93 research outputs found
Progress towards an accurate determination of the Boltzmann constant by Doppler spectroscopy
In this paper, we present significant progress performed on an experiment
dedicated to the determination of the Boltzmann constant, k, by accurately
measuring the Doppler absorption profile of a line in a gas of ammonia at
thermal equilibrium. This optical method based on the first principles of
statistical mechanics is an alternative to the acoustical method which has led
to the unique determination of k published by the CODATA with a relative
accuracy of 1.7 ppm. We report on the first measurement of the Boltzmann
constant by laser spectroscopy with a statistical uncertainty below 10 ppm,
more specifically 6.4 ppm. This progress results from improvements in the
detection method and in the statistical treatment of the data. In addition, we
have recorded the hyperfine structure of the probed saQ(6,3) rovibrational line
of ammonia by saturation spectroscopy and thus determine very precisely the
induced 4.36 (2) ppm broadening of the absorption linewidth. We also show that,
in our well chosen experimental conditions, saturation effects have a
negligible impact on the linewidth. Finally, we draw the route to future
developments for an absolute determination of with an accuracy of a few ppm.Comment: 22 pages, 11 figure
Long-distance frequency transfer over an urban fiber link using optical phase stabilization
We transferred the frequency of an ultra-stable laser over 86 km of urban
fiber. The link is composed of two cascaded 43-km fibers connecting two
laboratories, LNE-SYRTE and LPL in Paris area. In an effort to realistically
demonstrate a link of 172 km without using spooled fiber extensions, we
implemented a recirculation loop to double the length of the urban fiber link.
The link is fed with a 1542-nm cavity stabilized fiber laser having a sub-Hz
linewidth. The fiber-induced phase noise is measured and cancelled with an all
fiber-based interferometer using commercial off the shelf pigtailed
telecommunication components. The compensated link shows an Allan deviation of
a few 10-16 at one second and a few 10-19 at 10,000 seconds
Optical fibers with interferometric path length stability by controlled heating for transmission of optical signals and as components in frequency standards
We present a simple method to stabilize the optical path length of an optical
fiber to an accuracy of about 1/100 of the laser wavelength. We study the
dynamic response of the path length to modulation of an electrically conductive
heater layer of the fiber. The path length is measured against the laser
wavelength by use of the Pound-Drever-Hall method; negative feedback is applied
via the heater. We apply the method in the context of a cryogenic resonator
frequency standard.Comment: Expanded introduction and outlook. 9 pages, 5 figure
Low noise amplication of an optically carried microwave signal: application to atom interferometry
In this paper, we report a new scheme to amplify a microwave signal carried
on a laser light at =852nm. The amplification is done via a
semiconductor tapered amplifier and this scheme is used to drive stimulated
Raman transitions in an atom interferometer. Sideband generation in the
amplifier, due to self-phase and amplitude modulation, is investigated and
characterized. We also demonstrate that the amplifier does not induce any
significant phase-noise on the beating signal. Finally, the degradation of the
performances of the interferometer due to the amplification process is shown to
be negligible
Sisyphus Cooling of Electrically Trapped Polyatomic Molecules
The rich internal structure and long-range dipole-dipole interactions
establish polar molecules as unique instruments for quantum-controlled
applications and fundamental investigations. Their potential fully unfolds at
ultracold temperatures, where a plethora of effects is predicted in many-body
physics, quantum information science, ultracold chemistry, and physics beyond
the standard model. These objectives have inspired the development of a wide
range of methods to produce cold molecular ensembles. However, cooling
polyatomic molecules to ultracold temperatures has until now seemed
intractable. Here we report on the experimental realization of opto-electrical
cooling, a paradigm-changing cooling and accumulation method for polar
molecules. Its key attribute is the removal of a large fraction of a molecule's
kinetic energy in each step of the cooling cycle via a Sisyphus effect,
allowing cooling with only few dissipative decay processes. We demonstrate its
potential by reducing the temperature of about 10^6 trapped CH_3F molecules by
a factor of 13.5, with the phase-space density increased by a factor of 29 or a
factor of 70 discounting trap losses. In contrast to other cooling mechanisms,
our scheme proceeds in a trap, cools in all three dimensions, and works for a
large variety of polar molecules. With no fundamental temperature limit
anticipated down to the photon-recoil temperature in the nanokelvin range, our
method eliminates the primary hurdle in producing ultracold polyatomic
molecules. The low temperatures, large molecule numbers and long trapping times
up to 27 s will allow an interaction-dominated regime to be attained, enabling
collision studies and investigation of evaporative cooling toward a BEC of
polyatomic molecules
86-km optical link with a resolution of 2.10-18 for RF frequency transfer
RF frequency transfer over an urban 86 km fibre has been demonstrated with a
resolution of 2.10-18 at one day measuring time using an optical compensator.
This result is obtained with a reference carrier frequency of 1 GHz, and a
rapid scrambling of the polarisation state of the input light in order to
reduce the sensitivity to the polarisation mode dispersion in the fibre. The
limitation due to the fibre chromatic dispersion associated with the laser
frequency fluctuations is highlighted and analyzed. A preliminary test of an
extended compensated link over 186 km using optical amplifiers gives a
resolution below 10-17 at 1 day
Quantum cascade laser frequency stabilisation at the sub-Hz level
Quantum Cascade Lasers (QCL) are increasingly being used to probe the
mid-infrared "molecular fingerprint" region. This prompted efforts towards
improving their spectral performance, in order to reach ever-higher resolution
and precision. Here, we report the stabilisation of a QCL onto an optical
frequency comb. We demonstrate a relative stability and accuracy of 2x10-15 and
10-14, respectively. The comb is stabilised to a remote near-infrared
ultra-stable laser referenced to frequency primary standards, whose signal is
transferred via an optical fibre link. The stability and frequency traceability
of our QCL exceed those demonstrated so far by two orders of magnitude. As a
demonstration of its capability, we then use it to perform high-resolution
molecular spectroscopy. We measure absorption frequencies with an 8x10-13
relative uncertainty. This confirms the potential of this setup for ultra-high
precision measurements with molecules, such as our ongoing effort towards
testing the parity symmetry by probing chiral species
CXCR6 marks a novel subset of T-bet(lo)Eomes(hi) natural killer cells residing in human liver
This work was funded by a Wellcome Trust Investigator Award to MKM funding KS and LP, MRC Career Development Award to CD, MRC Clinical Research Training Fellowship to DP, Wellcome Trust Henry Dale Fellowship to VM
Molecular definition of group 1 innate lymphoid cells in the mouse uterus
Determining the function of uterine lymphocytes is challenging because of the rapidly changing nature of the organ in response to sex hormones and, during pregnancy, to the invading fetal trophoblast cells. Here we provide the first genome-wide transcriptome atlas of mouse uterine group 1 innate lymphoid cells (g1 ILCs) at mid-gestation. The composition of g1 ILCs fluctuates throughout reproductive life, with Eomes-veCD49a+ ILC1s dominating before puberty and specifically expanding in second pregnancies, when the expression of CXCR6, a marker of memory cells, is upregulated. Tissue-resident Eomes+CD49a+ NK cells (trNK), which resemble human uterine NK cells, are most abundant during early pregnancy, and showcase gene signatures of responsiveness to TGF-β, connections with trophoblast, epithelial, endothelial and smooth muscle cells, leucocytes, as well as extracellular matrix. Unexpectedly, trNK cells express genes involved in anaerobic glycolysis, lipid metabolism, iron transport, protein ubiquitination, and recognition of microbial molecular patterns. Conventional NK cells expand late in gestation and may engage in crosstalk with trNK cells involving IL-18 and IFN-γ. These results identify trNK cells as the cellular hub of uterine g1 ILCs at mid-gestation and mark CXCR6+ ILC1s as potential memory cells of pregnancy.This work was funded by a Wellcome Trust Investigator Award 200841/Z/16/Z, the Centre for Trophoblast Research (CTR), and the Cambridge NIHR BRC Cell Phenotyping Hub to FC, the Associazione Italiana Ricerca per la Ricerca sul Cancro (AIRC) - Special Project 5x1000 no. 9962, AIRC IG 2017 Id.19920 and AIRC 2014 Id. 15283 to LM, and Ministero della Salute RF-2013, GR-2013-02356568 to PV. IF was funded by a CTR PhD fellowship
- …