16 research outputs found
Pathogenetics of alveolar capillary dysplasia with misalignment of pulmonary veins.
Alveolar capillary dysplasia with misalignment of pulmonary veins (ACDMPV) is a lethal lung developmental disorder caused by heterozygous point mutations or genomic deletion copy-number variants (CNVs) of FOXF1 or its upstream enhancer involving fetal lung-expressed long noncoding RNA genes LINC01081 and LINC01082. Using custom-designed array comparative genomic hybridization, Sanger sequencing, whole exome sequencing (WES), and bioinformatic analyses, we studied 22 new unrelated families (20 postnatal and two prenatal) with clinically diagnosed ACDMPV. We describe novel deletion CNVs at the FOXF1 locus in 13 unrelated ACDMPV patients. Together with the previously reported cases, all 31 genomic deletions in 16q24.1, pathogenic for ACDMPV, for which parental origin was determined, arose de novo with 30 of them occurring on the maternally inherited chromosome 16, strongly implicating genomic imprinting of the FOXF1 locus in human lungs. Surprisingly, we have also identified four ACDMPV families with the pathogenic variants in the FOXF1 locus that arose on paternal chromosome 16. Interestingly, a combination of the severe cardiac defects, including hypoplastic left heart, and single umbilical artery were observed only in children with deletion CNVs involving FOXF1 and its upstream enhancer. Our data demonstrate that genomic imprinting at 16q24.1 plays an important role in variable ACDMPV manifestation likely through long-range regulation of FOXF1 expression, and may be also responsible for key phenotypic features of maternal uniparental disomy 16. Moreover, in one family, WES revealed a de novo missense variant in ESRP1, potentially implicating FGF signaling in the etiology of ACDMPV
Effects of a commercial dose of L-tryptophan on plasma tryptophan concentrations and behaviour in horses
Reasons for performing the study: L-tryptophan is a common ingredient in equine calmative products, but its effectiveness has not been demonstrated in horses. Hypothesis: To determine whether a commercial dose of L-tryptophan increases plasma tryptophan and alters behaviour in horses fed a roughage or concentrate meal. Methods: L-tryptophan (6.3 g) or placebo (water) was administered per os in a cross-over design, to 12 Thoroughbred horses (503 ± 12.1 kg bwt), just before a meal of lucerne hay or oats. Plasma tryptophan was measured by gas chromatography. Horse behaviour was observed in an empty enclosure, then in the presence of an unfamiliar person and a novel object. Results: Total plasma tryptophan increased 3-fold in both studies, peaking 1.5-2 h after dosing. After the peak, tryptophan remained high for several hours if the horses had been fed hay, but fell sharply if fed oats, consistent with the glycaemic responses to these meals. However, the ratio of tryptophan to 4 large neutral amino acids (phenylalanine, tyrosine, leucine and isoleucine) increased in the tryptophan-treated horses to a similar extent and for a similar duration, with both diets. The presence of a stranger or novel object increased heart rate (
Evaluation of behaviour in stabled draught horse foals fed diets with two protein levels
The present work is aimed at evaluating the behaviour of Italian Heavy Draught Horse (IHDH) foals reared in semi-covered stables and fed two isoenergetic total mixed rations with different dietary protein levels (13.2% and 10.6% of CP on dry matter). The study was prompted by the restrictions for nitrate emissions in farms of the European Nitrate Directive. One suggested solution is to reduce dietary protein while maintaining normal performance and welfare, but there is a lack of literature in studies of horses. The behaviours of 20 foals of 437±60 kg of BW, aged 379±37 days and stabled in four pens by sex (S) and diet (D) were video recorded and analysed to build a suitable ethogram including 18 behaviours in six categories: ingestion, resting, maintenance, movement, social activities, other. The percentage of the daily time spent in each behavioural category and single behaviours was analysed via a single traits GLM including S, D and their interaction. Daily activity was consistent with existing literature: foals spent about 33% of the day in ingestion activities and 41% in resting, whereas social interactions constituted 8% of the time and individual maintenance <2%. Concerning diet, foals fed high protein spent more time in movement (19.62±0.73% of day v. 10.45±0.73% in low-protein (LP) foals; P⩽0.001), whereas the LP group increased resting (43.42±1.12% v. 38.02±1.12%; P⩽0.001). No stereotypies were found, and daily activity followed the typical values for draught breeds for foals in both dietary groups, a result that suggests the maintenance of well-being after dietary protein reduction. This result, together with the findings of a companion study showing no changes in growth performances of foals, showed that a reduction of CP in foal diet is reconcilable with the maintenance of performance and welfare
Assessing the Risk of Primary Amoebic Meningoencephalitis from Swimming in the Presence of Environmental Naegleria fowleri
Free-living Naegleria fowleri amoebae cause primary amoebic meningoencephalitis (PAM). Because of the apparent conflict between their ubiquity and the rarity of cases observed, we sought to develop a model characterizing the risk of PAM after swimming as a function of the concentration of N. fowleri. The probability of death from PAM as a function of the number of amoebae inhaled is modeled according to results obtained from animals infected with amoeba strains. The calculation of the probability of inhaling one or more amoebae while swimming is based on a double hypothesis: that the distribution of amoebae in the water follows a Poisson distribution and that the mean quantity of water inhaled while swimming is 10 ml. The risk of PAM for a given concentration of amoebae is then obtained by summing the following products: the probability of inhaling n amoebae × the probability of PAM associated with inhaling these n amoebae. We chose the lognormal model to assess the risk of PAM because it yielded the best analysis of the studentized residuals. Nonetheless, the levels of risk thereby obtained cannot be applied to humans without correction, because they are substantially greater than those indicated by available epidemiologic data. The curve was thus adjusted by a factor calculated with the least-squares method. This provides the PAM risk in humans as a function of the N. fowleri concentration in the river. For example, the risk is 8.5 × 10(−8) at a concentration of 10 N. fowleri amoebae per liter
Stabilization of HIF-2α through redox regulation of mTORC2 activation and initiation of mRNA translation
HIF-2alpha plays a critical role in renal tumorigenesis. HIF-2alpha is stabilized in Von Hippel-Lindau (VHL)-deficient renal cell carcinoma through mechanisms that require ongoing mRNA translation. Mammalian target of Rapamycin (mTOR) functions in two distinct complexes, Raptor-associated mTORC1 and Rictor-associated mTORC2. Rictor-associated mTORC2 complex has been linked to maintaining HIF-2alpha protein in the absence of VHL, however the mechanisms remain to be elucidated. Although Raptor-associated mTORC1 is a known key upstream regulator of mRNA translation, initiation and elongation, the role of mTORC2 in regulating mRNA translation, is not clear. Complex assembly of the mRNA cap protein, eIF4E, with activators (eIF4G) and inhibitors (4E-BP1) are rate-limiting determinants of mRNA translation. Our laboratory has previously demonstrated that reactive oxygen species, mediated by p22(phox)-based Nox oxidases, are enhanced in VHL-deficient cells and play a role in the activation of Akt on S473, a site phosphorylated by the mTORC2 complex. In this study, we examined the role of Rictor-dependent regulation of HIF-2alpha through eIF4E-dependent mRNA translation and examined the effects of p22(phox)-based Nox oxidases on TORC2 regulation. We demonstrate for the first time that mTORC2 complex stability and activation is redox sensitive and further defined a novel role for p22(phox)-based Nox oxidases in eIF4E-dependent mRNA translation through mTORC2. Furthermore, we provide the first evidence that silencing of p22(phox) reduces HIF-2alpha-dependent gene targeting in vitro and tumor formation in vivo. The clinical relevance of these studies is demonstrated