The rich internal structure and long-range dipole-dipole interactions
establish polar molecules as unique instruments for quantum-controlled
applications and fundamental investigations. Their potential fully unfolds at
ultracold temperatures, where a plethora of effects is predicted in many-body
physics, quantum information science, ultracold chemistry, and physics beyond
the standard model. These objectives have inspired the development of a wide
range of methods to produce cold molecular ensembles. However, cooling
polyatomic molecules to ultracold temperatures has until now seemed
intractable. Here we report on the experimental realization of opto-electrical
cooling, a paradigm-changing cooling and accumulation method for polar
molecules. Its key attribute is the removal of a large fraction of a molecule's
kinetic energy in each step of the cooling cycle via a Sisyphus effect,
allowing cooling with only few dissipative decay processes. We demonstrate its
potential by reducing the temperature of about 10^6 trapped CH_3F molecules by
a factor of 13.5, with the phase-space density increased by a factor of 29 or a
factor of 70 discounting trap losses. In contrast to other cooling mechanisms,
our scheme proceeds in a trap, cools in all three dimensions, and works for a
large variety of polar molecules. With no fundamental temperature limit
anticipated down to the photon-recoil temperature in the nanokelvin range, our
method eliminates the primary hurdle in producing ultracold polyatomic
molecules. The low temperatures, large molecule numbers and long trapping times
up to 27 s will allow an interaction-dominated regime to be attained, enabling
collision studies and investigation of evaporative cooling toward a BEC of
polyatomic molecules