298 research outputs found
Major Surge Activity of Super-Active Region NOAA 10484
We observed two surges in H-alpha from the super-active region NOAA 10484.
The first surge was associated with an SF/C4.3 class flare. The second one was
a major surge associated with a SF/C3.9 flare. This surge was also observed
with SOHO/EIT in 195 angstrom and NoRh in 17 GHz, and showed similar evolution
in these wavelengths. The major surge had an ejective funnel-shaped spray
structure with fast expansion in linear (about 1.2 x 10^5 km) and angular
(about 65 deg) size during its maximum phase. The mass motion of the surge was
along open magnetic field lines, with average velocity about 100 km/s. The
de-twisting motion of the surge reveals relaxation of sheared and twisted
magnetic flux. The SOHO/MDI magnetograms reveal that the surges occurred at the
site of companion sunspots where positive flux emerged, converged, and canceled
against surrounding field of opposite polarity. Our observations support
magnetic reconnection models for the surges and jets.Comment: 4 pages, 3 figures; To appear in "Magnetic Coupling between the
Interior and the Atmosphere of the Sun", eds. S.S. Hasan and R.J. Rutten,
Astrophysics and Space Science Series, Springer-Verlag, Heidelberg, Berlin,
200
Investigating the driving mechanisms of coronal mass ejections
The objective of this investigation was to first examine the kinematics of
coronal mass ejections (CMEs) using EUV and coronagraph images, and then to
make a comparison with theoretical models in the hope to identify the driving
mechanisms of the CMEs. We have studied two CMEs which occurred on 2006 Dec. 17
(CME06) and 2007 Dec. 31 (CME07). The models studied in this work were
catastrophe, breakout, and toroidal instability models. We found that after the
eruption, the accelerations of both events exhibited a drop before increasing
again. Our comparisons with the theories suggested that CME06 can be best
described by a hybrid of the catastrophe and breakout models while CME07 is
most consistent with the breakout model.Comment: 9 pages 7 figure
The solar wind disappearance event of 11 May 1999: source region evolution
Context. A recent, detailed study of the well-known solar wind disappearance
event of 11 May 1999 traced its origin to a coronal hole (CH) lying adjacent to
a large active region (AR), AR8525 in Carrington rotation 1949. The AR was
located at central meridian on 05 May 1999 when the flows responsible for this
event began. We examine the evolution of the AR-CH complex during 5-6 May 1999
to study the changes that apparently played a key role in causing this
disappearance event. Aims. To study the evolution of the solar source region of
the disappearance event of 11 May 1999. Methods. Using images from the Soft
X-ray Telescope (SXT), the Extreme-ultraviolet Imaging Telescope (EIT) and the
Michelson Doppler Imager (MDI) to examine the evolution of the CH and AR
complex at the source region of the disappearance event. Results. We find a
dynamic evolution taking place in the CH-AR boundary at the source region of
the disappearance event of 11 May 1999. This evolution, which is found to
reduce the area of the CH, is accompanied by the formation of new loops in EUV
images that are spatially and temporally correlated with emerging flux regions
as seen in MDI data. Conclusions. In the period leading up to the disappearance
event of 11 May 1999, our observations, during quiet solar conditions and in
the absence of CMEs, provide the first clear evidence for Sun-Earth connection
originating from an evolving AR-CH region located at central meridian. With the
exception of corotating interacting regions (CIR), these observations provide
the first link between the Sun and space weather effects at 1 AU, arising from
non-explosive solar events.Comment: The paper has recently been accepted in A&A letters and this version
is an 8 page article with 4 figure
Slow magnetoacoustic waves in coronal loops : EIT and TRACE
On May 13, 1998 the EIT (Extreme ultraviolet Imaging Telescope) on board of SoHO (Solar and Heliospheric Observatory) and TRACE (Transition Region And Coronal Explorer) instruments produced simultaneous high cadence image sequences of the same active region (AR 8218). TRACE achieved a 25 s cadence in the FeIX (171 Å) bandpass while EIT achieved a 15 s cadence (operating in "shutterless mode", SoHO JOP 80) in the FeXII (195 Å) bandpass. These high cadence observations in two complementary wavelengths have revealed the existence of weak transient disturbances in an extended coronal loop system. These propagating disturbances (PDs) seem to be a common phenomenon in this part of the active region. The disturbances originate from small scale brightenings at the footpoints of the loops and propagate along the loops. The projected propagation speeds roughly vary between 65 and 150 km s-1 for both instruments which is close to and below the expected sound speed in the coronal loops. The measured slow magnetoacoustic propagation speeds seem to suggest that the transients are sound (or slow) wave disturbances. This work differs from previous studies in the sense that it is based on a multi-wavelength observation of an entire loop bundle at high cadence by two EUV imagers. The observation of sound waves along the same path shows that they propagate along the same loop, suggesting that loops contain sharp temperature gradients and consist of either concentric shells or thin loop threads, at different temperatures
The quiet Sun average Doppler shift of coronal lines up to 2 MK
The average Doppler shift shown by spectral lines formed from the
chromosphere to the corona reveals important information on the mass and energy
balance of the solar atmosphere, providing an important observational
constraint to any models of the solar corona. Previous spectroscopic
observations of vacuum ultra-violet (VUV) lines have revealed a persistent
average wavelength shift of lines formed at temperatures up to 1 MK. At higher
temperatures, the behaviour is still essentially unknown. Here we analyse
combined SUMER/SoHO and EIS/Hinode observations of the quiet Sun around disk
centre to determine, for the first time, the average Doppler shift of several
spectral lines formed between 1 and 2 MK, where the largest part of the quiet
coronal emission is formed. The measurements are based on a novel technique
applied to EIS spectra to measure the difference in Doppler shift between lines
formed at different temperatures. Simultaneous wavelength-calibrated SUMER
spectra allow establishing the absolute value at the reference temperature of 1
MK. The average line shifts at 1 MK < T < 1.8 MK are modestly, but clearly
bluer than those observed at 1 MK. By accepting an average blue shift of about
(-1.8+/-0.6) km/s at 1 MK (as provided by SUMER measurements), this translates
into a maximum Doppler shift of (-4.4+/-2.2) km/s around 1.8 MK. The measured
value appears to decrease to about (-1.3+/-2.6) km/s at the Fe XV formation
temperature of 2.1 MK. The measured average Doppler shift between 0.01 and 2.1
MK, for which we provide a parametrisation, appears to be qualitatively and
roughly quantitatively consistent with what foreseen by 3-D coronal models
where heating is produced by dissipation of currents induced by photospheric
motions and by reconnection with emerging magnetic flux.Comment: 9 pages, 10 figures. Astronomy and Astrophysics (in press
Automated Detection of Coronal Loops using a Wavelet Transform Modulus Maxima Method
We propose and test a wavelet transform modulus maxima method for the au-
tomated detection and extraction of coronal loops in extreme ultraviolet images
of the solar corona. This method decomposes an image into a number of size
scales and tracks enhanced power along each ridge corresponding to a coronal
loop at each scale. We compare the results across scales and suggest the
optimum set of parameters to maximise completeness while minimising detection
of noise. For a test coronal image, we compare the global statistics (e.g.,
number of loops at each length) to previous automated coronal-loop detection
algorithms
Unique Observations of a Geomagnetic SI^+ -- SI^- Pair: Solar Sources and Associated Solar Wind Fluctuations
The paper describes the occurrence of a pair of oppositely directed sudden
impulses (SI), in the geomagnetic field (X), at ground stations, called
SI -- SI pairs, that occurred between 1835 UT and 2300 UT on 23
April 1998. The SI -- SI pair, was closely correlated with
corresponding variations in the solar wind density, while solar wind velocity
and the southward component of the interplanetary magnetic field (Bz) did not
show any correspondence. Further, this event had no source on the visible solar
disk. However, a rear-side partial halo coronal mass ejection (CME) and an M1.4
class solar flare behind the west limb, took place on 20 April 1998, the date
corresponding to the traceback location of the solar wind flows. This event
presents empirical evidence, which to our knowledge, is the best convincing
evidence for the association of specific solar events to the observations of an
SI -- SI pair. In addition, it shows that it is possible for a
rear side solar flare to propagate a shock towards the earth.Comment: The paper has just been accepted in the Journal of Geophysical
Research (Space Physics) on 20 September 2010. It is 17 pages with 4 figure
Recent Developments of NEMO: Detection of Solar Eruptions Characteristics
The recent developments in space instrumentation for solar observations and
telemetry have caused the necessity of advanced pattern recognition tools for
the different classes of solar events. The Extreme ultraviolet Imaging
Telescope (EIT) of solar corona on-board SOHO spacecraft has uncovered a new
class of eruptive events which are often identified as signatures of Coronal
Mass Ejection (CME) initiations on solar disk. It is evident that a crucial
task is the development of an automatic detection tool of CMEs precursors. The
Novel EIT wave Machine Observing (NEMO) (http://sidc.be/nemo) code is an
operational tool that detects automatically solar eruptions using EIT image
sequences. NEMO applies techniques based on the general statistical properties
of the underlying physical mechanisms of eruptive events on the solar disc. In
this work, the most recent updates of NEMO code - that have resulted to the
increase of the recognition efficiency of solar eruptions linked to CMEs - are
presented. These updates provide calculations of the surface of the dimming
region, implement novel clustering technique for the dimmings and set new
criteria to flag the eruptive dimmings based on their complex characteristics.
The efficiency of NEMO has been increased significantly resulting to the
extraction of dimmings observed near the solar limb and to the detection of
small-scale events as well. As a consequence, the detection efficiency of CMEs
precursors and the forecasts of CMEs have been drastically improved.
Furthermore, the catalogues of solar eruptive events that can be constructed by
NEMO may include larger number of physical parameters associated to the dimming
regions.Comment: 12 Pages, 5 figures, submitted to Solar Physic
Streamer Wave Events Observed in Solar Cycle 23
In this paper we conduct a data survey searching for well-defined streamer
wave events observed by the Large Angle and Spectrometric Coronagraph (LASCO)
on-board the Solar and Heliospheric Observatory (SOHO) throughout Solar Cycle
23. As a result, 8 candidate events are found and presented here. We compare
different events and find that in most of them the driving CMEs ejecta are
characterized by a high speed and a wide angular span, and the CME-streamer
interactions occur generally along the flank of the streamer structure at an
altitude no higher than the bottom of the field of view of LASCO C2. In
addition, all front-side CMEs have accompanying flares. These common
observational features shed light on the excitation conditions of streamer wave
events.
We also conduct a further analysis on one specific streamer wave event on 5
June 2003. The heliocentric distances of 4 wave troughs/crests at various
exposure times are determined; they are then used to deduce the wave properties
like period, wavelength, and phase speeds. It is found that both the period and
wavelength increase gradually with the wave propagation along the streamer
plasma sheet, and the phase speed of the preceding wave is generally faster
than that of the trailing ones. The associated coronal seismological study
yields the radial profiles of the Alfv\'en speed and magnetic field strength in
the region surrounding the streamer plasma sheet. Both quantities show a
general declining trend with time. This is interpreted as an observational
manifestation of the recovering process of the CME-disturbed corona. It is also
found that the Alfv\'enic critical point is at about 10 R where the
flow speed, which equals the Alfv\'en speed, is 200 km s
The Impact of New EUV Diagnostics on CME-Related Kinematics
We present the application of novel diagnostics to the spectroscopic
observation of a Coronal Mass Ejection (CME) on disk by the Extreme Ultraviolet
Imaging Spectrometer (EIS) on the Hinode spacecraft. We apply a recently
developed line profile asymmetry analysis to the spectroscopic observation of
NOAA AR 10930 on 14-15 December 2006 to three raster observations before and
during the eruption of a 1000km/s CME. We see the impact that the observer's
line-of-sight and magnetic field geometry have on the diagnostics used.
Further, and more importantly, we identify the on-disk signature of a
high-speed outflow behind the CME in the dimming region arising as a result of
the eruption. Supported by recent coronal observations of the STEREO
spacecraft, we speculate about the momentum flux resulting from this outflow as
a secondary momentum source to the CME. The results presented highlight the
importance of spectroscopic measurements in relation to CME kinematics, and the
need for full-disk synoptic spectroscopic observations of the coronal and
chromospheric plasmas to capture the signature of such explosive energy release
as a way of providing better constraints of CME propagation times to L1, or any
other point of interest in the heliosphere.Comment: Accepted to appear in Solar Physics Topical Issue titled "Remote
Sensing of the Inner Heliosphere". Manuscript has 14 pages, 5 color figures.
Movies supporting the figures can be found in
http://download.hao.ucar.edu/pub/mscott/papers/Weathe
- …
