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1 Introduction

It was recently shown by Cachazo, He and Yuan (CHY) that for many theories, tree-level

scattering amplitudes involving any number of massless fields in any number of dimensions

can be represented in terms of auxiliary variables zi constrained by the so-called scattering

equations, [1–4]. For n-point kinematics, the scattering equations can be written,

∑
i 6=j

sij
(zi−zj)

= 0 , (1.1)

where sij = (pi + pj)
2 are ordinary Mandelstam variables. In general, there are (n−3)!

solutions to the scattering equations (found after eliminating the SL(2,C) redundancy

in the zi variables). For a fairly broad class of theories, scattering amplitudes can be

represented in the CHY formalism as integrals over the zi variables, fully localized by the

constraints, (1.1). A proof of the CHY construction of ϕ3-theory and Yang-Mills theory

was given by Dolan and Goddard in ref. [5].

A close relationship between the CHY representations and string theory was early

noted. Indeed, a reinterpretation of the CHY prescription in terms of a complexified

worldline (in the infinite tension limit) was described by Mason and Skinner in ref. [6] and

by Berkovitz in ref. [7] (see also refs. [8–10]). In a similar manner, conventional superstring

theory can be linked directly to the CHY formalism after manifest cancellation of tachyon

poles in the superstring integrand as described in ref. [11], which extended the use of the

scattering equation formalism to a number of theories beyond those considered by Cachazo,

He and Yuan — for example, scattering amplitudes involving mixed particle types including

– 1 –



J
H
E
P
0
9
(
2
0
1
5
)
1
3
6

fermions. The precise link between the two types of integrands follows as a corollary of a

more general set of integration rules recently described in ref. [12].

In this paper, we wish to take the analysis of ref. [12] one step further: to use the

rules for integration described in [12] to systematically construct integrands for individual

Feynman diagrams. As expected, this is most easily done in the case of ϕ3-theory, where

we can make use of a simple graph-theoretic map between any Feynman diagram, and a

triangular covering of the graph. This graph of triangles yields a direct translation into

the correct CHY integrand. And this construction naturally generalizes: for Feynman di-

agrams involving any combination of (possibly mixed) higher-order vertices, there exists a

corresponding polygonal graph from which one can read-off the corresponding CHY inte-

grand. The only complication for theories involving higher than cubic vertices is that the

representation will require normalization factors that depend on the external momenta. We

provide a systematic prescription for how to determine these normalization factors below.

Our paper is organized as follows. We review the scattering equations and how to use

their solutions to provide representations of tree-level scattering amplitudes in section 2,

briefly summarizing the integration rules described in ref. [12]. In section 3, we recast

the original scattering equation formalism for ϕ3-theory in a diagrammatic manner which

allows us to relate individual Feynman diagrams (and sums of Feynman diagrams) directly

to CHY integrands. By invoking the integration rules of ref. [12], we are able to prove

the polygon decomposition first put forward in [3]. And we discuss how this generalizes

to represent scattering amplitudes in ϕp-theory (including theories with mixed orders) in

section 4. Finally, we comment on the corresponding analysis in string theory together

with our conclusions in section 5.

2 Scattering equation constraints, and rules for integration

Let us briefly review the new diagrammatic rules for computing integrals in the scattering

equation formalism. In the scattering equation framework, the n-point scattering amplitude

in ϕ3-theory may be represented,

Aϕ3

n =

∫
dΩCHY

(
1

(z1−z2)2(z2−z3)2· · · (zn−z1)2

)
, (2.1)

where dΩCHY denotes the following integration measure combined with the scattering equa-

tion constraints,

dΩCHY ≡
dnz

vol(SL(2,C))

∏
i

′δ(Si) =(zr−zs)2(zs−zt)2(zt−zr)2
∏

i∈Zn\{r, s, t}

dzi δ(Si) , (2.2)

(independent of the choice of {r, s, t}), where Si denotes the ith scattering equation,

Si ≡
∑
j 6=i

sij
(zi−zj)

, (2.3)

where pi and pj are on-shell so that sij ≡ (pi + pj)
2 = 2(pi · pj); in general, we define

sij ···k≡(pi+pj + · · · +pk)
2.
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Although the scattering equation δ-functions in (2.2) completely localize the integral

over dΩCHY, the number of solutions to the scattering equations, (n−3)!, grows rapidly

with the number of particles, making all such integrals computationally quite challenging.

Conveniently, for a very large class of integrands I(z), there exists a simple, combinatorial

rule for determining
∫
dΩCHY I(z) as described in ref. [12]. We review this rule presently.

Let I(z) be any integrand involving arbitrary products of factors (zi−zj) in the denom-

inator, subject to the requirement, imposed by Möbius invariance, that each number 1 to n

appears in exactly four factors. We can represent the integrand I(z) diagrammatically as

a so-called 4-regular graph by representing the zi’s as the vertices of an n-gon, and drawing

a single edge between vertices zi and zj for each factor of (zi−zj) (with multiplicity) in

the denominator of I(z). (For the sake of concreteness, we will always consider the factors

(zi−zj) to be ordered so that i<j with respect to the (arbitrary) ordering of the labels of

the zi’s.)

The integral
∫
dΩCHY I(z) will consist of a sum of inverse-products of Mandelstam

variables of the form,
n−3∏
a=1

(
1/sqa

)
, (2.4)

where each subset qa⊂{1, . . . , n} has at most n/2 elements (with qa'qca≡Zn\qa), and for

which the collection of subsets {qa} satisfy the following criteria:

• for each qa there are exactly (2|qa|−2) factors (zi−zj) (including multiplicity) in the

denominator of I(z) involving pairs {i, j}⊂qa;

• every pair {qa, qb} is either nested or complementary — that is, qa⊂qb or qb⊂qa, or

qa⊂qcb or qcb⊂qa.

If there are no collections of subsets {qa} which satisfy the criteria above, the result of

integration will be zero.1

Although this rule may appear somewhat involved, it is entirely combinatorial and

therefore provides a simple way to determine the result of integrating an integrand I(z)

against the measure dΩCHY, which imposes the scattering equations as constraints (includ-

ing those not immediately obvious from the examples discussed in ref. [13]).

We can illustrate both the rules described above and the diagrammatic representation

of integrands with the following example:

⇒
(

1

s23s56s561
+

1

s23s61s561
+

1

s34s56s561
+

1

s34s61s561

)
. (2.5)

1The cases where these rules do not work are those where there is a subset qa with more than (2|qa|−2)
factors (zi−zj) in the denominator of I(z) involving pairs {i, j}⊂ qa. But these cases are not relevant to

this paper.
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Less trivial examples include,

⇒ 1

s23s45s61
, ⇒ 1

s23s45s67s89s101s10123s4589
. (2.6)

It is a relatively simple exercise to see that this rule correctly reproduces the CHY rep-

resentation of amplitudes in scalar ϕ3-theory, (2.1); many further examples were described

in ref. [12]. In this work, we will mostly be concerned with integrands that correspond to

(contributions to) scattering amplitudes in scalar field theories.

3 Feynman diagrams, polygon graphs and CHY integrands

It is a proposition in ref. [3] that certain specific CHY diagrams can be evaluated by de-

composing them into polygons. By applying the integration rules of the previous section,

it is possible to prove this proposition and provide a direct correspondence between in-

dividual ϕ3 Feynman diagrams (which may contain p-point sub-amplitudes) and specific

CHY integrands.

Given a tree-level Feynman diagram in ϕ3 scalar field theory, possibly involving p-

point sub-amplitudes, the corresponding CHY integrand can be constructed as follows.

Without loss of generality, we may assume the Feynman diagram is planar (with respect

to some ordering of the external legs) and connected. First, replace each p-point vertex

in the diagram with a p-gon whose corners lie along the legs involved (with the polygons

of internally-connected vertices meeting at their corners). The resulting, ‘polygon graph’

encodes a single, Hamiltonian cycle that crosses itself wherever two polygons meet, and

visits every external leg once. This cycle, together with an n-cycle connecting the outer

legs of the graph (according to the planar embedding) results in a 4-regular graph with

two Hamiltonian cycles that encodes a CHY integrand.

This rule can be illustrated as follows:

⇒ ⇒ (3.1)

where the CHY integrand is represented according to the same conventions of ref. [12]. It

is worth mentioning that there is another way to associate planar Feynman diagrams with
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4-regular graphs: rather than representing each p-point vertex in the diagram with a p-gon,

we could instead represent each with a “weave” as in,

⇒ ⇒ (3.2)

Such “weaved” Feynman diagrams are certainly quite suggestive, but we will mostly use

polygon diagrams such as (3.1) below.

In both examples above, the pair of Hamiltonian cycles — the one following from the

p-gon vertices, and the one encircling the boundary — overlap in several places, resulting

in double-lines in the diagram which encodes the CHY integrand. For the second example,

the final 4-regular graph corresponds to the integrand:

⇔


1

(z1−z2)(z2−z3)(z3−z4)(z4−z5)(z5−z6)(z6−z7)(z7−z1)

× 1

(z1−z2)(z2−z6)(z6−z7)(z7−z3)(z3−z5)(z5−z4)(z4−z1)
.

(3.3)

Using the rules of integration described in ref. [12] and reviewed above, the result of inte-

grating (3.3) with the CHY measure dΩCHY would result in,

⇒ 1

s12s45s67s345
. (3.4)

Let us consider another example of a diagram involving p-point vertices (p-point sub-

amplitudes in ϕ3-theory). The following graph,

⇒ ⇒ (3.5)
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would correspond to the CHY integrand,

⇔


1

(z1−z2)(z2−z3)(z3−z4)(z4−z5)(z5−z6)(z6−z7)(z7−z1)

× 1

(z1−z2)(z2−z7)(z7−z4)(z4−z6)(z6−z5)(z5−z3)(z3−z1)
.

(3.6)

Because the 4-point vertex represents the 4-point amplitude in ϕ3-theory, we can replace

it with a sum of Feynman diagrams, resulting in the integrand-level identity:

= +

⇔


1

(z1−z2)2(z2−z3)(z3−z4)(z4−z5)(z5−z6)2(z6−z7)(z7−z1)

× 1

(z3−z7)(z4−z6)

[
1

(z1−z4)(z2−z7)(z3−z5)
+

1

(z2−z5)(z7−z4)(z1−z3)

]
.

(3.7)

3.1 Proof of the correspondence with Feynman graphs

Let us now demonstrate that the correspondence described above provides a correct repre-

sentation for all tree-level Feynman diagrams involving arbitrary-order vertices correspond-

ing to p-point sub-amplitudes in scalar ϕ3-theory.

First, notice that the rule above reproduces the CHY representation for any n-point

amplitude in ϕ3-theory. In this case, the two Hamiltonian cycles are clearly identical,

resulting in the integrand appearing in equation (2.1). From this, the general claim follows

inductively from the consideration of how the rule works when any two diagrams are merged

according to:

⇒ (3.8)

According to the rule describe above, merging two graphs corresponds to the following

operation on their CHY representations. By induction, each of the subgraphs correspond

to CHY integrands associated with 4-regular diagrams; it is not hard to see that the action

of merging two graphs according to (3.8) results in the following action on the corresponding

– 6 –
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CHY integrands:

⇒ (3.9)

It is a relatively simple exercise to show that the action above correctly preserves

the factorization channels of each of the graphs being merged, and introduces exactly

one new Mandelstam invariant corresponding to the factorization channel. Moreover, the

operation (3.9) preserves the polygon structure of the constituent CHY diagrams. This

demonstrates that the polygon rule described above correctly represents any graph as a

CHY integrand.

Notice that we can use this rule to repeatedly connect polygon vertices of CHY di-

agrams for ϕ3-theory (each encoding a collection of diagrams corresponding to the sub-

amplitude), to represent any tree-level Feynman graph. For example, we may sew together

5-point sub-amplitudes into graphs such as:

(3.10)

We note that this is very close to defining (3V + 2)-point amplitudes in a fundamental ϕ5

theory. What is missing is the sum over factorized channels and the correct normalization

factors which effectively replace the 5-point sub-amplitudes in ϕ3-theory with fundamental

vertices. We will return to this in detail in the next section.

3.2 Uniqueness and the link to string theory

We have established that for any ϕ3 Feynman diagram, as well as for any sum of ϕ3

Feynman diagrams obtained by piecing together sub-amplitudes, there is a CHY integrand

I such that
∫
dΩCHY I is equal to that Feynman diagram or that sum of Feynman diagrams.

– 7 –
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Furthermore, a simple procedure has been given for finding such particular integrands. The

procedure does not, however, work in the reverse. This is because the polygons formed

inside a CHY diagram change with the relative distances of the external points, and drawing

the external points equidistantly on a circle will not always result in internal polygons that

exhibit the Feynman diagrams that the CHY integral evaluates to. We should also stress

that the external points of a CHY diagram need to have the correct ordering if the internal

polygons in the CHY diagram are to reflect the Feynman diagram. This can be clearly

illustrated with the following example:

= ⇔ (3.11)

which evaluates to:

B[1, 2, 12]−1B[3, 4, 5]−1B[6, 7, 8]−1B[9, 10, 11]−1

s1212s345s678s91011s1267812
; (3.12)

here, we have introduced a function B[i, . . . , j] which corresponds to the inverse of the ϕ3

scattering amplitude involving the legs,

B[i, . . . , j]−1 ≡ Aϕ3(
pi, . . . , pj ,−(pi + · · ·+ pj)

)
. (3.13)

Strictly speaking, the correspondence between Feynman diagrams and CHY integrands

is not one-to-one. Different integrands can in fact yield the same sum of Feynman diagrams

upon integration. For example, the diagram,

⇒ B[1, 2, 12]−1B[3, 4, 5]−1B[6, 7, 8]−1B[9, 10, 11]−1

s1212s345s678s91011s1267812
, (3.14)

evaluates to the same expression as (3.11).

However, if we restrict our attention to the CHY diagrams that can be decomposed

into two Hamiltonian cycles, then the correspondence does in fact becomes one-to-one.

(Notice that the CHY diagram in (3.14) does not have this property.) All diagrams with

this two-cycle property evaluate to the sum of ϕ3 Feynman diagrams compatible with the

ordering of both the cycles, as was first shown in [3].

– 8 –



J
H
E
P
0
9
(
2
0
1
5
)
1
3
6

In ref. [12], we showed that for two-cycle CHY integrands there is a one-to-one corre-

spondence between CHY integrals and string theory integrals in the infinite-tension limit.

Without loss of generality, we can assume that one of the two cycles is (123 · · ·n), and

consider the following CHY integrand:

I(z) =

[
Cycle(z)

N∏
i=1

(zi − zi+1)

]−1

. (3.15)

In that case, if one removes the perimeter and replaces the CHY measure with the string

theory measure, then in the α′→0 limit the string theory integral will exactly evaluate to

the CHY integral. Specifically,∫
dΩCHY I = lim

α′→0
(α′)n−3

∫
dµ Λ(α′, p, z)

1

Cycle(z)
, (3.16)

where the string theory measure is given by

dµ ≡δ(zA − z0
A)δ(zB − z0

B)δ(zC − z0
C)

(zA − zB)(zA − zB)(zB − zC)
n∏
i=2

θ(zi−1 − zi)
n∏
i=1

dzi , (3.17)

and where we have defined

Λ(α′, p, z) ≡
n−1∏
i=1

n∏
j=i+1

(zi − zj)α
′sij . (3.18)

So the correspondence between Feynman diagrams and integrands, and the procedure for

finding the pertinent integrands, immediately extends to string theory. The subject of ex-

panding integrals out into the contributions arising from individual tree-graphs was in fact

explored by Nakanishi already in the early days of the Veneziano model (see e.g. [14–16]).

The cycles Cycle(z) that yield a non-zero result upon integration are those that can

be represented as a set of polygons meeting at the vertices. The structures of such cycles

mirror those of Feynman diagrams of scalar theories — pure triangles corresponding to

ϕ3, pure squares to ϕ4, etc. So we are naturally led to consider how to construct CHY

integrands for any kind of scalar field theory.

4 CHY representations of ϕp scalar field theories

Using the knowledge of how CHY diagrams can be represented as Feynman diagrams and

the integration rules that we have presented, we will now show how we can build up n-point

amplitudes in ϕp scalar field theories (and mixed versions thereof).

4.1 The construction of scattering amplitudes in ϕp scalar field theory

Let us now describe how to construct CHY representations of scattering amplitudes in ϕp

scalar field theory. Because the combinations of Feynman diagrams contributing to p-point

– 9 –
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n ϕ3-theory ϕ4-theory ϕ5-theory

p

2p− 2

3p− 4

4p− 6

Table 1. Distinct polygon graphs contributing to n-point amplitudes in ϕp-theories.

sub-amplitudes in ϕ3-theory can be represented by polygonal graphs as described above, we

may convert these into fundamental ϕp-vertices by including appropriate numerator factors.

Representing each of these ϕp vertices by a p-gon, it is clear that the n-point scattering

amplitude would be represented by all graphs constructed by connecting p-gons at their

vertices. The full n-point amplitude in ϕp-theory would then be obtained by summing over

all dihedrally- and reflectionally-distinct ways of gluing p-gons together. Examples of the

distinct contributions for various amplitudes are summarized in table 1.

We can illustrate this general procedure with a few concrete examples. A trivial

example would be the 4-point amplitude in ϕ4 theory, which would be generated by a

single polygonal graph (a single box):

Aϕ
4

4 =

(
1

s12
+

1

s23

)−1

= B[1, 2, 3] = 1 . (4.1)

And fundamental ϕ4-vertices can be glued together to form higher-point amplitudes

in the obvious way. For the 6-point amplitude, there is only one (dihedrally-distinct)

polygonal graph,

. (4.2)

This graph corresponds to three distinct contributions to the amplitude:

Aϕ
4

6 =

(
1

s12
+

1

s23

)−1( 1

s45
+

1

s56

)−1

+ (2 rotations),

=
1

s123
+

1

s234
+

1

s345
.

(4.3)

– 10 –
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Similarly, the 8-point amplitude in ϕ5 theory would be generated by a single polygon

diagram,

, (4.4)

corresponding to four dihedrally-distinct contributions to the amplitude,

Aϕ
5

8 =B[1, 2, 3, 4]B[5, 6, 7, 8] + (3 rotations),

=
1

s1234
+

1

s2345
+

1

s3456
+

1

s4567
.

(4.5)

The generalization to any n-point amplitude in ϕp-theory should be quite clear. For

example, the 8-point amplitude in ϕ4-theory would be generated by the two polygonal

diagrams,

, . (4.6)

The first of these corresponds to the contributions,

Aϕ
4,(1)

8 = B[1, 2, 3]B[5, 6, 7]B[8, (1+2+3), 4] + (3 rotations),

=
1

s123s567
+

1

s234s678
+

1

s345s781
+

1

s456s812
,

(4.7)

where ‘(1+2+3)’ denotes the momentum (p1 +p2 +p3); and the second diagram in (4.6)

corresponds to the contributions,

Aϕ
4,(2)

8 =B[1, 2, 3]B[(1+2+3), 4, 5]B[6, 7, 8] + (7 rotations),

=
1

s123s678
+

1

s234s781
+

1

s345s812
+

1

s456s123
+ . . . (8 terms total).

(4.8)

Combining these two contributions, we obtain the entire 8-point amplitude,

Aϕ
4

8 = Aϕ
4,(1)

8 +Aϕ
4,(2)

8 . (4.9)

– 11 –
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For one final example, let us consider the 10-point amplitude in ϕ4-theory. For this

amplitude, there are five distinct polygon diagrams that contribute,

(4.10)

The first polygon diagram in (4.10) corresponds to the contributions,

Aϕ
4,(1)

10 =B[1, 2, 3]B[10, (1+2+3), 4]B[5, (6+7+8), 9]B[6, 7, 8]

+(4 rotations) =
1

s123s56789s678
+ . . . (5 terms).

(4.11)

For the second diagram in (4.10) we have,

Aϕ
4,(2)

10 =B[1, 2, 3]B[(1+2+3), 4, (5+6+7)]B[5, 6, 7]B[8, 9, 10]

+(9 rotations) =
1

s123s567s8910
+ . . . (10 terms);

(4.12)

for the third,

Aϕ
4,(3)

10 =B[1, 2, 3]B[(1+2+3), 4, 5]B[6, 7, 8]B[(6+7+8), 9, 10]

+(9 rotations and reflections) =
1

s123s12345s678
+ . . . (10 terms);

(4.13)

for the fourth,

Aϕ
4,(4)

10 =B[1, 2, (3+4+5)]B[3, 4, 5]B[6, (7+8+9), 10]B[7, 8, 9]

+(19 rotations and reflections) =
1

s345s12345s789
+ . . .(20 terms);

(4.14)

– 12 –
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and for the fifth and final polygon diagram in (4.10), we have,

Aϕ
4,(5)

10 =B[9, 10, (1+2+3)]B[1, 2, 3]B[4, 5, 6]B[(4+5+6), 7, 8]

+(9 rotations) =
1

s123s456s45678
+ . . . (10 terms).

(4.15)

Thus, the 10-point amplitude would be represented

Aϕ
4

10 = Aϕ
4,(1)

10 +Aϕ
4,(2)

10 +Aϕ
4,(3)

10 +Aϕ
4,(4)

10 +Aϕ
4,(5)

10 . (4.16)

Scalar amplitudes with mixed vertices. From the above considerations it is straight-

forward to extend the correspondence between Feynman diagrams and CHY integrands to

any diagram involving also mixed m-vertices ϕpm . The main difference is that the number

of polygon diagrams that has to be considered grows considerably. This is a consequence

of the fact that different polygons can be connected in more ways than identical polygons.

4.2 Comparison with the CHY (Pfaffian) version of ϕ4-theory

By compactifying the CHY formula for Yang-Mills amplitudes it is possible to obtain

the amplitudes of Yang-Mills-scalar theory and as a corollary also a remarkably compact

expressions for those of ϕ4-theory, [4]. The CHY formula for the (ordered) ϕ4 n-point

function is given by:∫
dΩCHY

Pf ′A

(z1 − z2)(z2 − z3) · · · (zn − z1)

∑
connected

perfect matchings Ξ

1

Ξ(z)
, (4.17)

where the matrix A is defined by

Aij =


sij

zi − zj
if i 6= j ,

0 if i = j ,
(4.18)

and where the reduced Pfaffian of A is defined by,

Pf ′A ≡ (−1)i+j

zi − zj
PfAij , (4.19)

with Aij being the sub-matrix of A obtained by deleting rows and columns i and j of

A. (This definition of Pf ′A is in fact independent of the choice of {i, j}.) Ξ(z) denotes a

“connected perfect matching” — that is, a product of differences (zi−zj) for which every zi
appears in exactly one difference factor and which, if one selects any proper subset T ⊂Zn
of consecutive numbers, then Ξ(z) will contain at least one factor (zk − zl) with k ∈ T
and l 6∈T .

The CHY ϕ4 formula for a general n-point function is a far more compact way of writing

the amplitude than we can provide with the Feynman diagram procedure discussed above.

– 13 –
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It is also (seemingly) uncorrelated with (and not immediately generalizable to) scalar field

theories of arbitrary ϕp-vertices.

To illustrate the difference, consider the following. If one performs the CHY integration

before taking the sum over connected perfect matchings Ξ(z), one finds that each term

either vanishes or equals one ϕ4 Feynman diagram. In contrast, in our polygon diagram

procedure we evaluate a single CHY integral with the integration rules from [12] and then

effectively cancel out all propagators carrying an even number of external legs with a pre-

factor of Mandelstam variables. In the CHY formula, the dimensionality is fixed simply

by the sij factors in A, so to obtain a single Feynman diagram one must perform the

CHY integration over the (n−3)!! terms of PfAij , which non-trivially add up to give the

diagram. It does present an interesting task to investigate the possible connection between

these two formulations further.

5 Conclusions

We have shown how any scalar amplitude can be represented by a sum of polygon diagrams.

This construction is very simple and combined with the integration rules for CHY from

ref. [12] it offers an alternative to more traditional constructions. Basically, this is a proof

of concept on the way to showing that presumably all known field theories can be given a

tree-level representation in CHY language. The extension to loop-level remains a challenge,

although all the basic ingredients are already in place. Curiously, we are led full circle back

to the Feynman diagram expansion, now in an unusual disguise.

Since everything we have done has a very close analogy in string theory it might be

interesting to pursue the string theory path of this story in greater detail. An open question

is of course how to construct amplitudes in a similar manner for more complicated cases

like Yang-Mills theories. An example could be pure gluon amplitudes where there already

exists a compact CHY construction in terms of a Pfaffian, but where it is an open question

if a decomposition like the one we have presented for scalar amplitudes here could be

worked out as well. Such a formulation would likely be closer to a field theory expansion as

it would have a direct connection to Feynman diagrams. Issues of gauge invariance need to

be faced there. It is possible that such investigations could open up for further work on the

BCJ relations [17–19]. A possible outcome could be a construction where CHY diagrams

corresponding to specific propagator structures could be dressed up with numerator factors

that satisfy Jacobi identities (a good starting point for such an analysis could be found in

e.g. refs. [20, 21]).
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