice versa. We
emphasise that the technique outlined in this paper corresponds to the first
practical method for investigating the large scale rotation velocity field
within convective zones of cool active stars, and offers several advantages
over asteroseismology for this particular purpose and this specific stellar
class.Comment: 14 pages, 4 figure
Magnetic activity on AB Doradus: Temporal evolution of starspots and differential rotation from 1988 to 1994
Surface brightness maps for the young K0 dwarf AB Doradus are reconstructed
from archival data sets for epochs spanning 1988 to 1994. By using the
signal-to-noise enhancement technique of Least-Squares Deconvolution, our
results show a greatly increased resolution of spot features than obtained in
previously published surface brightness reconstructions. These images show that
for the exception of epoch 1988.96, the starspot distributions are dominated by
a long-lived polar cap, and short-lived low to high latitude features. The
fragmented polar cap at epoch 1988.96 could indicate a change in the nature of
the dynamo in the star. For the first time we measure differential rotation for
epochs with sufficient phase coverage (1992.05, 1993.89, 1994.87). These
measurements show variations on a timescale of at least one year, with the
strongest surface differential rotation ever measured for AB Dor occurring in
1994.86. In conjunction with previous investigations, our results represent the
first long-term analysis of the temporal evolution of differential rotation on
active stars.Comment: accepted by MNRAS 18 pages 18 figure
Magnetic fields and accretion flows on the classical T Tauri star V2129 Oph
From observations collected with the ESPaDOnS spectropolarimeter, we report
the discovery of magnetic fields at the surface of the mildly accreting
classical T Tauri star V2129 Oph. Zeeman signatures are detected, both in
photospheric lines and in the emission lines formed at the base of the
accretion funnels linking the disc to the protostar, and monitored over the
whole rotation cycle of V2129 Oph. We observe that rotational modulation
dominates the temporal variations of both unpolarized and circularly polarized
line profiles. We reconstruct the large-scale magnetic topology at the surface
of V2129 Oph from both sets of Zeeman signatures simultaneously. We find it to
be rather complex, with a dominant octupolar component and a weak dipole of
strengths 1.2 and 0.35 kG, respectively, both slightly tilted with respect to
the rotation axis. The large-scale field is anchored in a pair of 2-kG unipolar
radial field spots located at high latitudes and coinciding with cool dark
polar spots at photospheric level. This large-scale field geometry is unusually
complex compared to those of non-accreting cool active subgiants with moderate
rotation rates. As an illustration, we provide a first attempt at modelling the
magnetospheric topology and accretion funnels of V2129 Oph using field
extrapolation. We find that the magnetosphere of V2129 Oph must extend to about
7R* to ensure that the footpoints of accretion funnels coincide with the
high-latitude accretion spots on the stellar surface. It suggests that the
stellar magnetic field succeeds in coupling to the accretion disc as far out as
the corotation radius, and could possibly explain the slow rotation of V2129
Oph. The magnetospheric geometry we derive produces X-ray coronal fluxes
typical of those observed in cTTSs.Comment: MNRAS, in press (18 pages, 17 figures
Magnetic fields and differential rotation on the pre-main sequence I: The early-G star HD 141943 - brightness and magnetic topologies
Spectroscopic and spectropolarimetric observations of the pre-main sequence
early-G star HD 141943 were obtained at four observing epochs (in 2006, 2007,
2009 and 2010). The observations were undertaken at the 3.9-m Anglo-Australian
Telescope using the UCLES echelle spectrograph and the SEMPOL
spectropolarimeter visitor instrument. Brightness and surface magnetic field
topologies were reconstructed for the star using the technique of least-squares
deconvolution to increase the signal-to-noise of the data.
The reconstructed brightness maps show that HD 141943 had a weak polar spot
and a significant amount of low latitude features, with little change in the
latitude distribution of the spots over the 4 years of observations. The
surface magnetic field was reconstructed at three of the epochs from a high
order (l <= 30) spherical harmonic expansion of the spectropolarimetric
observations. The reconstructed magnetic topologies show that in 2007 and 2010
the surface magnetic field was reasonably balanced between poloidal and
toroidal components. However we find tentative evidence of a change in the
poloidal/toroidal ratio in 2009 with the poloidal component becoming more
dominant. At all epochs the radial magnetic field is predominantly
non-axisymmetric while the azimuthal field is predominantly axisymmetric with a
ring of positive azimuthal field around the pole similar to that seen on other
active stars.Comment: 18 pages, 17 figures, accepted by MNRA
Three-dimensional Simulations of Accretion to Stars with Complex Magnetic Fields
Disk accretion to rotating stars with complex magnetic fields is investigated
using full three-dimensional magnetohydrodynamic (MHD) simulations. The studied
magnetic configurations include superpositions of misaligned dipole and
quadrupole fields and off-centre dipoles. The simulations show that when the
quadrupole component is comparable to the dipole component, the magnetic field
has a complex structure with three major magnetic poles on the surface of the
star and three sets of loops of field lines connecting them. A significant
amount of matter flows to the quadrupole "belt", forming a ring-like hot spot
on the star. If the maximum strength of the magnetic field on the star is
fixed, then we observe that the mass accretion rate, the torque on the star,
and the area covered by hot spots are several times smaller in the
quadrupole-dominant cases than in the pure dipole cases. The influence of the
quadrupole component on the shape of the hot spots becomes noticeable when the
ratio of the quadrupole and dipole field strengths , and
becomes dominant when . In the case of an off-centre dipole
field, most of the matter flows through a one-armed accretion stream, forming a
large hot spot on the surface, with a second much smaller secondary spot. The
light curves may have simple, sinusoidal shapes, thus mimicking stars with pure
dipole fields. Or, they may be complex and unusual. In some cases the light
curves may be indicators of a complex field, in particular if the inclination
angle is known independently. We also note that in the case of complex fields,
magnetospheric gaps are often not empty, and this may be important for the
survival of close-in exosolar planets.Comment: 13 pages, 21 figures, accepted for publication in MNRA
- âŠ