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1 Introduction

A most surprising new way of computing field theory amplitudes discovered by Cachazo, He

and Yuan (CHY) [1–3] uses as essential input the solutions to a set of so-called scattering

equations, which depend on the external momenta. Amplitudes can then be represented as

integrals over auxiliary variables that are fully localized by constraints from the scattering

equations. This means that tree-level field theory amplitudes of an arbitrary number of

external legs can be computed by solving a set of algebraic equations, and summing over

contributions from these solutions. Early on, it was shown how the construction extends

from scalar ϕ3-theory to Yang-Mills and gravity [2]. And a direct proof of the general

construction for scalar ϕ3-theory and Yang-Mills theory has been provided by Dolan and

Goddard [4].

Much in the construction of the CHY formalism resembles string theory. Indeed,

the CHY prescription can be seen as a particular infinite-tension limit of ambitwistor

strings [5–9]. More generally, it was shown in ref. [10] that ordinary superstring theory can

be put in a form that immediately transcribes into a CHY-type construction by a simple

change of integration measure. In this way, amplitudes involving fermions, scalars, and

combinations thereof with gauge fields could be given a CHY-like prescription, directly

from superstring integrands. (For an alternative discussion of amplitudes with fermions,

see also ref. [11].) This transcription was shown to be possible once all tachyonic modes

had been made to cancel explicitly in the integrand by means of integrations by parts. In

this way, a very large class of theories have been given a CHY-like prescription. Extensions

to include massive legs [12, 13] have also been considered. A connection between kinematic

algebra for gauge theory and the scattering equations have been considered in ref. [14].
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More recently, Cachazo, He and Yuan have generalized the construction to ϕ4-theory

and various related scalar theories coupled to gauge fields and gravitons [15]. Although

based on dimensional reduction of Yang-Mills theory, this provides yet more evidence that

a CHY-like prescription may exist for any quantum field theory.

Essential to the CHY formulation is the need to solve the constraints that impose

the scattering equations. For an n-particle amplitude, there are (n − 3)! such solutions.

This is obviously related to the fact that BCJ-identities [16] reduce the basis of n-particle

amplitudes to one involving only (n−3)! partial amplitudes [17, 18]. While straightforward

in principle, the need to find (n−3)! solutions to the scattering equations rapidly becomes a

(serious) computational obstacle. Moreover, after summing over all the different solutions,

one often ends up with a remarkably simple answer. Such a situation is not uncommon

in quantum field theory, and it is natural to wonder if there were a way around it. Is

there a simpler way to produce the result obtained after summing over all solutions to the

scattering equations?

The purpose of this paper is to arrive at such direct integration rules. String theory

can provide a very useful source of inspiration for this problem. By considering integrands

with simple poles, tree-level field theory amplitudes can be obtained as a singular limit

near the poles, with explicit factors of α′ outside the integral rendering the final answer

finite as α′→ 0. With the explicit map provided in ref. [10] from superstring integrands

to CHY integrands, it is clear that a relation must exist between these two very different

types of integrals. One of the aims of this paper is to derive this relationship explicitly.

The class of integrands to which the integration rules apply are SL(2,C)-invariant CHY

integrands that have simple poles only, but which can have non-trivial numerators. These

integrands are special in that their integrals evaluate to a sum of Feynman diagrams — the

most interesting class of integrands. It has previously been shown by CHY [2] that a certain

class of integrals produce sums of Feynman diagrams. This paper generalizes this result

and characterizes all CHY integrals that are equal to Feynman diagrams. In addition, we

provide a set of integration rules for evaluating these integrals. The integration rules can be

given in a precise algebraic form, but can also be conveniently described diagrammatically.

Using our diagrammatic method, one can essentially read-off the result of integration with

respect to the CHY measure and the associated sum over (n− 3)! solutions.

In order to calculate Yang-Mills or gravity amplitudes in the CHY formalism, it is

necessary to also consider CHY integrals with higher order poles. We therefore provide a

procedure for reducing such integrals into those that can be evaluated with the integration

rules we have derived. This link will be provided by a set of Pfaffian identities that

are valid on solutions to the scattering equations. This procedure is easy to execute —

though it provides an alternative to the method recently described in ref. [19] for evaluating

CHY integrals.

We also give integration rules for the CHY integrands that contain a Pfaffian and

appear in the CHY ϕ4-theory [15], and we examine the connection to the dual formulation

in string theory.
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2 From superstring amplitudes to CHY integrands

In order to develop integration rules for CHY integrands it is useful to first describe the

link between superstring theory and the CHY prescription [10]. The CHY representation

for the n-particle amplitude in ϕ3-theory can be given as, [1–4]:

Aϕ3

n = gn−2
∫
dΩCHY

(
1

(z1−z2)2(z2−z3)2· · · (zn−z1)2

)
, (2.1)

where dΩCHY denotes the following integration measure combined with the scattering equa-

tion constraints,

dΩCHY ≡
dnz

vol(SL(2,C))

∏
i

′δ
(
Si
)

= (zr−zs)2(zs−zt)2(zt−zr)2
∏

i∈Zn\{r, s, t}

dzi δ
(
Si
)
, (2.2)

(independent of the choice of {r, s, t}), where Si denotes the ith scattering equation,

Si ≡
∑
j 6=i

sij
(zi−zj)

≡
∑
j 6=i

2ki ·kj
(zi−zj)

, (2.3)

with ki and kj on-shell, massless momenta so that sij ≡ (ki + kj)
2 = 2ki ·kj . In general,

we define si,j,··· ,k ≡ (ki+kj + · · · +kk)
2. As usual, the δ-functions are to be understood

homomorphically as residue prescriptions:∫
dz h(z)δ

(
f(z)

)
≡ Res

f(z)=0
(dz h(z)/f(z)) . (2.4)

Comparing this with a string-like representation of a corresponding amplitude,

An= lim
α′→0

gn−2 α′
n−3

∫ n−1∏
i=3

dzi
(z1 − z2)(z2 − zn)(zn − z1)∏n

i=1(zi − zi+1)

∏
1≤i<j≤n

(zi − zj)α
′sij , (2.5)

where the integration is ordered along the real axis, one sees immediately that the CHY

prescription (2.1) is obtained by inserting the δ-function constraint

1

α′n−3
(z1 − z2)(z2 − zn)(zn − z1)

∏
i 6=1,2,n

δ(Si)
n∏
i=1

(zi − zi+1)
−1 , (2.6)

into (2.5).1 This is indeed the general prescription for the superstring — hence for gauge

fields, scalars and fermions — once all tachyon poles have been explicitly cancelled through

partial integrations [10]. Below, we will also discuss cases where a match can be made

between bosonic string theory and CHY integrands.

It is instructive to analyze how the two expressions, (2.1) and (2.5), can coincide. First,

in string theory, the integration contour is explicitly ordered. This directly encodes the

cyclic ordering of legs in the amplitude. In contrast, the integration contour for (2.1) is

not explicitly ordered; rather, the cyclic ordering is encoded in terms of the poles in the

1Here, we have chosen the values {1, 2, n} for {r, s, t} in (2.2).
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measure of integration. Second, the regions of integrations that contribute in the α′→ 0

limit of (2.5) are localized around the singularities of the poles, while the CHY measure

hits precisely the correct fixed values that reproduce the leading result of the integral.

Pure Yang-Mills theory is only slightly more complicated. In the superstring formalism

reviewed in ref. [20], an n-point field theory amplitude can be computed through ordered

integrations as follows:

An = lim
α′→0

α′
(n−4)/2

∫ n−1∏
i=3

dzi
(z1−z2)(z2−zn)(zn−z1)∏n

i=1(zi − zi+1)

×
∫ ∏

i

dθi
∏
j

dϕj
∏
i<j

(zi − zj − θiθj)α
′sij

×
∏
i<j

exp

[√
2α′(θi−θj)(ϕiεi ·kj +ϕjεj ·ki)

zi − zj
−
ϕiϕjεi ·εj
zi − zj

−
θiθjϕiϕjεi · εj

(zi − zj)2

]
,

(2.7)

where the auxiliary, Grassmann integrations over ϕi and θi automatically impose the multi-

linearity condition on the amplitude in terms of external polarization vectors εµj . The result

of performing these Grassmann integrations will be ordinary bosonic integrands that have

poles in the zi variables. By repeated use of integrations by parts, or alternatively, by

performing the superstring computation with the picture change of ref. [10], this bosonic

integrand can be written in terms of single poles only plus terms that are proportional to

the scattering equations. This separation of terms is equivalent to a complete cancellation

of tachyon poles in the superstring integrand. At this point, one can insert the δ-function

constraint (2.6) to recover the CHY prescription [1–3] for Yang-Mills theory.

This connection between a string theory computation of field theory amplitudes and

the CHY formalism leads us to investigate in detail the manner in which the two different

integrands produce the same answer. To make the discussion general, let us consider the

following limit of a generic ordered string theory integral,

In= lim
α′→0

α′
n−3

∫ n−1∏
i=3

dzi (z1−z2)(z2−zn)(zn−z1)
∏

1≤i<j≤n
|zi − zj |α

′sijH(z) , (2.8)

where H(z) consists of products of factors (zi − zj)
−` such that the whole integrand is

Möbius-invariant. It is often convenient to consider H(z) prior to gauge-fixing.

We are mostly interested in string theory integrands H(z) that can lead to convergent

integrals for finite α′ in a neighborhood around the origin. As mentioned above, this can

be achieved in the superstring case by combining terms, perhaps after integration by parts.

With the prefactor α′n−3 this means that to obtain a finite field theory limit (at tree-

level), the leading divergence will go as 1/α′n−3. The n − 3 integrations remaining after

gauge-fixing provide this leading term. Let us now explore in detail how this 1/α′n−3-

divergence is achieved and find the finite result it leaves as α′→0, after cancellation with

the prefactor. We may determine whether or not the integral will diverge with the needed

power as follows:
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The integration rule.

• Enumerate all subsets of consecutive variables T ≡{zj , zj+1, . . . , zj+m} for which the

number of factors (zl − zk)
−1 in H(z) (with multiplicity) for pairs {zl, zk} ∈ T is

equal to m — the number of elements in T minus one. Complementary subsets are

to be taken to be equivalent, T ' T c. Integration over the variables of each such

subsets has a 1/α′-divergence in the α′→0 limit. To each subset T , we assign a factor

1/(α′sj,j+1,...,j+m).

• Let us call a pair of enumerated subsets T1, T2 satisfying the criterion above compatible

if they (or their complements, which are considered equivalent) are either nested or

disjoint.

• Every (n−3)-element collection τ ≡ {T1, . . . , Tn−3} of pairwise-compatible enumer-

ated subsets will contribute the product of the factors for each Ta∈τ to the integral.

The final integral is simply the sum over these products for each of the collections τ .

It follows from these rules that if there are no (n−3)-element collections of mutually

compatible subsets, the integral (combined with the α′n−3 prefactor) will vanish in the

α′→0 limit.

Sketch of proof. Consider the integral,

In= lim
α′→0

α′
n−3

∫ n−1∏
i=3

dzi (z1−z2)(z2−zn)(zn−z1)
∏

1≤i<j≤n
|zi − zj |α

′sijH(z) . (2.9)

The integration rules are formulated without reference to a specific gauge, but to derive

them it is convenience to work in a specific gauge. We choose the gauge where z1 =∞,

z2=1, zn=0. The integrations are then ordered,∫ 1

0
dz3

∫ z3

0
dz4 · · ·

∫ zn−2

0
dzn−1 . (2.10)

A divergence as α′→ 0 occurs when some of the variables zi, i ∈ {2, . . . , n} tend

to the same value. Because of the ordered integration domain, these variables must be

consecutive. Now pick a positive integer m and consider the case when variables zj to

zj+m tend to the same value. It is useful to define yj ≡ 0 and to introduce new variables

for i=j + 1, . . . , j +m:

yi ≡ (zj − zi) . (2.11)

Then, for k, l∈{j, j + 1, . . . , j +m} ,

(zk − zl)→ (yl − yk) , (2.12)

and the integration region becomes∫ zj

0
dzj+1 · · ·

∫ zj+m−1

0
dzj+m =

∫ zj

0
dyj+m

∫ yj+m

0
dyj+m−1 · · ·

∫ yj+2

0
dyj+1 . (2.13)

– 5 –
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In order to identify potential divergences in the α′→ 0 limit, it is convenient to define

xj+m≡1 and perform one more change of variables for i=j + 1, . . . , j +m− 1:

xi ≡ yi/yj+m , (2.14)

so that, for k, l∈{j, j + 1, j + 2, . . . , j + n},

(yl − yk)→ (yj+m)(xl − xk) . (2.15)

The Jacobian of this change of variables is therefore (yj+m)m−1, and the integration is now,∫ zj

0
dyj+m

∫ yj+m

0
dyj+m−1 · · ·

∫ yj+2

0
dyj+1 =∫ zj

0
dyj+m(yj+m)m−1

∫ 1

0
dxj+m−1

∫ xj+m−1

0
dxj+m−2 · · ·

∫ xj+2

0
dxj+1 .

(2.16)

The advantage of this transformation is that the integration domains of variables xi do

not depend on yj+m. Whether or not the integral over yj+m will diverge at the lower

endpoint will therefore only depend on whether the integrand contains yj+m raised to any

negative power.

For each pole (zl − zk)−1 in H(z) with k, l∈{j, j + 1, j + 2, . . . , j + m} we pick up a

factor of (yj+m)−1. Consequently, if the number of such factors is equal to m, we get a

factor of (yj+m)−m. After including the Jacobian, this leaves us with (yj+m)−1. That is,

when H(z) has precisely m such factors (counted with multiplicity), we obtain a divergence

that goes as 1/α′ as α′→0.2 And because of the factor,∏
1≤i<j≤n

|zi − zj |α
′sij , (2.17)

in the integration measure, we also get a factor of (yj+m)α
′skl for each pair k, l∈{j, j+1, j+

2, . . . , j + m}. In other words, under the two changes of variables described above, (2.17)

produces a factor of (yj+m)α
′sj,j+1,...,j+m . We therefore arrive at the following integral:∫ zj

0
dyj+m

(
(yj+m)α

′sj,j+1,...,j+m

yj+m
+ · · ·

)
=

1

α′sj,j+1,...,j+m
+O

(
(α′)0

)
, (2.18)

where the terms in the ellipsis are less singular in the α′→0 limit.

The final task is to collect all such leading divergences in the limit α′→ 0. Retaining

only these leading-order terms, we can neglect all factors of the form (zl − zk) when l ∈
{j, j + 1, . . . , j +m} while k 6∈ {j, j + 1, . . . , j +m} (or vice versa). The full string theory

integral therefore factors into three parts: (i) the integrals over zi for i<j; (ii) the integrals

over zi for j≤ i≤ j + m; and (iii) the integrals over zi for j + m<i. Each of these three

parts will be of the same form as the full original integral. It is evident that all factors

2If we consider the more general case where there can also be factors in the numerator of H(z), the argu-

ment goes through essentially unchanged. It is then the number of factors going to zero in the denominator

minus those in the numerator that must equal m.
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1/si1,i2,...,is so obtained from these contributions will be either disjoint or nested. But it

can happen that integrations in overlapping sets each have the required divergence. This

occurs when variables zi to zj tend to the same value, but where we also get a divergence

when variables zk to zl tend to the same value, with the ordering i<k<j<l. In this case

the divergences occur in two distinct regions of the integration domain of the full integral.

Since we can write the full integral as the sum of the integral over one part of the domain

plus the integral over the remaining part, we must sum over the contributions from the two

divergent regions. In general we must sum over all the contributions from distinct regions

with the required divergence. It is perhaps easiest to illustrate the complete integration

rule by a simple example.

Example. Consider the string theory integral that involves the following H(z) factor:

H(z) =
1

(z1 − z2)(z1 − z5)(z2 − z4)(z3 − z4)(z3 − z6)(z5 − z6)
. (2.19)

To evaluate the integral, we first use the rule saying that complementary subsets are equiv-

alent and select from the pairs of equivalent subsets the one not containing z1. Then the

subsets of the variables that will yield a 1/α′-divergence are the following:

{3, 4} : two variables, one factor connecting them

{5, 6} : two variables, one factor connecting them

{2, 3, 4} : three variables, two factors connecting them

{3, 4, 5, 6} : four variables, three factors connecting them

(2.20)

These subsets are all compatible with each other except that {2, 3, 4} and {3, 4, 5, 6} are

incompatible. We can therefore form two collections of three, pairwise compatible subsets:

τ1 ≡
{
{3, 4}, {5, 6}, {2, 3, 4}

}
τ2 ≡

{
{3, 4}, {5, 6}, {3, 4, 5, 6}

} (2.21)

Consequently, using our integration rule, we find that to leading-order in α′ the integral is

given as follows:
1

s34s56

(
1

s234
+

1

s3456

)
1

(α′)3
. (2.22)

With the prefactor (α′)6−3 = (α′)3 the leading contribution to this string theory integral

is therefore
1

s34s56

(
1

s234
+

1

s3456

)
. (2.23)

We note that this corresponds to the sum of two Feynman diagrams contributing to the

6-point amplitude of ϕ3-theory.

It is easy to extend the above integration rules and derivation to the case when H(z)

also contains factors of (zi − zj). The only change is that when considering a subset

T = {zj , zj+1, . . . , zj+m}, the condition for the integration over the variables in T to have

a 1/α′-divergence becomes the following: the number of factors (zl − zk)−1 in H(z) with

zk, zl∈T minus the number of factors (zq − zr) in H(z) with zq, zr∈T must equal m.
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3 Rules for CHY Integration: the global residue theorem

With the translation rule between string theory and CHY integrals of [10], we know that

the integration rules for the leading terms of string theory integrals should map directly to

integration rules for CHY integrals. The purpose of this subsection is to establish that link

directly. Our tool is the global residue theorem, already exploited in detail by Dolan and

Goddard in ref. [4]. In this section, we will first describe how to derive general integration

rules for CHY integrals. Then as a special case, we will limit ourselves to those kinds of

integrals (using the transcription prescription of ref. [10]) that were evaluated in the field

theory limit of string theory in the previous section, and demonstrate that they agree. This

explicitly ties together the CHY prescription in terms of the global residue theorem with

the field theory limit of string theory, demonstrating the equivalence of the two.

Using the transcription rule of ref. [10] and comparing with the previous section, we

are led to consider CHY integrals of the following form:

In =

∫
dΩCHY H(z) , (3.1)

where dΩCHY was defined in (2.2), and H(z) is a product of factors (zi−zj)−1 such that each

zi, with i∈{1, 2, . . . , n}, appears in exactly four terms (this ensures SL(2,C)-invariance).

Here, the integration contour is entirely localized by the scattering equation δ-function

constraints appearing in dΩCHY. Interpreted as a contour integral (really, the residue)

enclosing the solutions to the scattering equations,

In =

∮
S1=···=Sn=0

dz1dz2 · · · dzn
(zr − zs)2(zs − zt)2(zt − zr)2

dzrdzsdzt
H(z)

1∏
i 6=r,s,t Si

, (3.2)

enables us to make use of the global residue theorem. This is nicely explained and pursued

in ref. [4], and it tells us that the sum of the residues at the solutions to the scattering

equations is equal to minus the sum of all other residues. By identifying and evaluating

these other residues, we can therefore evaluate CHY integrals.

For concreteness, we will adopt the same gauge as in the previous section: z1=∞,

z2=1, zn=0. We also introduce,

G(z3, z4, . . . , zn−1) ≡ lim
z1→∞

z41
H(z1, 1, z3, . . . , zn−1, 0)

. (3.3)

In this gauge, the CHY integral reads as follows:

In =

∮
S1=···=Sn=0

dz3dz4 · · · dzn−1
1

G(z3, z4, . . . , zn−1)

1∏n−1
i=3 Si

. (3.4)

It is convenient to have the integrand explicitly written out as a rational function. To this

end, following Dolan and Goddard [4], we introduce the following polynomial:

fi = Si

n∏
j=2
j 6=i

(zi − zj) . (3.5)

– 8 –
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With these definitions we arrive at the following expression for the CHY integral:

In =

∮
f3=···=fn−1=0

dz3dz4 · · · dzn−1
1

G(z3, z4, . . . , zn−1)

∏n−1
i=3

∏n
j=2
j 6=i

(zi − zj)∏n−1
i=3 fi

. (3.6)

Clearly, the task is to determine which conditions G(z3, z4, . . . , zn−1) must satisfy in order

for the integrand of In to contain poles beyond those at the solutions to the scattering

equations.

We now start to analyze this contour integral. Consider the case where variables zi
tend to zn = 0 for i∈T ≡{n−m,n−m+1, . . . , n−1, n} and 1≤m≤n−3. Let us redefine:

zn−m = ε, zi = εxi for i = n−m, n−m+ 1, . . . , n .

Note that xn−m = 1 and xn = 0.

We can determine whether the integrand In has a pole at ε = 0 by simple power

counting. First, we count the powers of ε in the numerator: the factor

n−1∏
i=3

n∏
j=2
j 6=i

(zi − zj) (3.7)

contains m×m factors of the form (zi−zj) with i, j∈T and each of these lead to one power

of ε. The measure dz3dz4 · · · dzn−1 contributes m − 1 factors of ε, namely one factor for

each dzi with i∈T\{n−m,n}. So there are m2 +m− 1 factors of ε in the numerator.

In the denominator, each polynomial fi with i ∈ T contains m − 1 factors of ε, and

there are m such fi’s. If we denote the number of factors of ε in G(z3, z4, . . . , zn−1) with

mG, there are m×(m− 1) +mG factors of ε in the denominator. Subtracting the ε-factors

in the numerator, we find that there are mG − 2m+ 1 net factors of ε in the denominator.

In conclusion, we arrive at the counting rule that if mG=2m, then there is a simple pole;

and if mG>2m then there is a higher-order pole.

The analysis of Dolan and Goddard [4] shows that if there is a pole in the integrand

of In at the point where the variables with indices in T are equal, then In will precisely

pick up a propagator carrying the legs indexed by the numbers in T . To state this more

precisely, we first have to introduce rescaled versions of the Si:

Si =
1

ε
[1 +O(ε)]S̃i , S̃i =

∑
j∈T
j 6=i

sij
xi − xj

, for i ∈ T ,

Si = Ŝi +O(ε) , Ŝi =
∑
j 6∈T
j 6=i

sij
zi − zj

+
∑
j∈T

sij
zi
, for i 6∈ T .

The statement, then, is that if S̃i = 0 for all i ∈ T\{n−m,n}, then

(xn−m − xn)S̃n−m = S̃n−m =
1

2

(∑
i∈T

ki

)2

.
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When we use the global residue theorem, one of the residues contributing to In will be the

residue where zn−m is equal to zero and all Si except Sn−m vanish for 3≤ i≤n. In the case

where mG=2m and the pole is simple, the residue picks up a propagator and factorizes in

two as follows:

Res(S3, S4, . . . , Sn−m−1, zn−m, Sn−m+1, . . . , Sn−1) =

1

sn−m,n−m+1,...,n

∮
Ŝ1=···=Ŝn−m−1=0

dz3dz4 · · · dzn−m−1
1

Ĝ(z3, z4, . . . , zn−m−1)

1∏n−m−1
i=3 Ŝi

×

∮
S̃n−m+1=···=S̃n−1=0

dxn−m+1dxn−m+2 · · · dxn−1
1

G̃(xn−m+1, xn−m+2, . . . , xn−1)

1∏n−1
i=n−m+1 S̃i

,

where

lim
ε→0

G(z3, z4, . . . , zn−1)

εmG
= Ĝ(z3, z4, . . . , zn−m−1)G̃(xn−m+1, xn−m+2, . . . , xn−1) .

From here, one could apply the counting rule to

Ĝ(z3, z4, . . . , zn−m−1) and G̃(xn−m+1, xn−m+2, . . . , xn−1) ,

to look for further poles and iterate this procedure until the integrations have been com-

pletely carried out. Because the rescaled variables separate entirely from the non-rescaled

ones, it is clear that the sets of external legs carried by the propagators will be either

nested or disjoint. It also clear that in order for the residue to be non-zero, the number

of poles encountered in this iterative procedure must equal the number of integrations —

that is, n− 3.

The above counting rule and factorization property are clearly specific to the chosen

gauge. The power counting was particularly easy to perform because one of the variables

zn in T was gauge-fixed to zero. However, as In is independent of the gauge choice, we

need not concern ourselves with this issue. We also note that In does not depend on the

ordering of the external legs, as can be seen from the way it was originally expressed in

the form prior to gauge-fixing. We are therefore free to relabel the legs and repeat the

above argument. In fact, the elements of T need not be consecutive: the counting rule still

holds. Also, rather than applying the counting rule to G(z3, z4, . . . , zn−1), we may apply

the counting rule directly to the non-gauge-fixed factor H(z).

A minor comment: by gauge-fixing z1 to infinity, we seem to have excluded the possi-

bility of obtaining any propagator carrying external leg number one. This of course cannot

be true (and the integral is independent of the chosen gauge-fixing); and indeed, because

of overall energy-momentum conservation, any propagator of a set of external legs equals

the propagator carrying all the other external legs. In general, Möbius invariance ensures

that applying the counting rule to H(z) on a subset of indices {1, 2, . . . , n} is equivalent to

applying the rule on the complement of the subset.
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To summarize, we have derived the following rules for evaluating In:

• If there exists any subset T ⊂{1, . . . , n} with (m+1) elements such that H(z) contains

more than 2m factors of (zi−zj)−1 with i, j∈T , then the integrand of In has a higher-

order pole, and In cannot be written simply as a product of propagators. If, on the

the other hand, the integrand of In has no higher-order poles, we can evaluate In
through the following steps:

• Find all poles by determining all subsets T ⊂ {1, . . . , n} such that H(z) contains

2m factors of (zi − zj) with i, j ∈ T . Assign to each pole a propagator of the form

1/
(∑

i∈T ki
)2

. Complementary subsets are considered equivalent.

• Whenever there are (n − 3) subsets that they are pairwise compatible, there is a

residue which is equal to the product of the propagators of the subsets. Add together

all the residues to obtain In.

As in the case of the string theory rules and their derivation, it is easy to extend these

results to the case when H(z) has a non-trivial numerator. The only change is that for

every subset T one should consider the following number: the number of factors (zi−zj)−1

with i, j ∈ T in H(z) minus the number of factors (zk − zl) with k, l ∈ T in H(z). If this

number is equal to 2m there is a simple pole, and if it is higher there is a higher-order pole.

We will return to the case of higher-order poles, and how to evaluate CHY integrals

in those cases in section 4.

3.1 From string theory to CHY via two-cycles

The integration rules take on a particularly simple form when H(z) can be written as a

product of two “cycles” — that is, when H(z) = Cyclea(z) Cycleb(z) where the cycles are

of the form
n∏
i=1

1

zσ(i) − zσ(i+1)
, (3.8)

with σ ∈Sn, the permutation group on n elements. In this case we may without loss of

generality take one of these cycles to define the ordering of legs so that,

Cycleb(z) =
n∏
i=1

1

zi − zi+1
, (3.9)

and in applying the integration rules, one can instead consider subsets of consecutive

numbers T = {j, j + 1, . . . , j + m} such that Cycleb(z) contains m factors of (zl − zk)−1

with l, k∈T . Then the integration rules become identical to those derived for string theory

integration, and we arrive at the identity:∫
dz1dz2 · · · dzn

(zr − zs)2(zs − zt)2(zt − zr)2

dzrdzsdzt

Cyclea(z)∏n
i=1(zi − zi+1)

n∏
i=1
i 6=r,s,t

δ
(
Si
)

= lim
α′→0

α′
n−3

∫ n−1∏
i=3

dzi (z1 − z2)(z2 − zn)(zn − z1) Cyclea(z)
∏

1≤i<j≤n
|zi − zj |α

′sij .

(3.10)
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In this way we derive explicitly the translation prescription (2.6) that was noted already

in ref. [10] and which links string theory integrands to CHY integrands. We note that the

appearance of Cycleb(z) in the CHY integrand is what replaces the ordered integrations in

string theory.

4 Reductions of higher-order poles via Pfaffian identities

We now return to the important question of how to evaluate CHY-type integrals when

the poles are of higher order. We remind the reader that this case was not treated in

section 3. First of all, in string theory higher-order poles generically correspond to terms

that diverge so strongly that the α′→0 limit cannot be taken without resorting to analytical

continuation. That is why the simple correspondence between string theory integrands and

CHY integrands [10] is valid only after such double (tachyonic) poles have been manifestly

cancelled in the integrand by means of integrations by parts. Correspondingly, the CHY

rule for integration must be modified. We can solve this problem by applying a series of

identities among CHY integrals.

Diagrammatically, we can represent the CHY integrals

In =

∫
dz1dz2 · · · dzn

(zr − zs)2(zs − zt)2(zt − zr)2

dzrdzsdzt
H(z)

n∏
i=1
i 6=r,s,t

δ
(
Si
)
, (4.1)

where H(z) has no factors of (zi − zj) in the numerator in terms of so-called 4-regular

graphs with n vertices numbered from 1 to n. For each factor of (zi − zj)−1 in H(z), we

draw an edge connecting vertices i and j.

Now, if there is any subset T ⊂{1, . . . , n} of (m+ 1) elements such that H(z) contains

2m+ k factors of (zi − zj)−1 with i, j∈T , then In has a pole of order k + 1. Graphically,

integrals with third-order poles are those whose CHY diagrams consist of two or more

separate graphs with no edges between them (e.g. a diagram that has two vertices connected

by four edges); the integrals with double poles can be separated in two graphs with no edges

between them if one removes two edges (e.g. a diagram with a triple line). Diagrams with

higher-order poles appear in the Yang-Mills and gravity amplitudes in the CHY formalism.

The CHY formula for the tree-level gluon amplitude is given by [2]

An =

∫
dΩCHY

Pf ′Ψ

(z1 − z2) · · · (zn − z1)
, (4.2)

while the CHY formula for the tree-level graviton amplitude is given by

Mn =

∫
dΩCHY

(
Pf ′Ψ

)2
, (4.3)

where Ψ is the 2n×2n anti-symmetric given by

Ψ =

(
A −CT

C B

)
, (4.4)
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with A being an anti-symmetric n× n matrix of the form

Aij =
ki ·kj
zi − zj

,

and

Bij =


εi ·εj
zi − zj

, if i 6= j ,

0, if i = j ,
Cij =


εi ·kj
zi − zj

, if i 6= j ,

−
∑
l 6=i

εi ·kl
zi − zl

, if i = j ,
(4.5)

and by Pf ′Ψ we denote the reduced Pfaffian of Ψ, which is defined as

Pf ′Ψ ≡ (−1)i+j

zi − zj
PfΨi,j ,

where 1≤ i<j≤n, and by Ψi,j we denote the submatrix of Ψ obtained by removing rows

and columns i and j. When evaluated on the scattering equations, Pf ′Ψ is independent of

the choice of i and j.

Because of the factor of (z1−z2) · · · (zn−z1) in the denominator of the gluon integrand,

one can at most encounter double poles when expanding out all the terms in the Yang-Mills

formula. The diagrams will always be connected. But in the case of gravity, one encounters

double poles as well as triple poles.

As mentioned, CHY integrals with higher order poles cannot be directly evaluated with

our integration rules provided above. But it is possible to express these more complicated

integrals in terms of integrals covered by our integration rules. A neat tool for this is

provided by Pfaffian identities. The Pfaffian identities that are of use to us concern the

matrix A considered above:

Aij =


ki ·kj
zi − zj

, if i 6= j ;

0 , if i = j .

(4.6)

However, here we use the additional matrix only as an auxiliary tool, a ‘generating function’

for CHY integral identities.

Even multiplicity reductions. When A is evaluated on a solution to the scattering

equations, the Pfaffian vanishes. For even n, this fact provides us already with a non-

trivial identity relating (n−1)!! CHY diagrams. But there is another Pfaffian identity that

is more practical because it relates only 2(n − 3)!! CHY diagrams. This identity is based

on the invariance of the reduced Pfaffian:

Pf ′A =
(−1)i+j

zi − zj
PfAi,j . (4.7)

As demonstrated in refs. [1–3], on the solutions to the scattering equations, the value of

Pf ′A is independent of the choice of i and j.
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Diagrammatically, the invariance of the reduced Pfaffian can be interpreted as follows.

If we draw a 3-regular graph with n vertices (we will from now on call this graph the

‘template’), then we need to superimpose a 1-regular graph in order to have a graphical

representation of a CHY integral. The Pfaffian of A can be regarded as the sum (with

appropriate sign) over all possible 1-regular graphs without closed loops given n vertices,

where each term is multiplied with a Mandelstam variable sij . And the reduced Pfaffian

can be regarded as the sum (with sign) over all possible 1-regular graphs without loops

given n vertices and one fixed edge, where each term is multiplied with a Mandelstam

variable for each non-fixed edge.

Equation (4.7) then tells us the following. If on our 3-regular graph we connect any

two vertices i and j with an additional edge and sum (with sign) over all ways of connecting

the n − 2 remaining vertices to form a 4-regular graph while multiplying each term with

the proper Mandelstam variables, the result (the sum of the corresponding CHY integrals)

will be independent of the choice of i and j.

As an example, consider the following template:

. (4.8)

We note that this template is in itself not identifiable as a CHY integrand, as it is not what

is called a 4-regular graph: from each vertex must emanate precisely four lines. We will now

dress it up various different ways that turn this starting template into 4-regular graphs.

Using the fact that the reduced Pfaffian is the same whether we fix legs 1 and 4 or legs

4 and 5, we obtain the following identity:

s23s56× − s25s36× + s26s35×

= s12s36× − s13s26× + s16s23× .

(4.9)

Read backwards, this identity rewrites a term with double pole (the last diagram) in terms

of diagrams with only single poles. These single-pole terms can be evaluated by means of

our integration rules. In practice, it can take a certain amount of experimentation before

one identifies the proper identity (or set of identities) that will completely rewrite a term
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with a double pole in terms of single poles. The arbitrariness in this procedure is of the

same kind as in string theory integrands, where also identifying a good choice of partial

integrations must rely on a certain amount of experimentation.

Odd multiplicity reductions. When n is odd, the Pfaffians of A and Ai,j vanish triv-

ially and the identities described above are of no use. But if by Ai we denote the sub-matrix

of A obtained by removing only row and column i from A, then PfAi = 0 for all i. To see

this, one can, without loss of generality, consider A1. If for each j=1, . . . , n− 1 one multi-

plies the jth row with k1·kj+1, then their sum gives zero when evaluated on the scattering

equations, implying that the rows of A1 are not linearly independent.

The vanishing of PfAi provides an identity that relates (n−2)!! CHY diagrams. Graph-

ically, the identity can be represented as follows: as a template we draw a graph with n

vertices and 1
2(3n+ 1) edges such that there are three edges incident to each vertex except

for one vertex to which four edges are incident. If we then sum (with sign) over all the

ways of drawing the remaining 1
2(n − 1) edges so that we obtain a 4-regular graph, while

multiplying each term with the Mandelstam variable sij if an edge connecting vertices i

and j is added to the template, then the result will be zero.

As an example, consider the following template:

. (4.10)

Only point 2 has the needed number of lines. Points 1, 3, 4 and 5 need additional connec-

tions in order to produce 4-regular graphs. Performing the weighted sum over the different

ways of completing the diagram, we get zero:

0 = s34s51 − s35s14 + s13s45 . (4.11)

Read backwards, this describes the double pole of the last diagram in terms of the two

other diagrams with only single poles. We have thus provided examples for both odd and

even n on how to evaluate CHY integrands with higher-order poles.

In some cases the use of such Pfaffian identities allows one to immediately express

an unknown CHY diagram in terms of some that can be evaluated with our integration

rules. But in general it will be necessary to invoke several Pfaffian identities involving

several new and unknown CHY diagrams and then eventually solve the system of equations.

A systematic procedure is to start with simple diagrams and then work towards more

complicated ones. A diagram with four edges connecting the same two vertices can only
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appear in Pfaffian identities where the template has two vertices connected with three

edges, so the identities involving quadruple-line diagrams will always involve only triple-

and quadruple-line diagrams. But these in turn can be re-expressed in terms of diagrams

with fewer quadruple- and triple-lines by using Pfaffian identities. The process can be

iterated until one reaches diagrams that can be written simply as sums of products of

propagators. Again, there is a direct analogy between this procedure and that of solving a

set of integration-by-parts identities in string theory.

The identities below will serve as examples of how to reduce diagrams to simpler ones

in the case of n=6:

=
s16s23
s34s56

+
s35s46
s34s56

− s13s26
s34s56

+
s36(s12− s45)

s34s56
.

(4.12)

These four simpler diagrams can then be further reduced themselves. The first and third

are related by a reordering of the external points and so one need only decompose one of

them, for example:

=
s35s46
s34s56

+
s15s24
s34s56

− s14s25
s34s56

+
s45(s12− s36)

s34s56
.

(4.13)

Diagrams 2 and 3 on the right-hand side are now in a form so that we can apply the

integration rules to them. The first and last have to be simplified further. The first one
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can be reduced thus:

=
s15s26
s12s56

+
s13s46
s12s56

− s14s36
s12s56

+
s16(s34− s25)

s12s56
.

(4.14)

We hope these examples suffice to illustrate the general method.

For simplicity, we have in this section considered the special case when H(z) has a

trivial numerator. But integrals whose integrands have non-trivial numerators can also be

re-expressed via Pfaffian identities. Such integrals can be represented diagrammatically by

adding to the type of diagram described above a dotted line connecting vertices i and j for

every factor of (zi− zj) in the numerator. In that case Möbius invariance dictates that the

number of normal lines minus the sum of dotted lines incident on each vertex should equal

four. And in a manner completely identical to the above, one can construct templates for

diagrams that have dotted lines and apply Pfaffian identities to the templates.

It is necessary to calculate CHY integrals that also have cross ratios if one wishes to

calculate gluon or graviton amplitudes in the CHY formalism by expanding out Pf ′Ψ. This

is because of the diagonal entries of the matrix C:

Cll = −
∑
i 6=l

εl ·ki
zi − zl

, (4.15)

always (because of momentum conservation) can be expanded in a manifestly Möbius

invariant form where, after using momentum conservation, it reads, for example

Cll =
n−1∑
i 6=l

εl ·ki (zi − zn)

(zi − zl)(zn − zl)
. (4.16)

Also such integrals with cross ratios can be calculated using our rules, see below.

It should be noted that there is a class of diagrams that cannot be reduced by using

identities concerning PfA. These are diagrams for which there is no template. An example

is this one,

. (4.17)
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Such diagrams do not appear when expanding out the CHY formula for gluon amplitudes,

but they do appear in the graviton case. To tackle them, one can consider Pfaffian identities

involving the full matrix Ψ rather than just A. It would be interesting to systematically

explore the space of CHY identities in this way.

5 Comparison to other CHY integration methods

The possibility of calculating CHY integrals without actually solving the scattering equa-

tions has been explored in the literature previously. As an alternative to our integration

rules Kalousios was able to exhaustively work out the n = 5 case using the Vieta formulæ

that relate sums of roots of polynomials to their coefficients [21]. Cachazo and Gomez [19]

have provided an exhaustive treatment of the six-point case but the method does involve

several non-trivial graph theoretical considerations which can be avoided invoking Pfaffian

identities. Also, their basic integrals constitute a smaller class than those that can be eval-

uated with our integration rules. Their basic integrals are those, considered in section 3.1,

where H(z) can be written as the product of two-cycles: H(z) = Cyclea(z) Cycleb(z). As

shown by CHY in ref. [3], such integrals evaluate to the sum of all Feynman diagrams that

are compatible with the orderings of both the cycles. But the class of CHY integrals that

evaluate to a sum of Feynman diagrams, viz. the class of CHY integrals that can be eval-

uated with our integration rules, is larger. As an example, we can consider CHY integrals

whose integrands cannot be decomposed into two cycles.

To illustrate this last point, consider the following CHY diagram which cannot be

decomposed into two cycles:

=
1

s12s34s56s78s1256
. (5.1)

Nevertheless, we easily evaluate it to the result shown with the integration rules by noting

that the diagram has a total of five subsets T of vertices (excluding their complements) with

enough edges connecting them to produce a propagator: {1, 2}, {3, 4}, {5, 6}, and {7, 8},
which all contain two vertices connected by two edges, and {1, 2, 5, 6}, which contains four

vertices connected by six edges. And these five subsets are all either nested or disjoint.

Another example of a CHY diagram that cannot be decomposed into two cycles but

which can be easily evaluated using our integration rules, is the following:

. (5.2)
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To evaluate it, we start by listing the subsets of vertices with (2 times the number of

vertices minus 2) edges connecting them:

{1, 2}
{2, 3}
{5, 6}
{8, 9}
{10, 11}
{11, 12}


two vertices, two edges (5.3)

{1, 2, 3}
{4, 5, 6}
{5, 6, 7}
{10, 11, 12}

 three vertices, four edges (5.4)

{4, 5, 6, 7}
}

four vertices, six edges (5.5)

{1, 2, 3, 8, 9}
}

five vertices, eight edges. (5.6)

All these sets are compatible with each other in the sense that any two sets are either

nested or disjoint — except for the following three overlapping sets:

{1, 2} overlaps with {2, 3}
{10, 11} overlaps with {11, 12}, and

{4, 5, 6} overlaps with {5, 6, 7}.

This leaves 23 different ways of combining 9 compatible subsets. Summing over the corre-

sponding products of propagators we get the final result:(
1

s23
+

1

s12

)
1

s56

1

s89

(
1

s10 11
+

1

s11 12

)
1

s123

(
1

s456
+

1

s567

)
1

s10 11 12

1

s4567

1

s12389
. (5.7)

As mentioned, there are also cases where the integration rules can be applied to integrands

with non-trivial numerators — provided, as before, that the integral has no higher order

poles. Because the presence of factors in the numerator forces the denominator to have

more factors than otherwise in order for the integral to retain Möbius invariance, integrands

with numerators will in most cases have higher order poles. But those that do not can

readily be evaluated with the integration rules of this paper. One merely counts dotted

lines as negative solid lines; they carry negative weight.

To illustrate, consider a CHY integral with

H(z) =
(z2−z6)

(z1−z2)2(z1−z6)2(z2−z3)2(z2−z4)(z3−z4)(z3−z5)(z4−z5)(z4−z6)(z5−z6)2
,

(5.8)
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which can be represented by the following diagram:

. (5.9)

To evaluate the integral we first enumerate the subsets of points with net (2 times the

number of points minus 2) lines connecting them:

{1, 2}
{1, 6}
{2, 3}
{5, 6}

 two points, two lines (5.10)

{1, 2, 3}
{2, 3, 4}

}
three vertices, four lines. (5.11)

The points {1, 2, 6} are connected by four normal lines, but the dotted line counts minus

one, so this subset does not make it to the list. Of the subsets that are on the list, we can

form the following four maximal groups of compatible subsets:

{1, 2}, {5, 6}, {1, 2, 3} (5.12)

{1, 6}, {2, 3}, {2, 3, 4} (5.13)

{2, 3}, {5, 6}, {1, 2, 3} (5.14)

{2, 3}, {5, 6}, {2, 3, 4} . (5.15)

We conclude that the integral is given by:(
1

s12
+

1

s23

)
1

s56s123
+

(
1

s16
+

1

s56

)
1

s23s234
. (5.16)

This shows how straightforward it is to apply our rules to integrands with non-trivial

numerators.

6 Including a Pfaffian: integration rules for ϕ4-theory

Recently, Cachazo, He and Yuan [15] have demonstrated how ϕ4-theory can be treated in

the scattering equation formalism. Using dimensional reduction of Yang-Mills theory with

the compactified gauge bosons taking on the role of scalars, they arrive at an integral that

generically looks as follows for n even:

In =

∫
dz1dz2 · · · dzn

(zr − zs)2(zs − zt)2(zt − zr)2

dzrdzsdzt

Pf ′A

C(z)

n∏
i=1

1

zi − zi+1

n∏
i=1
i 6=r,s,t

δ
(
Si
)
, (6.1)
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where C(z) is a product of differences (zi−zj) with each zi appearing in exactly one factor,

and A is as defined in the previous section, where we also introduced the reduced Pfaffian

of this matrix. A crucial property of In is that it does not depend on which rows and

columns are removed from A in calculating the reduced Pfaffian.

We now consider the special case when C(z) is a “connected perfect matching” [15]. It

then has the property that if one selects any proper subset T ⊂{1, 2, . . . , n} of consecutive

numbers, C(z) will contain at least one factor (zk − zl) with k∈T and l 6∈T . As shown in

ref. [22], in this special case it happens, miraculously, that when C(z) can be represented

graphically as a tree-level ϕ4 Feynman diagram, IN evaluates to just that Feynman dia-

gram, while In = 0 otherwise. This unusual behavior of In can also be phrased in a way

that is highly reminiscent of the above integration rules. It seems worthwhile to provide

this additional integration rule.

All expressions In for which C(z) is a perfect matching of the above form can be

evaluated by the following procedure:

• Consider in turn all proper subsets T ⊂{2, 3, · · · , n} of mT consecutive numbers (1

and n are to be considered consecutive) so that mT is odd and bigger than 1, i.e.,

mT ∈{3, 5, 7, . . . , n− 3}. Complementary subsets are considered equivalent.

• For each of these subsets T , count the number of factors (zi − zj) in C(z) for which

i∈T and j∈T . We denote this the number of connections for the given subset.

• If a subset T has (mT −1)/2 connections, we shall say that it is fully connected. With

each fully connected subset T ={i, i+ 1, i+ 2, . . . , i+mT − 1} associate a propagator

1/si,i+1,i+2,...,i+mT−1.

• Count the number of fully connected subsets. If it is less than (n−4)/2, then In = 0.

If the number is equal to (n−4)/2, then In is given by the product of the propagators

of the fully connected subsets.

Interestingly, these integration rules can also be viewed in the light of the correspondence

between string theory and CHY-type integrals. Indeed, upon compactification of the open

bosonic string in precisely the same manner as in ref. [15] one gets

In = lim
α′→0

α′
(n−4)/2

∫ n−1∏
i=3

dzi
(z1 − z2)(z2 − zn)(zn − z1)

C(z)2

∏
1≤i<j≤n

|zi − zj |α
′sij . (6.2)

This identity between the bosonic string theory and CHY expressions holds even in the

cases where C(z) is not a connected perfect matching. For those cases we do not have

direct integration rules because they correspond to higher-order poles. It is an interesting

fact that the result of CHY integration exactly matches the string theory computation

after performing analytic continuation to the region around α′=0.

An example of such a disconnected perfect matching is

C(z) = (z1 − z2)(z3 − z6)(z4 − z8)(z5 − z7) , (6.3)
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which can be represented diagrammatically as

. (6.4)

In the z1 =∞, z2 = 1, z8 = 0 gauge, the string theory integral takes on the form

lim
α′→0

(α′)2
7∏
i=3

(∫ zi−1

0
dzi

)
1

(z3 − z6)2z24(z5 − z7)2
n−1∏
i=2

n∏
j=i+1

(zi − zj)α
′sij . (6.5)

In carrying out the integration it can be convenient to change to rescaled variables xi ≡
zi/zi−1. In terms of the new variables, the divergent integration regions that contribute a

factor of (α′)−1 are: 1. the region where x6 and x7 tend to one; 2. the region where x4, x5,

x6, and x7 tend to one; and 3. the region where x4 tend to zero. Of these three regions,

2 and 3 are incompatible, though they are both compatible with region 1. After carrying

out the integrations over x4 to x7 we are therefore left with

lim
α′→0

∫ 1

0
dx3

xα
′s345678

3

x23

(
(1− x3)α

′s23

s45678
+

(1− x3)α
′(s23+s24+s25+s26+s27)

s34567

)
1

s567
. (6.6)

Interpreted as a Riemann integral, it is not analytic in the vicinity of α′= 0. But after

analytical continuation the integral is finite and will be seen, after expanding the beta

function, to yield a value of(
1 +

s23
s345678

)
1

s45678

1

s567
+

(
1 +

s23 + s24 + s25 + s26 + s27
s345678

)
1

s34567

1

s567
. (6.7)

This matches precisely the result obtained by performing the CHY integral (6.1) with

C(z) as given in (6.3). This is easily seen by expanding out Pf ′A and employing our

integration rules.

7 Conclusions

To summarize, we have provided a set of integration rules for both string theory integrands

and CHY integrands, and demonstrated the equivalence between the two in the α′→0 limit.

This puts on a firm footing the transcription between superstring theory integrands and

CHY integrands that was proposed in ref. [10]. In the string theory integral the crucial

ingredient was a systematic description of the terms that provide the precise divergence

as α′→ 0 needed to recover a finite overall result in that limit. In the CHY integral, the

analogous tool comes from the global residue theorem, which picks up all contributions to

the CHY integral.

The main advantage of our CHY integration rules is that they are simple, algorithmic

and easy to program. To solve CHY integrals one does not need to explicitly find all
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(n− 3)! solutions of the scattering equations, but can rather apply these rules. The result

is identical.

In the process, we hope to have shed more light on the correspondence between string

theory integrals and CHY integrals. In particular, we have derived quite simple algorithmic

rules for how to evaluate the field theory limit of string theory amplitudes. We have also

shown how the global residue theorem allows us to derive the precise analog in the CHY

formalism.

There are various outgrowths of these results that could be interesting to investigate.

First of all, it would be of interest to elucidate the precise connection between our integra-

tion rules and those of ref. [19]. It should also be possible to use the global residue theorem

to explicitly derive CHY integration rules for higher-order poles, rather than, as done here,

reduce those integrals by means of Pfaffian identities.

Knowing integration rules, one can work backwards and try to construct CHY inte-

grands for other theories. This might possibly shed light on how to define ϕp-theory with

p different from 3 or 4. It could also be interesting to find a more direct link between CHY

integrals and individual Feynman diagrams in a given field theory. We hope to return to

some of these issues in a future publication.
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