253 research outputs found

    Is there an association between anti-TNF monoclonal antibody therapy in rheumatoid arthritis and risk of malignancy and serious infection? Commentary on the meta-analysis by Bongartz et al

    Get PDF
    A recent meta-analysis of randomized clinical trials reported by Bongartz and coworkers raised concerns about an increased rate of malignancy and serious infection in rheumatoid arthritis patients treated with anti-tumour necrosis factor monoclonal antibodies. This commentary discusses some of the methodological issues in their analysis and urges caution in interpreting the results

    Testing Gravity in the Outer Solar System: Results from Trans-Neptunian Objects

    Full text link
    The inverse square law of gravity is poorly probed by experimental tests at distances of ~ 10 AUs. Recent analysis of the trajectory of the Pioneer 10 and 11 spacecraft have shown an unmodeled acceleration directed toward the Sun which was not explained by any obvious spacecraft systematics, and occurred when at distances greater than 20 AUs from the Sun. If this acceleration represents a departure from Newtonian gravity or is indicative of an additional mass distribution in the outer solar system, it should be detectable in the orbits of Trans-Neptunian Objects (TNOs). To place limits on deviations from Newtonian gravity, we have selected a well observed sample of TNOs found orbiting between 20 and 100 AU from the Sun. By examining their orbits with modified orbital fitting software, we place tight limits on the perturbations of gravity that could exist in this region of the solar system.Comment: 20 pages, 4 figures, 2 tables, uses AASTex v5.x macro

    Spinning Test Particle in Kalb-Ramond background

    Full text link
    In this work we explore the geodesic deviations of spinning test particles in a string inspired Einstein-Kalb Ramond background. Such a background is known to be equivalent to a spacetime geometry with torsion. We have shown here that the antisymmetric Kalb-Ramond field has significant effect on the geodesic deviation of a spinning test particle. A search for an observational evidence of such an effect in astrophysical experiments may lead to a better undestanding of the geometry of the background spacetime.Comment: 14 pages, Latex, 5 figure

    Challenges for Superstring Cosmology

    Get PDF
    We consider whether current notions about superstring theory below the Planck scale are compatible with cosmology. We find that the anticipated form for the dilaton interaction creates a serious roadblock for inflation and makes it unlikely that the universe ever reaches a state with zero cosmological constant and time-independent gravitational constant.Comment: 14 pages, 2 figures available as eps files on reques

    Gravitational solution to the Pioneer 10/11 anomaly

    Full text link
    A fully relativistic modified gravitational theory including a fifth force skew symmetric field is fitted to the Pioneer 10/11 anomalous acceleration. The theory allows for a variation with distance scales of the gravitational constant G, the fifth force skew symmetric field coupling strength omega and the mass of the skew symmetric field mu=1/lambda. A fit to the available anomalous acceleration data for the Pioneer 10/11 spacecraft is obtained for a phenomenological representation of the "running" constants and values of the associated parameters are shown to exist that are consistent with fifth force experimental bounds. The fit to the acceleration data is consistent with all current satellite, laser ranging and observations for the inner planets.Comment: 14 pages, 3 figures, 3 tables. typo's were corrected at Equations (4) and (12) and a third table including our predictions for the anomalous perihelion advance of the planets was adde

    Extended Inflation from Strings

    Full text link
    We study the possibility of extended inflation in the effective theory of gravity from strings compactified to four dimensions and find that it strongly depends on the mechanism of supersymmetry breaking. We consider a general class of string--inspired models which are good candidates for successful extended inflation. In particular, the ω\omega--problem of ordinary extended inflation is automatically solved by the production of only very small bubbles until the end of inflation. We find that the inflaton field could belong either to the untwisted or to the twisted massless sectors of the string spectrum, depending on the supersymmetry breaking superpotential.Comment: 18p

    Canonical Formulation of Spin in General Relativity

    Full text link
    The present thesis aims at an extension of the canonical formalism of Arnowitt, Deser, and Misner from self-gravitating point-masses to objects with spin. This would allow interesting applications, e.g., within the post-Newtonian (PN) approximation. The extension succeeded via an action approach to linear order in the single spins of the objects without restriction to any further approximation. An order-by-order construction within the PN approximation is possible and performed to the formal 3.5PN order as a verification. In principle both approaches are applicable to higher orders in spin. The PN next-to-leading order spin(1)-spin(1) level was tackled, modeling the spin-induced quadrupole deformation by a single parameter. All spin-dependent Hamiltonians for rapidly rotating bodies up to and including 3PN are calculated.Comment: 59 pages. Dissertation, Friedrich-Schiller-Universit\"at, Jena, 2010. This thesis was submitted in June 2010. Cite as Ann. Phys. (Berlin) 523:296 (2011

    Non-precessional spin-orbit effects on gravitational waves from inspiraling compact binaries to second post-Newtonian order

    Get PDF
    We derive all second post-Newtonian (2PN), non-precessional effects of spin- orbit coupling on the gravitational wave forms emitted by an inspiraling binary composed of spinning, compact bodies in a quasicircular orbit. Previous post- Newtonian calculations of spin-orbit effects (at 1.5PN order) relied on a fluid description of the spinning bodies. We simplify the calculations by introducing into post-Newtonian theory a delta-function description of the influence of the spins on the bodies' energy-momentum tensor. This description was recently used by Mino, Shibata, and Tanaka (MST) in Teukolsky-formalism analyses of particles orbiting massive black holes, and is based on prior work by Dixon. We compute the 2PN contributions to the wave forms by combining the MST energy-momentum tensor with the formalism of Blanchet, Damour, and Iyer for evaluating the binary's radiative multipoles, and with the well-known 1.5PN order equations of motion for the binary. Our results contribute at 2PN order only to the amplitudes of the wave forms. The secular evolution of the wave forms' phase, the quantity most accurately measurable by LIGO, is not affected by our results until 2.5PN order, at which point other spin-orbit effects also come into play. We plan to evaluate the entire 2.5PN spin-orbit contribution to the secular phase evolution in a future paper, using the techniques of this paper.Comment: 11 pages, submitted to Phys. Rev.

    Gravitational ultrarelativistic spin-orbit interaction and the weak equivalence principle

    Full text link
    It is shown that the gravitational ultrarelativistic spin-orbit interaction violates the weak equivalence principle in the traditional sense. This fact is a direct consequence of the Mathisson-Papapetrou equations in the frame of reference comoving with a spinning test particle. The widely held assumption that the deviation of a spinning test body from a geodesic trajectory is caused by tidal forces is not correctComment: 12 page
    • …
    corecore