1,708 research outputs found

    Exploring the Dynamics of Three-Dimensional Lattice Gauge Theories by External Fields

    Full text link
    We investigate the dynamics of three-dimensional lattice gauge theories by means of an external Abelian magnetic field. For the SU(2) lattice gauge theory we find evidence of the unstable modes.Comment: 3 pages, PostScript. Contribution to the LATTICE 93 Conference (Dallas, U.S.A., September 1993) preprint BARI-TH-162/9

    Heterotic T-Duality and the Renormalization Group

    Get PDF
    We consider target space duality transformations for heterotic sigma models and strings away from renormalization group fixed points. By imposing certain consistency requirements between the T-duality symmetry and renormalization group flows, the one loop gauge beta function is uniquely determined, without any diagram calculations. Classical T-duality symmetry is a valid quantum symmetry of the heterotic sigma model, severely constraining its renormalization flows at this one loop order. The issue of heterotic anomalies and their cancelation is addressed from this duality constraining viewpoint.Comment: 17 pages, Late

    Finite-Size Scaling of Vector and Axial Current Correlators

    Get PDF
    Using quenched chiral perturbation theory, we compute the long-distance behaviour of two-point functions of flavour non-singlet axial and vector currents in a finite volume, for small quark masses, and at a fixed gauge-field topology. We also present the corresponding predictions for the unquenched theory at fixed topology. These results can in principle be used to measure the low-energy constants of the chiral Lagrangian, from lattice simulations in volumes much smaller than one pion Compton wavelength. We show that quenching has a dramatic effect on the vector correlator, which is argued to vanish to all orders, while the axial correlator appears to be a robust observable only moderately sensitive to quenching.Comment: version to appear in NP

    Analytic Representations of Yang-Mills Amplitudes

    Get PDF
    Scattering amplitudes in Yang-Mills theory can be represented in the formalism of Cachazo, He and Yuan (CHY) as integrals over an auxiliary projective space---fully localized on the support of the scattering equations. Because solving the scattering equations is difficult and summing over the solutions algebraically complex, a method of directly integrating the terms that appear in this representation has long been sought. We solve this important open problem by first rewriting the terms in a manifestly Mobius-invariant form and then using monodromy relations (inspired by analogy to string theory) to decompose terms into those for which combinatorial rules of integration are known. The result is a systematic procedure to obtain analytic, covariant forms of Yang-Mills tree-amplitudes for any number of external legs and in any number of dimensions. As examples, we provide compact analytic expressions for amplitudes involving up to six gluons of arbitrary helicities.Comment: 29 pages, 43 figures; also included is a Mathematica notebook with explicit formulae. v2: citations added, and several (important) typos fixe

    Manifesting Color-Kinematics Duality in the Scattering Equation Formalism

    Get PDF
    We prove that the scattering equation formalism for Yang-Mills amplitudes can be used to make manifest the theory's color-kinematics duality. This is achieved through a concrete reduction algorithm which renders this duality manifest term-by-term. The reduction follows from the recently derived set of identities for amplitudes expressed in the scattering equation formalism that are analogous to monodromy relations in string theory. A byproduct of our algorithm is a generalization of the identities among gravity and Yang-Mills amplitudes.Comment: 20 pages, 20 figure

    Scattering Equations and Feynman Diagrams

    Get PDF
    We show a direct matching between individual Feynman diagrams and integration measures in the scattering equation formalism of Cachazo, He and Yuan. The connection is most easily explained in terms of triangular graphs associated with planar Feynman diagrams in ϕ3\phi^3-theory. We also discuss the generalization to general scalar field theories with ϕp\phi^p interactions, corresponding to polygonal graphs involving vertices of order pp. Finally, we describe how the same graph-theoretic language can be used to provide the precise link between individual Feynman diagrams and string theory integrands.Comment: 18 pages, 57 figure

    Spectral Properties of the Overlap Dirac Operator in QCD

    Full text link
    We discuss the eigenvalue distribution of the overlap Dirac operator in quenched QCD on lattices of size 8^{4}, 10^{4} and 12^{4} at \beta = 5.85 and \beta = 6. We distinguish the topological sectors and study the distributions of the leading non-zero eigenvalues, which are stereographically mapped onto the imaginary axis. Thus they can be compared to the predictions of random matrix theory applied to the \epsilon-expansion of chiral perturbation theory. We find a satisfactory agreement, if the physical volume exceeds about (1.2 fm)^{4}. For the unfolded level spacing distribution we find an accurate agreement with the random matrix conjecture on all volumes that we considered.Comment: 16 pages, 8 figures, final version published in JHE

    Integration Rules for Scattering Equations

    Get PDF
    As described by Cachazo, He and Yuan, scattering amplitudes in many quantum field theories can be represented as integrals that are fully localized on solutions to the so-called scattering equations. Because the number of solutions to the scattering equations grows quite rapidly, the contour of integration involves contributions from many isolated components. In this paper, we provide a simple, combinatorial rule that immediately provides the result of integration against the scattering equation constraints for any M\"obius-invariant integrand involving only simple poles. These rules have a simple diagrammatic interpretation that makes the evaluation of any such integrand immediate. Finally, we explain how these rules are related to the computation of amplitudes in the field theory limit of string theory.Comment: 30 pages, 29 figure

    Integration Rules for Loop Scattering Equations

    Get PDF
    We formulate new integration rules for one-loop scattering equations analogous to those at tree-level, and test them in a number of non-trivial cases for amplitudes in scalar ϕ3\phi^3-theory. This formalism greatly facilitates the evaluation of amplitudes in the CHY representation at one-loop order, without the need to explicitly sum over the solutions to the loop-level scattering equations.Comment: 22 pages, 17 figure

    Fine‐scale measurement of diffusivity in a microbial mat with nuclear magnetic resonance imaging

    No full text
    Noninvasive 1H‐nuclear magnetic resonance (NMR) imaging was used to investigate the diffusive properties of microbial mats in two dimensions. Pulsed field gradient NMR was used to acquire images of the H2O diffusion coefficient, Ds, and multiecho imaging NMR was used to obtain images of the water density in two structurally different microbial mats sampled from Solar Lake (Egypt). We found a pronounced lateral and vertical variability of both water density and water diffusion coefficient, correlated with the laminated and heterogeneous distribution of microbial cells and exopolymers within the mats. The average water density varied from 0.5 to 0.9, whereas the average water diffusion coefficient ranged from 0.4 to 0.9 relative to the values obtained in the stagnant water above the mat samples. The apparent water diffusivities estimated from NMR imaging compared well to apparent O2 diffusivities measured with a diffusivity microsensor. Analysis of measured O2 concentration profiles with a diffusion‐reaction model showed that both the magnitude of calculated rates and the depth distribution of calculated O2 consumption/production zones changed when the observed variations of diffusivity were taken into account. With NMR imaging, diffusivity can be determined at high spatial resolution, which can resolve inherent lateral and vertical heterogeneities found in most natural benthic systems
    corecore