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1 Introduction

The scattering equation formalism of Cachazo, He and Yuan (CHY) [1–3] has proven to

provide a remarkably rich representation of amplitudes, giving us new and unusual tools

with which to analyze quantum field theory. Based on a set of algebraic relations, the

scattering equations, tree-level amplitudes for a variety of different quantum field theories

are expressed in remarkably compact forms in any number of dimensions and for any

number of external legs. Integrations over an auxiliary parameter space are required, but

the integrals localize completely on the support of solutions to the scattering equations.

Formally, this removes all integrations. For an n-point amplitude there are, however,

(n−3)! independent solutions and they must be summed over. This has been a bottleneck

of the formalism, and much effort has gone into simplifying the unwieldy sum over solutions

to the scattering equations [4–18]. A very simple solution to this problem was provided by

the integration rules of refs. [7–9]. Those rules provided a systematic way of evaluating the

majority of integrals encountered in the CHY-formalism. Some additional integrals that

appear in the case of Yang-Mills amplitudes had to be considered separately.

Recently, we have shown how to extend these integration rules to all cases needed for

the evaluation of n-point Yang-Mills amplitudes [19]. The key to this development was

to use the map between the CHY-formalism and string theory [20] and apply the power

of monodromy relations [21, 22]. For the full amplitudes, these monodromy relations can

neatly be arranged in two classes: by taking the real part of the amplitude relations one

recovers, in the field theory limit, the KK-relations [23, 24] and a basis of amplitudes of

size (n−2)!. Taking the imaginary part, one finds the BCJ-relations [25] and a further

reduction to an (n−3)! basis. In the CHY-formalism, the analog of these relations on

individual terms in the integrands split up similarly [19]: the analog of the real parts of the

relations yield useful algebraic identities, while the analog of the imaginary parts provide
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new non-trivial identities that are valid only on the support of the the scattering equations.

This has been explored in further detail in ref. [26].

The general solution for n-point Yang-Mills amplitudes given in [19] is provided in a

form that does not make color-kinematics duality manifest. However, it is known indirectly

that such a form must exist [3, 27] — and a construction has been given in [32] (using fairly

different means than we employ here). Now that we have the general integration rules

available, we should thus be able to derive by direct computation the numerators that put

the amplitude in BCJ-form, making the color-kinematics duality manifest. Indeed, as we

shall show in detail below, the missing ingredient is precisely the new set of identities that

follow from monodromy relations.

As explained in ref. [3], the color-kinematics duality of amplitudes in Yang-Mills theory

will be made manifest so long as the (reduced) Pfaffian, Pf ′Ψ, appearing in the CHY

representation of Yang-Mills and gravity amplitudes can be expressed in terms that involve

only single, permuted ‘Parke-Taylor’ factors in the denominator — that is, terms with only

a single Hamiltonian cycle. The corresponding integrals are then trivialized by means of

the integration rules of [7–9], and in fact refer to trivalent Feynman graphs only [8]. This

is the form that we obtain using the reduction procedure described in this paper.

Our paper is organized as follows. In section 2 we review the basic formalism and no-

tation involved in the CHY representation of scattering amplitudes for Yang-Mills theory

(and gravity). Amplitudes represented in this way involve a summation of terms arising

from the (reduced) Pfaffian of a matrix denoted Ψ. Upon direct expansion, these terms

are far from those needed to make the color-kinematics duality manifest. This fact and the

form required to manifest duality is reviewed in section 2.1. In section 3 we describe how

the monodromy relations can be used to systematically reduce terms of Pf ′Ψ so that the

full Yang-Mills amplitude is provided explicitly in terms of a KK-basis with numerators

satisfying Jacobi relations, as needed to achieve color-kinematics duality. We review the

ingredients involved in section 3.1, describe how these can be used to systematically reduce

terms in section 3.2, and prove that upon successive iterations of these reductions the result

will always be of the form that makes color-kinematics duality manifest in section 3.3. In

section 4 we illustrate the results of this systematic algorithm in the case of four-particle

scattering. And we conclude our work with a view towards applications of the same reduc-

tion algorithm to discover non-trivial identities for other theories.

2 Review: amplitudes in the scattering equation formalism

Let us briefly review the essential ingredients for the representation of scattering amplitudes

in the scattering equation formalism of CHY [1–3]. The essential observation is that on-

shell momenta kµa (in any number of dimensions) can be encoded in terms of auxiliary

variables za∈CP1 via the scattering equations :

Sa ≡
∑
b 6=a

sab
za − zb

= 0, (2.1)

where sab ≡ (ka+kb)
2 = 2ka·kb, and the index a ∈ {1, . . . , n} labels the external massless

particles. Although there are n equations, only (n−3) are independent for momentum-
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conserving external momenta. This is reflected in an SL(2,C) invariance in the represen-

tation of momenta in terms of the auxiliary z variables.

In terms of these auxiliary variables tree-level scattering amplitudes in any quantum

field theory can be represented as integrals over the z’s, localized on the constraints (2.1).

Concretely, an n-particle scattering amplitude can always be represented in the form

An =

∫
ΩCHY I(z) , (2.2)

where I(z) depends on the theory in question, and ΩCHY is the (SL(2,C)-fixed) volume-

form on the space of the z’s, together with δ-function constraints that impose the scatte-

ring equations:

ΩCHY ≡
dnz

vol(SL(2,C))
δn−3(S) ≡ (zi−zj)

2(zj−zk)
2(zk−zi)

2
∏

a/∈{i,j,k}

dza δ(Sa) . (2.3)

Because of the δ-function constraints, the integral in (2.2) is always fully localized on the

solutions to the scattering equations, which number (n−3)! in general. That is, integrals

of the form (2.2) can always be written simply as a sum:∫
ΩCHY I(z) =

∑
z∗|Sa(z

∗) = 0

J (z∗) I(z∗) , (2.4)

where J is the Jacobian resulting from the δ-function constraints. The details of this

formula need not concern us here. But it is worth mentioning that finding ways to evaluate

these integrals analytically without explicitly summing over the (n−3)! solutions to the

scattering equations has been the subject of much recent work.

For certain quantum field theories, the representation of amplitudes via (2.2) takes an

especially simple form (see, e.g. [28]). Perhaps the simplest is bi-adjoint scalar ϕ3-theory;

in this case, amplitudes can be represented by

Aϕ3

n (1, 2, . . . , n) ≡
∫

ΩCHY

(
1

(z1−z2)(z2−z3) · · · (zn−z1)

)2

. (2.5)

The factor being squared appearing above will play a recurring role in our work, and it is

useful to give it a name. By analogy to the famous Parke-Taylor amplitude [29], we define

a cyclic sum of factors to be:

PT(1, . . . , n) ≡ 1

(z1−z2)(z2−z3) · · · (zn−z1)
≡ 1

(1, 2)(2, 3) · · · (n, 1)
≡ 1

〈1 2 · · ·n〉
. (2.6)

Here, we have also defined two bits of notation that will prove useful to us later:

(a, b) ≡ (za−zb) and 〈a b · · · c〉 ≡ ((a, b) · · · (c, a)) . (2.7)

Color-ordered scattering amplitudes of Yang-Mills theory also have an especially simple

CHY-representation:

AYM
n (1, 2, . . . , n) ≡

∫
ΩCHY PT(1, 2, . . . , n)Pf ′Ψ(k, ε) , (2.8)

– 3 –
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where Pf ′Ψ is the (reduced) Pfaffian of the matrix Ψ — the Pfaffian of the matrix Ψij
ij

obtained by deleting two rows and columns {i, j} (with 1 ≤ i, j ≤ n) of Ψ:

Pf ′Ψ ≡ (−1)i+j
1

(zi−zj)
Pf(Ψij

ij) with Ψ ≡

(
A –CT

C B

)
, (2.9)

where the components of Ψ are given by the matrices,

Aa 6=b ≡
sab

(za−zb)
Ba 6=b ≡

εab
(za−zb)

Ca 6=b ≡
εkab

(za−zb)

Aaa ≡ 0 Baa ≡ 0 Caa ≡ ‘
1

〈a〉
’

(2.10)

where sab ≡ 2ka·kb, εab ≡ 2εa·εb, and εkab ≡ 2εa·kb. The diagonal entries of the C-matrix

— formally defined as ‘1/〈a〉’ above — will be made explicit in section 3.1 below (see

equation (3.9)); for now, we can simply consider it to be some abstract function having

scaling (or weight) (-2) in the variable za.

From the color-ordered partial amplitudes of Yang-Mills, it is easy to construct the full

amplitudes. This can be done, for example, using a KK-representation [23, 24] involving a

reduced basis of (n−2)! color-ordered partial amplitudes:

AYM
n ≡

∑
σ∈Sn−2

c{1,σ,n}×AYM
n (1, σ(2), . . . , σ(n−1), n) , (2.11)

where the summation is over all permutations σ of the set {2, . . . , n−1}, and the color

factors c{1,σ,n} are defined as contractions of the structure constants of the gauge group of

the theory,

c{1,σ,n} ≡
∑
αi

(
f1σ(2)α1fα1 σ(3)α2 · · · fαn−3 σ(n−1)n

)
. (2.12)

Finally, graviton scattering amplitudes can be represented in a way that is remarkably

(and suggestively) similar to the Yang-Mills squaring of KLT-relations [30]:

AGR
n ≡

∫
ΩCHY (Pf ′Ψ)2 . (2.13)

It may be worth mentioning that this remarkable representation of gravitational ampli-

tudes, written this way first by Cachazo, He, and Yuan in [1], is a natural generalization

of the formula discovered by Hodges in [31].

2.1 Color-kinematics duality in the CHY representation

A comparison between the representations of amplitudes in Yang-Mills (2.8) and grav-

ity (2.13), combined with the expansion into color factors in (2.11) is suggestively close to

making the KLT relations between the two theories manifest. This immediately indicates

that the CHY-formalism automatically incorporates color-kinematics duality. Indeed, as

noticed by Cachazo, He and Yuan in ref. [3] (see also [32]), this correspondence can be made

quite explicit. Using KLT-orthogonality [33, 34], it follows that there exists an expansion

of Pf ′Ψ of the form,

Pf ′Ψ =
∑

σ∈Sn−2

n{1,σ,n}× PT(1, σ(2), . . . , σ(n−1), n) , (2.14)

– 4 –
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where the kinematic factors n{1,σ,n} could only then be determined implicitly — as a sum

over the color-ordered amplitudes, weighted by the KLT momentum kernel. As shown

in ref. [3], consistency between the Yang-Mills (2.8) and gravity (2.13) can be achieved

by the numerators n{1,σ,n} satisfying Jacobi relations. Color-kinematics duality in the

CHY formalism can thus be made manifest once we have explicitly expanded the Pf ′Ψ

according to (2.14), but a procedure for doing this has not been known until now. An

explicit construction of the expansion (2.14) is what we provide in this note — providing

a representation of Yang-Mills amplitudes in the CHY formalism explicitly involving BCJ

numerators, making color-kinematics duality manifest.

It is perhaps not very well appreciated that Jacobi relations for numerator factors are

not the most general solutions that follow from imposing the exact BCJ amplitude relations

(which, in turn, follow from monodromy in string theory). There is more freedom in

choosing numerators, completely consistent with all established amplitude relations [35, 36].

In ref. [36] general numerator identities were explored in detail.

3 The algorithm: manifesting the color-kinematics duality

Every term in the expansion of the (reduced) Pfaffian Pf ′Ψ has manifest weight (-2) in all

the z-variables — without any factors appearing in the numerator (when the diagonal terms

from the C-matrix are left abstract). When represented as an oriented graph connecting

nodes a→ b for each factor (a, b)≡ (za−zb) appearing in the denominator, all nodes will

necessarily lie along some closed (Hamiltonian) cycle. Thus, every term will correspond to

a graph involving a collection of disconnected cycles — including one-cycles for each term

arising from the diagonal of C.

We would like to systematically reduce every such term into ones with only a single

cycle. This can be achieved through the iterated use of simple cross-ratio and Schouten-like

identities derived in [19] (see also [26]). We will also make use of these these identities to

expand the diagonal terms from C as suggested in [19], in a way which directly parallels

the other operations involved.

3.1 Fundamental operations, identities, and diagrammatic notation

The principal non-trivial identity that we will need for reduction is the monodromy relation,

which can be expressed in terms of cross ratios of factors (a, b) as follows. For any subset

A ⊂ {1, . . . , n} with 2 ≤ |A| ≤ (n−2) and any point a ∈ A, for each b ∈ Ac we have the

following identity [26]:

1 = −
∑
α∈A
β∈Ac

sαβ
sA

(a, α)(β, b)

(b, a)(α, β)
. (3.1)

(Here, sA≡(ka1+ · · · +kam)2 for any set A≡{a1, . . . , am}.) Strictly speaking, this ‘identity’

is valid only on the support of the scattering equations. Nevertheless, because we are only

interested in integrals supported on the scattering equations (using the form ΩCHY, which

includes the δ-functions imposing these constraints), we are free to consider equation (3.1)

an actual identity for our purposes.

– 5 –
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Our reduction procedure will only make use of (3.1) when the subset A is a closed

Hamiltonian cycle. Thus, we can represent this diagrammatically as follows:

1 = −
∑
α∈A
β∈Ac

sαβ
sA

(3.2)

Notice that we have used dashed lines to represent the factors of (3.1) appearing in the

numerator — with arrows to indicate the signs of terms. Also, we have written the cycle A

in red to indicate that its size is arbitrary, and there may be many (implicit) points along

it besides a and α. Lines denoting single factors (a, b) will always be drawn in black.

Any terms generated in this way can always be expanded into those with fewer nu-

merators through the use of the so-called ‘KK’ relations:

PT(a,A1, α,A2) = (−1)|A2|
∑

σ∈(A1�A
R
2 )

PT(a, σ, α) , (3.3)

where for any set A≡{a1, . . . , am}, PT(A) denotes the Parke-Taylor factor corresponding to

the cycle A, 1/((a1, a2) · · · (am, a1)), AR2 denotes the subset A2 with reversed ordering, and

the summation is over all ‘shuffles’ σ of the sets A1 and AR2 . (Recall that these are simply

permutations of A1∪AR2 which preserve the ordering of the two sets.) Diagrammatically,

the KK-relations imply the following identity:

= −(−1)|A2|
∑

σ∈(A1�A
R
2 )

(3.4)

Here, the meaning of the open chain should be obvious: it simply corresponds to the

product of the factors (a, b) in the denominator for each directed edge from a→ b. Notice

the extra minus sign appearing above — due to the relative sign between (a, α) and the

corresponding factor that would have arisen for the PT-factor.

Although the KK-relations may appear non-trivial, they are in fact strictly algebraic

identities at the level of the integrand — independent of the support of the scattering

equations, and valid for cycles A of arbitrary length. Indeed, they can be derived through

the iterated use of the simple (Schouten-like) identity:

(c, a)

(a, b)(b, c)
=

(d, a)

(a, b)(b, d)
+

(c, d)

(b, c)(d, b)
, (3.5)

which can be represented diagrammatically as follows:

= + (3.6)

– 6 –
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This identity is itself fairly trivial; but it is not hard to see how it can be iteratively used

to obtain the familiar KK-relations stated above, and their application to (3.4).

It will be useful to always use the identity (3.4) to decompose the terms generated by

the monodromy relation (3.1), resulting in the following, ‘fundamental’ identity,

PT(A) = −
∑
α∈A
β∈Ac

∑
σ∈(A1�AR

2 )

PT(a, σ, α)(a, α)× (−1)|A2| sαβ
sA

(β, b)

(b, a)(α, β)
. (3.7)

This relation can be represented diagrammatically as follows:

=
∑
α∈A
β∈Ac

σ∈(A1�AR
2 )

(−1)|A2| sαβ
sA

(3.8)

The last ingredient of our algorithm deals with the terms in Pf ′Ψ involving diagonal

entries of the C-matrix. We have so-far chosen to represent them as one-cycles abstractly

as one-cycles ‘〈a〉’ in the denominator. But in ref. [19] it was shown that — up to terms

that vanish by gauge invariance and momentum conservation — these entries can always

be expanded as follows:

Ca a =
∑
β/∈{a}

εkaβ
(β, b)

(b, a)(a, β)
, (3.9)

for any choice of b 6=a. Representing this diagrammatically, and using a one-cycle A={a}
to represent Ca a (connecting the point a to itself),

=
∑

α∈{a}
β∈{a}c

εkαβ (3.10)

its similarity to equation (3.8) becomes manifest. Indeed, although the term in (3.7)

involving α=a vanishes because (a, a) = 0, we can view this as the only term α∈A≡{a}
being summed in (3.9). Thus, we may consider the two relations as being two versions of

the same operation: when |A|= 1, we use (3.10); and when |A| ≥ 2, we use (3.8). To be

clear, we may simply write:

=
∑
α∈A
β∈Ac

σ∈(A1�AR
2 )

(−1)|A2| nα,β , nα,β ≡

{
sαβ/sA |A| > 1

εkαβ |A| = 1
. (3.11)

Combined in this way, we will refer to this as the fundamental reduction of the cycle A

relative to the points a ∈ A and b /∈ A. One small subtlety that is worth mentioning

here is that equation (3.11) still requires that |A| ≤ (n−2). Conveniently, whenever there

exists a cycle with |A|= (n − 1), we can choose to reduce relative to its complement, for

which (3.11) applies.

– 7 –
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3.2 The systematic reduction of terms

As described above, every term arising in the expansion of the (reduced) Pfaffian Pf ′Ψ

corresponds involves a product of factors (a, b) that can always be considered a product

of PT-factors for each Hamiltonian cycle. Let us ignore the kinematic numerators for

the moment as they will play no role in our analysis. We would like to show that any

such factor can be decomposed, through the iterated use of the fundamental reductions

described above (3.11), into sums of terms each involving only a single Hamiltonian cycle.

These can then be expanded into any KK-basis using (3.3). As reviewed in section 2,

this will result in a representation that makes manifest the color-kinematics duality of

Yang-Mills amplitudes.

Let us now describe the concrete algorithm by which this can be done systematically.

The starting point will always be some term appearing in the expansion of the Pf ′Ψ which

involves just a number of disjoint Hamiltonian cycles (including one-cycles). We will refer

to any term of this form as being of Type I. If there is only a single Hamiltonian cycle

of length n, no reduction is required. If there is more than one cycle, we simply use the

fundamental reduction: choose any cycle A and any two points a∈A and b /∈A, and reduce

the cycle A relative to a and b.

Obviously, because b /∈ A and the term involves a union of disjoint cycles, b must

lie along some other cycle, b ∈ B. Thus, the summation over β in the fundamental re-

duction can be organized by whether or not β ∈B. These two cases can be represented

diagrammatically as follows:

I.a I.b

(3.12)

Here, we have left implicit the kinematic factors and the summations involved in the

reduction formula (3.11). Also, there can be an arbitrary number of other, disjoint cycles

involved — in the figure above, we have only drawn those cycles relevant to particular

terms in the expansion. The first of these cases is easily seen to become (a sum of terms)

of Type I, upon the use of identity (3.4):

=
∑
σ∈(B1�BR

2 )

(−1)|B2| (3.13)

Because these terms are individually of Type I, we can reduce them further without en-

countering any additional complexity relative to that already in (3.12).

The second class of terms in (3.12) are not of Type I. Indeed, we will refer to integrands

such as these as being of Type II. More generally, Type II terms are those which include

an arbitrary number of disjoint cycles, exactly two of which are connected by a chain in

– 8 –
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the following way:

Type II

(3.14)

When the chain γ is of length one — when it consists of a single link (b, a) — it reduces

trivially toType I by canceling the link against the oppositely-oriented numerator. This

introduces a minus sign.

Let us now show that for any term of Type II, reduction of A relative to {a, b} will

lead to (sums of) diagrams either of Type I or Type II. Once this has been shown, it is

clear that no further complexity can be generated through iterated reduction; and it will

be easy to prove that this procedure will always terminate with terms involving a single

Hamiltonian cycle.

In the reduction of the cycle A in (3.14) relative to {a, b}, the summation over β is

naturally organized according to three cases: the first is when β ∈B; the second, when β

is along some other cycle; and the third, when β ∈ γ. In all three cases, the factor in the

denominator (b, a) — indicated by a solid line b→a in (3.11) — is cancelled by the factor

in the numerator (a, b) —indicated by the dashed line in (3.14); this always introduces an

overall minus sign, and effectively replaces the line b→ a by the chain γ connecting b to

a via an arbitrary number of other points along the chain. Thus, the three cases can be

represented diagrammatically as follows:

II.a II.b II.c (3.15)

The first two of these are structurally identical to the cases resulting from Type I terms

given in (3.12). And the first of these becomes (a sum of terms of) Type I in exactly the

same way as in (3.13):

=
∑
σ∈(B1�BR

2 )

(−1)|B2| (3.16)

The only novelty that appears upon reducing a term of Type II, therefore, is the case

II.c shown in (3.15). But this is manifestly of Type II — only now, involving a chain γ′

(the part of γ from b to β) of shorter length. As before, if this new chain consists of a

single link, it cancels against the numerator (introducing a minus sign), resulting in a term

of Type I.
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3.3 Proof of recursive reduction to single cycles

From the discussion above, it is not hard to see that we can systematically reduce all terms

appearing in the expansion of Pf ′Ψ into those involving single cycles. And these can be

expanded into any KK-basis using (3.3) to obtain a representation of Pf ′Ψ of the form

required (2.14). Although nearly trivial, let us quickly prove that this is the case.

As shown above, any term of Type I or II can be reduced into sums of terms of the

same types. For both of the cases resulting from the reduction of terms of Type I, (3.12),

the result will be a configuration with one fewer cycle — the cycle A either merges with

that of B (I.a), or it becomes part of a chain connecting B to some other cycle (I.b). And

the same is true for the first two cases resulting from the reduction of terms of Type II.

Only case II.c in (3.15) does not lower the total number of cycles; however, these terms are

guaranteed to involve terms of Type II connected by shorter chains γ′.

Therefore, if we characterize any terms of these two types by the number of cycles, nc,

and the length, |γ|, of any chain between cycles (when no chain exists, |γ|= 0), then the

reduction procedure described above is guaranteed to result in terms for which the pair

{nc, |γ|} is decreased (lexicographically). Because the sequence of {nc, |γ|} characteristics

for terms generated by the reductions described above are monotonically decreasing, it

is clear that they must terminate in terms with nc = 1 and |γ| = 0, which cannot be

further reduced. Q.E.F.

4 Application: the four-particle amplitude in Yang-Mills

The algorithm above clearly reduces all terms appearing the the expansion of Pf ′Ψ into

the form of (2.14) required to make color-kinematics duality of amplitudes manifest. While

sufficiently easy to implement on a computer, for example, it is worthwhile to illustrate how

it works in practice for at least one concrete example. Doing so will allow us to highlight

several important features of the algorithm. Most notably, it will allow us to highlight

the flexibility available at each successive stage of reduction, and the implications of the

existence of so many reduction pathways.

The simplest non-trivial case is that of four particles. Direct expansion of Pf ′Ψ, elim-

inating the columns {i, j}={1, 4}, results in the following terms:

Pf ′Ψ =
n1
〈1234〉

+
n2
〈1324〉

+
n3

〈14〉〈23〉
+

n4
〈124〉〈3〉

+
n5

〈134〉〈2〉
+

n6
〈14〉〈2〉〈3〉

. (4.1)

(Recall the notation defined in (2.6) above.) Here, the initial 15 terms in the expansion

have been organized into groups according to their z-dependence. These follow immediately

from the definition of Pf ′Ψ in (2.9); for the sake of reference, they are:

n1 ≡ ε34(s23 ε12− εk12 εk23) + εk43(ε23 εk12− ε12 εk32); n4 ≡ ε12 εk42− ε24 εk12;

n2 ≡ ε24(s23 ε13− εk13 εk32) + εk42(ε23 εk13− ε13 εk23); n5 ≡ ε13 εk43− ε34 εk13;

n3 ≡ ε14(εk23 εk32−s23 ε23); n6 ≡ − ε14 .

(4.2)

It is worth mentioning that these numerators can be nicely organized into the W - and

U -notation of ref. [37]; but their explicit form will play no role in our analysis.
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Clearly, the first two terms in (4.1) are already reduced, and already in the desired

KK-basis. Therefore, we need only reduce the terms proportional to ni for i=3, . . . , 6. Let

us consider each in turn.

Let us start with the first term that requires reduction — that proportional to n3
in (4.1). This term involves two 2-cycles, 〈14〉 and 〈23〉, and so already we are faced

with choices — both of which cycle to reduce, and the points {a, b} with which to do the

reduction. Of all the possible choices involved, only two result in (essentially) different

expressions. Choosing to reduce the cycle 〈14〉 with respect to the points {a, b} ≡ {1, 3},
we find the reduction:

1

〈14〉〈23〉
= −s24

s14

1

〈1324〉
; (4.3)

choosing instead to reduce the cycle 〈23〉 with respect to the points {a, b} ≡ {3, 4} we

would find
1

〈14〉〈23〉
= −s12

s23

1

〈1234〉
. (4.4)

The equality between the expressions (4.3) and (4.3) is literally a manifestation of the BCJ

relations of the amplitude [25]. And this example illustrates an important and general

feature of the reduction algorithm: not only are there many choices for how to reduce a

term, but these choices multiply at every stage of recursion, resulting in myriad possibilities

for the ultimate expressions obtained.

The next two terms, those proportional to n4 and n5 in (4.1), have no such choices for

their reduction: because we must always (and without loss of generality) choose the cycle

being reduced to have fewer than (n−1) elements, we must reduce the one-cycles of each.

(The choice b does not affect either of the reductions in this case.) Therefore, reducing the

cycle 〈3〉 of the first and 〈2〉 of the second, we obtain the following:

1

〈124〉〈3〉
=

εk31
〈1243〉

− εk32
〈1234〉

= −
(
εk31 + εk32
〈1234〉

+
εk31
〈1324〉

)
;

1

〈134〉〈2〉
=

εk21
〈1243〉

− εk23
〈1324〉

= −
(

εk21
〈1234〉

+
εk21 + εk23
〈1324〉

)
.

(4.5)

Here, we have used the KK-relations, (3.3), to expand PT(1, 2, 4, 3) as,

1

〈1243〉
= −

(
1

〈1234〉
+

1

〈1324〉

)
, (4.6)

for each of the reduced expressions in (4.5).

The final term in (4.1), proportional to n6, has the most possible variation for its

reduction. Many of these choices are essentially the same. For example, we can start by

reducing the cycle 〈3〉 with respect to the points {a, b}≡{3, 1}; the result is:

1

〈14〉〈2〉〈3〉
= − εk31
〈134〉〈2〉

− εk32
〈14〉〈2〉

(2, 4)

(4, 3)(3, 2)
. (4.7)

Notice that the second term above is of Type II according to the classification in our

algorithm; the additional factor represents an (oriented) chain from 4→ 3→ 2. The first
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term in (4.7) reduces uniquely, resulting in the expression given in (4.5); the second term

is more interesting. Because it is of Type II, there are no choices for its reduction and we

are forced to reduce the cycle 〈14〉 with respect to the points {a, b}≡{4, 2}. This results in,

1

〈14〉〈2〉
(2, 4)

(4, 3)(3, 2)
= − εk21
〈1234〉

− εk23
〈14〉〈23〉

. (4.8)

Notice that the second term is exactly that already encountered above — with two choices

for its ultimate reduction, (4.3) and (4.4). Using the first of these possible reductions for

this last term, and combining everything together, we find that

1

〈14〉〈2〉〈3〉
=
εk21(εk31+ εk32)

〈1234〉
+

(
εk31(εk21+ εk23)−

s24 εk23 εk32
s14

)
1

〈1324〉
. (4.9)

If we had instead used (4.4) to expand the last term in (4.8), we would have had:

1

〈14〉〈2〉〈3〉
=

(
εk21(εk31+ εk32)−

s12 εk23 εk32
s14

)
1

〈1234〉
+
εk31(εk21+ εk23)

〈1324〉
. (4.10)

Combining everything from the work above, and using (4.3) and (4.9) for the expan-

sions of the third and sixth terms, respectively, we arrive at the manifestly color-kinematics

dual representation for the Pfaffian:

Pf ′Ψ ≡
n1,{2,3},4

〈1234〉
+
n1,{3,2},4

〈1324〉
, (4.11)

where

n1,{2,3},4 ≡ n1−n4 (εk31+ εk32)−n5 εk21+n6 εk21(εk31+ εk32); (4.12)

n1,{3,2},4 ≡ n2−n3
s24
s14

−n4 εk31−n5(εk21+ εk23) +n6

(
εk31(εk21+ εk23)−

s24 εk23 εk32
s14

)
.

Let us conclude with some observations about the above example. The form of the

color-kinematic-dual numerators (4.12) happens to be in a so-called ‘local’ form — with

no denominators of the numerators already appearing in the corresponding term’s denom-

inators (although this fact is not manifestly obvious as written). Also, if instead of using

the reduction (4.3) for both appearances of this term (for n3 and n6) we had taken the

average of the expressions (4.3) and (4.4), we would have found that n1,{2,3},4 and n1,{3,2},4
would have been manifestly permutations of each other [38] — meaning, permuting the

labels {2, 3} ↔ {3, 2} would have exchanged the two expressions. We do not know how

general these facts are beyond n = 4, but it seems definitely worthwhile to explore the

space of color-kinematic-dual formulae that result from different pathways through our

reduction algorithm.

5 Conclusions

Using the integration rules of refs. [7–9] augmented by those of [19], the CHY-formalism

provides a neat and compact expression for n-point Yang-Mills amplitudes in any number of

dimensions. However, it is not directly given in a form that makes color-kinematics duality

manifest. In this paper, we have shown that a systematic reduction algorithm puts all CHY-

integrands in a form corresponding to precisely two Parke-Taylor factors, one shuffled with

respect to the other. This trivializes all integrations and puts the amplitude manifestly
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in a form corresponding to trivalent Feynman graphs, dressed with non-trivial numerators

that depend on the polarizations and momenta. Once in this form, the amplitude can be

further reduced down to a KK-basis by means of the algebraic part of the monodromy

relations. As follows from the analysis of ref. [3], those numerators satisfy Jacobi relations

and therefore imply color-kinematics duality of the scattering amplitude.

Since our algorithm provides a straightforward and explicit way to construct BCJ-

numerators for Yang-Mills theory amplitudes with any number of external legs, we expect

that it may shed new light on some of the issues discussed in [35, 36, 38–44]. It is also

interesting to note that by numerator squaring we immediately recover n-point gravity am-

plitudes [45, 46]. It would be interesting to know how these results extend to loop-level [47],

and if the scattering equation formalism makes manifest the loop-level generalization of

color-kinematic duality [48].

Because our reduction proof is entirely independent of the detailed factors that dress

the auxiliary integration variables of the CHY-formalism, it applies to many other cases.

Most importantly, with the help of the algorithm described here one can merge Hamiltonian

cycles into larger cycles. To illustrate this, one can consider the interesting identities

recently derived by Stieberger and Taylor [49] that involve combinations of Einstein-Yang-

Mills theory and pure Yang-Mills theory (see also [50]). These relations, and generalizations

thereof, have been shown to follow from the scattering equation formalism [51, 52]. The

identities needed to show this are precisely special cases of the general reduction algorithm

derived in this paper. Indeed, it is clear that these relations are nothing but special

cases of our general algorithm. Applying our algorithm to the most general mixed gluon-

graviton amplitudes, we can rewrite those as a sum over pure Yang-Mills theory amplitudes.

In fact, our algorithm indicates that amplitudes of any theory with a factor Pf ′Ψ in its

CHY-integrand can be written as a linear combination of Yang-Mills amplitudes — for

example, Born-Infeld theory. Going one level deeper, we note that the basic building

blocks are invariable the trivalent graphs of ϕ3-theories, as described in ref. [8]. Only

different ‘dressing factors’ on those cubic vertices distinguish these classes of theories.

Remarkably, this holds for pure gravity as well. It would be very interesting to understand

the interpretation of these relations, manifest in the scattering equation formalism, directly

within traditional quantum field theory and string theory.
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