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Abstract

Scattering amplitudes in Yang–Mills theory can be represented in the formalism of Cachazo, He and 
Yuan (CHY) as integrals over an auxiliary projective space—fully localized on the support of the scattering 
equations. Because solving the scattering equations is difficult and summing over the solutions algebraically 
complex, a method of directly integrating the terms that appear in this representation has long been sought. 
We solve this important open problem by first rewriting the terms in a manifestly Möbius-invariant form and 
then using monodromy relations (inspired by analogy to string theory) to decompose terms into those for 
which combinatorial rules of integration are known. The result is the foundations of a systematic procedure 
to obtain analytic, covariant forms of Yang–Mills tree-amplitudes for any number of external legs and in any 
number of dimensions. As examples, we provide compact analytic expressions for amplitudes involving up 
to six gluons of arbitrary helicities.
© 2016 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

One of the most fundamental quantities in theoretical particle physics is the scattering am-
plitude for n gauge bosons. Although so essential, it is remarkable that for a long time explicit 
expressions for covariant d-dimensional scattering amplitudes of n massless gauge bosons of 
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arbitrary helicities were most easily obtained from the field theory limit of string theory (see, 
e.g., [1] for a review). Conventional d-dimensional Feynman diagram techniques are simply way 
too cumbersome above a small number of external legs. The highly efficient BCFW on-shell 
recursion relations [2,3] provide a practical solution, but it would still be worthwhile to explore 
alternate approaches.

In the scattering equation formalism of CHY, [4–6], represents a completely new step towards 
obtaining such compact covariant expressions for amplitudes. Expressed in terms of a (reduced) 
2n ×2n Pfaffian, the n-point S-matrix element is given by a (n − 3)-dimensional integral which 
fully localizes on the set of solutions to so-called scattering equations. A proof of the validity 
of this remarkable formula for any n has been given in ref. [7] and it has also been derived 
from the viewpoint of the ambitwistor string [8–10]. Thus, no integrations are really required to 
find the n-point covariant scattering amplitude, only a sum over solutions to a set of algebraic 
equations. The downside of this is that the sum scales with n as (n −3)! and finding the full set of 
solutions becomes difficult already at rather low values n. Progress has been made from a variety 
of different directions [11–13].1

Recently, a simple set of analytic integration rules were derived. They circumvent the problem 
of summing over (n − 3)! solutions and provides the result of that sum based on a simple com-
binatorial algorithm, [15–17]. However, some of the integrals needed in order to obtain explicit 
expressions for covariant gauge boson amplitudes were not immediately in a form where these 
simple integration rules were applicable. Rather, one would first have to resort to a not entirely 
systematic use of integration-by-parts identities. This makes it hard to provide general and simple 
rules for deriving any n-point gauge boson scattering amplitude using this formalism.

Very recently, the issue of integration rules for more general CHY integrands has been con-
sidered from two independent directions [18,19]. The monodromy relations solve such problems 
by shifting the integration contours appropriately. That way we rewrite all integrands in terms of 
pieces that all have α′ → 0 limits without further analytic continuation. Other prescriptions with 
less compact integrands (e.g., rewritten through also integration by parts identities) can indeed be 
verified to be free of such terms. However, such prescriptions appear very hard to systematize. In 
this paper, we shall present a different and fully systematic solution to the problem—applicable 
at least to the case of integrands appearing in the CHY representation of Yang–Mills amplitudes. 
Interestingly, our method uses the idea of monodromy as it is applied in string theory [20,21]. 
This is perhaps puzzling on two counts. First, monodromy relations in string theory a priori only 
provide non-trivial relations between full amplitudes: by a sequence of contour shifts, and upon 
taking first real and then imaginary parts [20], one derives KK amplitude relations [22] and BCJ 
amplitude relations [23], respectively. Second, because the CHY construction is based on entirely 
different integrations on a set of δ-function constraints, it may not seem a priori obvious why 
monodromy considerations can apply to that formalism.

To understand the first issue, one should realize that monodromy in string theory is far more 
general than as applied to a full amplitude: it can also be applied to individual terms in the string 
theory integrand. To understand the second issue, one needs to know the intimate relationship 
between string theory integrals and CHY integrals, as explained in ref. [24] (see also section 3 of 
ref. [15]). The latter connection allows us to import monodromy relations of string theory in the 
α′→0 limit into CHY integrands. In this way we establish a broad class of general relations sat-

1 We are also aware of another approach to analytic integration—very different than what is described here—that 
should work for arbitrary CHY/string-theory integrands, [14].
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isfied by CHY integrals, corresponding to real and imaginary parts of string theory monodromy 
relations. Taking the real part, we obtain identities that involve only the CHY integration vari-
ables. As might have been guessed, such identities are in fact simple algebraic identities of the 
kind obtained by, e.g., partial fractioning. However, the identities corresponding to taking the 
imaginary part are highly non-trivial, mixing integration variables with generalized Mandelstam 
variables. In this way, integration variables can, figuratively speaking, be traded for momenta. 
In particular, such identities can be used to lower the order of the poles, thus rendering those 
integrals doable by means of the integration rules derived in refs. [15–17]. This provides a step-
by-step implementation of integration rules that can be used for any n-point amplitude, i.e. we 
start from the most complicated integrands and reduce them step-wise to simpler integrands until 
we only have integrands that can be evaluated.

In this paper, we describe this application of string theory monodromy relations and how it 
can be applied as a powerful and systematic tool for analytically integrating the terms that appear 
in the CHY representation of Yang–Mills amplitudes. Surely these tools have much broader 
applications, but we consider Yang–Mills amplitudes as our primary example. In section 2, we 
review how Yang–Mills amplitudes are represented in CHY and string theory, and discuss the 
obstacles to direct analytic integration. The first obstacle is the fact that the CHY representation is 
not manifestly Möbius-invariant term-by-term; this is remedied in section 2 where we describe a 
refinement of the CHY representation that is manifestly Möbius-invariant. Even when every term 
is manifestly Möbius-invariant, however, the analytic rules for integration described in [15–17]
can be obstructed by the appearance of integrands with what we will call ‘problematic k-tuples’. 
These include (and generalize) the higher-poles that can appear in individual terms in the CHY 
and string theory representations. In section 3, we describe how monodromy relations of string 
theory can be used to systematically eliminate these obstructions. We use these new rules to 
derive analytic formulae (via CHY) for Yang–Mills amplitudes involving as many as six gluons. 
These are given in detail in Appendix A; these formulae have been verified against known results 
(e.g. using the package [25]), and are provided as a MATHEMATICA notebook included in this 
work’s submission files on the arXiv.

2. Review and refinement of CHY and string amplitudes

In this section, we rapidly review the CHY and string theory representations of amplitudes 
in Yang–Mills theory, and briefly discuss the obstacles to analytic integration of the formulae 
that result. But prior to doing so, we must first refine the CHY representation in order make it 
manifestly Möbius-invariant term-by-term.

In the scattering equation formalism, the n-point gluon amplitude in Yang–Mills can be rep-
resented as follows [4–6],

An ≡ (−1)�n/2�
∫

�CHY
Pf ′�(zi)

(z1 − z2)(z2 − z3) · · · (zn − z1)
, (2.1)

where the integration measure �CHY (which includes the scattering equation constraints) is given 
by:

�CHY ≡ dnz

vol(SL(2))

∏
i

′δ(Si) ≡ (zr − zs)
2(zs − zt )

2(zt − zr)
2

∏
i∈Zn\{r,s,t}

dzi δ(Si) , (2.2)

where the δ-functions impose the scattering equations,

Si ≡
∑ sij

(zi − zj )
= 0, (2.3)
j 	=i



N.E.J. Bjerrum-Bohr et al. / Nuclear Physics B 913 (2016) 964–986 967
localizing the integration to simply a sum over the (n − 3)! solutions to {Si = 0}; also appearing 
in the integration measure (2.1) is the reduced Pfaffian2 of the matrix � (that is, the Pfaffian of 
�

ij
ij , obtained by deleting rows and columns i, j from �),

Pf ′� ≡ (−1)i+j

(zi − zj )
Pf

(
�

ij
ij

)
, where � ≡

(
A −CT

C B

)
, (2.4)

where the components of � are given by the matrices,

Ai 	=j ≡ sij
(zi−zj )

, Bi 	=j ≡ εij

(zi − zj )
, Ci 	=j ≡ εkij

(zi − zj )
,

Ai=j ≡ 0, Bi=j ≡ 0, Ci=j ≡ −
∑
l 	=i

εkil

(zi − zl)
.

(2.5)

for which sij ≡2ki ·kj and εij ≡2 εi ·εj and εkij ≡2εi ·kj .
While correct, this representation does not provide a manifestly Möbius-invariant integrand 

for the amplitude because of the diagonal terms of the matrix C: these terms are not of uniform 
(nor correct) weight under Möbius transformations. This problem can be solved as follows. Let 
us make use of the (partial-fraction) identity,

− εkil

(zi − zl)
= εkil

(za − zi)
+ εkil(zl − za)

(za − zi)(zi − zl)
for i 	= a, (2.6)

to re-write the diagonal terms of the C-matrix,

Cii =
∑
l 	=i

(
εkil

(za − zi)
+ εkil(zl − za)

(za − zi)(zi − zl)

)
⇒

∑
l 	=i,a

εkil(zl − za)

(za − zi)(zi − zl)
. (2.7)

Here, the RHS follows from gauge-invariance (and momentum conservation)—as the sum of the 
first terms is always proportional to εkii . Because the terms on the RHS have uniform weight of 
z−2
i under modular transformations, the reduced Pfaffian is guaranteed to be term-wise Möbius 

invariant. Thus, and for the sake of concreteness, we can replace the diagonal elements of the 
C-matrix by, for example,

Cii ⇒

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

n∑
l=3

εk1l (zl − z2)

(z2 − z1)(z1 − zl)
, i = 1 ,∑

l 	∈{1,i}

εkil(zl − z1)

(z1 − zi)(zi − zl)
, i > 1 .

(2.8)

Throughout the rest of this work, whenever we speak of ‘the’ terms in the CHY representation of 
the amplitude, we have made use of this form of the diagonal entries of the C-matrix—rendering 
the CHY representation term-wise, manifestly Möbius-invariant.

Another way to compute pure Yang–Mills field theory amplitudes is provided by superstring 
theory—see, e.g., ref. [1]. Here the n-point field theory amplitude can be computed as the leading 
α′ contribution to a set of ordered integrations along the real axis:

2 Interestingly, we can here report on one further refinement; one has always the freedom to pick a different Pfaffian 
reduction for each occurring product of contracted polarization vectors in the amplitude. Although not employed here, 
this observation can be used to favor certain CHY integrations when deriving amplitude results.
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An = lim
α′→0

α′(n−4)/2
∫ n−1∏

i=3

dzi

(z1 − z2)(z2 − zn)(zn − z1)∏n
i=1(zi − zi+1)

∫
dnθ dnϕ

×
∏
i<j

(zi − zj − θiθj )
α′sij

×
∏
i<j

exp

[√
2α′(θi − θj )

(
ϕiεkij + ϕj εkij

)
(zi − zj )

− ϕiϕj εij

(zi − zj )
− θiθjϕiϕj εij

(zi − zj )2

]
. (2.9)

The auxiliary Grassmann integrations over ϕi and θi automatically impose the multi-linearity 
condition on the amplitude in terms of the external polarization vectors εμ

j , just like the Pfaffian 
does in the CHY prescription. Explicit examples of using string theory to compute Yang–Mills 
amplitudes, including all the stringy corrections proportional to powers of α′ can be found in [1]
and in the impressive work by Medina, Brandt and Machado [26] (at 5-point, see also [27]), and 
by Oprisa and Stieberger [28] (at 6-point). The pure spinor formalism provides another method to 
derive such amplitudes using the Berends–Giele recursion procedure [29–31].3 Once the Grass-
mann integrations have been performed, we are left with bosonic integrands with poles in the 
zi variables. Using integration by parts identities a bosonic integrand written solely in terms of 
single poles can be recovered [24]. Inserting the CHY δ-function constraints into such a super-
string integrand and taking the α′→0 limit one precisely recovers the CHY prescription [4–6]
for Yang–Mills theory. An alternative, string-like derivation of the CHY formalism uses the am-
bitwistor string [8,9,32–34].

In ref. [15], this match between ordered string theory integrations and the CHY prescription 
was exploited in several ways. It is instructive to see why certain string theory integration rules 
do not immediately carry over to CHY-type integrals, while others do. Let us start with string 
theory and the following generic ϕ3-type integral over ordered variables,

In= lim
α′→0

α′n−3
∫ n−1∏

i=3

dzi (z1 − z2)(z2 − zn)(zn − z1)
∏

1≤i<j≤n

|zi − zj |α′sij H(z) , (2.10)

where H(z) consists of products of factors (zi − zj )
−	 such that the whole integrand is 

SL(2)-invariant. Depending on the form of H(z), the integral above, with the prefactor (α′)n−3, 
may or may not be well defined. If the degree of divergence of the integral itself is stronger than 
(α′)3−n as α′ → 0 the evaluation of In will require analytic continuation. In ref. [15] such in-
tegrals were not considered. This is sufficient to provide, for example, all integration rules for 
scalar ϕ3-theory. Tellingly, it is precisely these “simpler” string theory integrals for which com-
pact integration rules can be formulated and for which there is one-to-one translation table to 
CHY integrals, where the corresponding integrals instead are evaluated by means of the global 
residue theorem. When we turn to Yang–Mills theory in the CHY formalism a more general set 
of integrals appear, and we need integration rules for them. This is where monodromy provides 
a solution. By deforming contours in string theory the analytic continuation can be performed in 
a systematic manner, relating the result to string theory integrations that do not require analytic 
continuation. The latter can immediately be transcribed into alternative CHY representations of 
the original integrals, now with the bonus that the standard integration rules apply.

3 We thank C. Mafra and O. Schlotterer for informing us, after the preprint of this paper was made public, of the 
link http://www.damtp.cam.ac.uk/user/crm66/SYM/pss.html, where many explicit examples of am-
plitudes are provided.

http://www.damtp.cam.ac.uk/user/crm66/SYM/pss.html
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Although the integration rules derived in ref. [15] are very powerful and exhaust all integrals 
that arise for ϕ3-theory, certain integrations that arise in the CHY formulation of Yang–Mills the-
ory are not covered by these rules. In string theory, those integrals are not well-defined for α′ near 
the origin, requiring analytical continuation. This makes it more complicated to deduce proper 
integration rules, and interestingly this is true also in the CHY formalism. Steps have recently 
been taken towards the formulation of such generalized CHY integration rules in refs. [18,19]. 
In the next section we will present a systematic solution to this problem. But before doing so, let 
us first review the obstructions that arise for more general integrands—and how we can represent 
these diagrammatically.

2.1. Graphical representations of integrands and obstacles to integration

We can represent any CHY/string-theory integrand H(z) constructed as products of factors 
of the form (zi − zj ) graphically as a multi-graph with solid lines indicating factors that appear 
in the denominator (with multiplicity), and with dashed lines indicating factors in the numerator 
(with multiplicity). For example,

⇔ (z1 − z4)

(z1 − z2)2(z2 − z3)2(z3 − z4)2(z4 − z5)2(z5 − z6)(z1 − z6)2(z1 − z5)(z4 − z6)
.

To be completely clear throughout this work, we will always use the convention that every link 
(ij) ⇔(zi − zj ) that appears in the graph is taken to be ordered, with i<j . Thus, when we find it 
useful later on to discuss ‘Parke–Taylor’-like factors 1/((z1 −z2) · · · (zn −z1)), the reader should 
bear in mind that this would be represented graphically with a minus sign: e.g.,

⇔ 1

(z1 − z2)(z2 − z3)(z3 − z4)(z4 − z5)(z5 − z6)(z1 − z6)

= −PT (1,2,3,4,5,6).

We need not review the combinatorial rules for analytic integration described in ref. [15]. 
But for our purposes it will be important to emphasize that these rules necessitate that for every 
k-element subset of particle labels τ , there exists no more than 2k − 2 factors (zi − zj ) in the 
denominator between elements {i, j} ⊂τ (counting factors in the numerator negatively). Subsets 
τ that do not meet this criterion will be called ‘problematic k-tuples’. When an integrand is 
free of problematic k-tuples, then the integration rules described in ref. [15] apply, providing an 
analytic expression for the result of integration against the CHY measure.

Both the six-point integrands drawn above are free of problematic k-tuples, and hence can 
be integrated analytically without difficulty. Perhaps the simplest example of a graph with a 
problematic k-tuple appears for 4 particles:

⇔ 1

(z1 − z2)3(z2 − z3)(z3 − z4)3(z1 − z4)
, (2.11)
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for which the 2-tuple τ ≡{1, 2} is problematic because there are more than 2 factors of (z1 − z2)

in the denominator. We could also describe the subset {3, 4} as problematic, but subsets should 
be considered equivalent to their complements so it is sufficient to consider only τ ≡{1, 2}. 
The existence of a problematic 2-tuple is always indicated by a triple-line in the diagrammatic 
representation of the integrand.

A more intricate example of an integrand with problematic k-tuples would be the following:

⇔ (z1 − z4)2

(z1 − z2)3(z2 − z3)(z3 − z4)2(z4 − z5)3(z5 − z6)(z1 − z6)2(z1 − z3)(z4 − z6)
.

This integrand has four problematic k-tuples: {1, 2}, {4, 5}, {1, 2, 3}, and {1, 2, 6}.
In the next section we will describe how integrands such as these with problematic k-tuples 

can systematically be expanded using monodromy relations into a sum of integrands without 
problematic k-tuples, allowing us to use the combinatorial rules of ref. [15] to express the result 
of their integration analytically.

3. Integrand-level monodromy relations and reduction

As reviewed above, the two primary obstacles to obtaining analytic formulae for scattering 
amplitudes using the scattering equation formalism are the non-manifest Möbius-invariance of 
individual terms—solved in our refined formulation—and the appearance of integrands such as 
(2.11) that have problematic k-tuples. To illustrate this, let us consider the terms that appear 
in the (refined) CHY representation of the 4-particle tree-amplitude. Using (2.1) with C defined 
according to (2.8), picking {i, j} = {1, 2} for the projection to the reduced Pfaffian, and extracting 
the coefficients of cyclic classes (mod duplication), the amplitude is expressed as follows,

A4 = α1 ε12ε34 + α2 ε13ε24 + β1 ε12 + β2 ε13 + distinct cyclic, (3.1)

where the coefficients are given by:

α1 ≡ s12 , α2 ≡ −s12 ,

β1 ≡ εk32εk41 − εk31εk42 ,

β2 ≡ −εk23εk41 − εk21εk43 .

(3.2)

Of these, all but α1 can be integrated immediately via the rules of ref. [15]:

= − 1

s12
, = − 1

s23
, = −

(
1

s12
+ 1

s23

)
, (3.3)
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from which we see that α2 = 1,

β1 = εk31εk42s23+εk32εk41s13

s12s23
, β2 = εk21εk43s23+εk23εk41s12

s12s23
. (3.4)

While the CHY integrand appearing in the coefficient α1 is Möbius invariant, it cannot be 
integrated analytically according to the rules of ref. [15] because of the cubic powers (z1 −
z2)

3 and (z3 − z4)
3 appearing in the denominator (represented as triple lines in the figure). As 

described above, these indicate the existence of the problematic 2-tuple {1, 2}.
Let us now describe how monodromy relations of string theory can remedy this situation—

lowering the degree of poles in the diagram (2.11). The basic idea is a simple one. Viewing 
the integrand (2.11) in string theory, monodromy tells us how to exchange one integration region 
with another while carefully deforming the contour around branch points. Effectively, this results 
in complex phases (determined by the Koba–Nielsen factor) attached to the integrand:

0 =
0∫

−∞
dzH(z)(−z)α

′s12(1 − z)α
′s23 (3.5)

+ eiα′s12

1∫
0

dzH(z)(z)α
′s12(1 − z)α

′s23 + eiα′(s12+s23)

∞∫
1

dzH(z)(z)α
′s12(z − 1)α

′s23 .

Let us introduce a convenient graphical notation. A line between two points i < j represents a 
factor 1

(zi−zj )
both with respect to the string theory and the CHY measures. Applied to the case 

of eq. 2.11, the above relation then becomes a three-term identity:

0 = + eiα′s12 − eiα′(s12+s23) . (3.6)

Here, the minus sign appearing in the relation above is really due to our convention for how to 
order the denominators of the factors corresponding to the diagrams. Such a relation naturally 
splits up into real and imaginary parts [20,35–37], yielding:

0 = + cos
(
α′s12

) − cos
(
α′(s12+s23)

)
,

0 = sin
(
α′s12

) − sin
(
α′(s12+s23)

)
.

(3.7)

These identities are the analogs of KK [22] and BCJ [23] relations, respectively. Note that the 
first relation (the real part) involves two diagrams both with triple lines. The identity holds, 
of course; but it is not the one that will prove useful to us here. The relation following from 
the imaginary part, however, is far more interesting: it relates a diagram with a triple line (a 
problematic 2-tuple) to one without. As we are only interested in the leading contribution as 
α′→0, this identity becomes,
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= s12+s23

s12
= − s12+s23

s2
12

= s13

s2
12

. (3.8)

Using this, we see that α1 given in (3.2) is simply equal to s13/s12. Thus, we have found an-
alytic expressions for all the terms needed to express the amplitude. Putting everything together, 
we have:

A4 =
[
ε13ε24 + 1

s12

(
ε12ε34s13 + ε12

(
εk31εk42 + εk32εk41

) + ε13εk21εk43

)
+ 1

s23

(
ε12εk32εk41 + ε13εk23εk41

)]
+ distinct cyclic.

(3.9)

Going to higher multiplicity, the terms generated in the CHY representation increasingly in-
volve problematic k-tuples. For n = 5, for example, a direct expansion of the CHY representation 
(2.1) (using the refined C-matrix and projecting to the reduced Pfaffian with {i, j} = {1, 2}—for 
the sake of concreteness) generates an expansion involving 26 distinct CHY integrals to evaluate. 
Of these, 17 are free of problematic k-tuples and therefore can be integrated directly using the 
tools of ref. [15]. The diagrams that have problematic k-tuples include, for example,

(3.10)

Like for n = 4, the only problematic k-tuples are 2-tuples when n = 5 (simply because subsets 
are considered equivalent to their complements). Thus, we should be able to use the same strategy 
as above to compute such terms analytically.

3.1. Systematic elimination of problematic 2-tuples

Let us now describe how problematic 2-tuples can be systematically eliminated through a 
natural generalization of the identity (3.5). This will allow us to analytically integrate all the 
terms appearing the 5-particle amplitude.

In order to describe the generalization of (3.5) to higher multiplicity, it will be useful to define 
the notation

PT (1,2, . . . , n) ≡ 1

(z1 − z2)(z2 − z3)(z3 − z4) · · · (zn − z1)
, (3.11)

(motivated by analogy to the structure of the Parke-Taylor amplitude, [38]). In the CHY repre-
sentation of Yang–Mills amplitudes (2.1), every term in the n-particle amplitude is manifestly 
proportional to PT (1, . . . , n). But introducing this notation here will allow us to deal with more 
general Hamiltonian cycles (a path through a graph that passes through all vertices exactly once) 
appearing in the integrands in which we are interested.

It is straightforward to see that the generalized BCJ-type identity from the imaginary part of 
the basic monodromy relation (3.5) (at leading order in α′) is the identity:

0 = s12PT (1,2, . . . , n) +
n−1∑

(s12+s2(3···k))PT (1, . . . , k,2, k+1, . . . , n). (3.12)

k=3
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as anticipated from (3.6) and (3.7). Here, we have introduced the notation sa(b···c)≡sab + . . .+sac

for the sake of concision. Just to be clear, this is not an ‘identity’ among CHY integrands, but 
an identity after integration against the scattering equation constraints. We will give an alternate, 
direct proof of this identity in Appendix B. Dividing by the Parke-Taylor pre-factor in the leading 
term of (3.12), we can re-write this identity in terms of cross-ratios constructed from the zi’s:

1 = −
n−1∑
k=3

(
s12+s2(3···k)

s12

)
(z1 − z2)(z2 − z3)(zk − zk+1)

(z1 − z3)(zk − z2)(z2 − zk+1)
. (3.13)

Importantly, multiplication of any CHY integrand by (3.13) will result in sum of integrands 
with a reduced power of (z1 − z2) appearing in the denominator. For example, an integrand with 
the problematic 2-tuple {1, 2} (corresponding to a factor of 1/(z1 − z2)

3) will be expanded into 
a sum of terms proportional to 1/(z1 − z2)

2—free of the problematic 2-tuple. Thus, the identity 
systematically eliminates the problematic 2-tuple {1, 2}. This motivates us to label this identity 
as follows:

Id{1,2} ≡ −
n−1∑
k=3

( s12 + s2(3···k)

s12

)PT (1, . . . , k,2, k+1, . . . , n)

PT (1,2, . . . , n)
= 1. (3.14)

(Strictly speaking, this identity also depends on an overall cyclic ordering—through the appear-
ance of PT (1, 2, . . . , n) in the denominator of (3.14). However, any permutation σ ∈ Sn of 
labels (1, 2, . . . , n) →(σ1, σ2, . . . , σn) such that {1, 2} ⊂{σ1, σ2} would achieve the elimination 
of the bad 2-tuple {1, 2}. Usually there is a natural choice for the cyclic ordering as every graph 
(including those generated by multiple iterations of identities such as (3.14)) will involve a Parke-
Taylor prefactor; when this is the case, use of this identity will not generate any new factors in 
the numerator. In our examples below, the ‘natural’ ordering will always be taken.)

This notation should be fairly intuitive: for any CHY integration with a problematic 2-tuple 
τ , multiplication by Idτ will result in a sum of terms without the problematic 2-tuple. This can 
be done iteratively, leading to a systematic elimination of all problematic 2-tuples, allowing us 
to obtain analytic expressions for these terms using the integration rules of ref. [15].

As described above, for n = 5 the only possible bad k-tuples are 2-tuples. Thus, the 
procedure described above should suffice to systematically evaluate terms such as those in 
(3.10)—examples relevant to the 5-particle amplitude. The first of the examples in (3.10) con-
tains only a single problematic 2-tuple—namely, {4, 5}. Thus, it can be evaluated by a single 
application of Id{4,5}:

Id{4,5} = s45+s15

s45
+ s45+s(12)5

s45

= 1

s2
45

(
s45+s15

s23
− s35

s12

)
.

(3.15)

(We remind the reader that any unusual signs appearing above follow from the convention that 
all the links (ij) ⇔(zi − zj ) that appear in the graph are ordered: i<j .)

The other two examples are more involved, as each has two distinct problematic 2-tuples. 
Nevertheless, repeated application of the identity (3.14) will always result in an expansion into 
terms without problematic 2-tuples. For the first, we find:



974 N.E.J. Bjerrum-Bohr et al. / Nuclear Physics B 913 (2016) 964–986
Id{4,5}Id{1,2}

= − s(12)3s(34)5

s12s45
− s(12)3s25

s12s45
− s25

s12

= s(12)3

s12s13s45

(
s13s(34)5

s12s45
− s25

s45
+ s25

s12

)
. (3.16)

And for the last example of (3.10), we have:

Id{5,1}Id{3,4}

= s1(25)s4(35)

s15s34
− s1(25)s24

s15s34
− s14

s15

= 1

s15s34

(
s1(25)s4(35)

s12s34
− s1(25)s24

s15s34
− s3(24)s14

s15s23

)
. (3.17)

In these examples involving multiple iterations of identities, the expressions above should be 
understood somewhat suggestively: after applying Id{1,2} to the example in (3.16), each term 
generated will have a different ‘preferred’ Parke-Taylor ordering—and hence, different preferred 
orderings for the subsequent application of Id{4,5}. Moreover, not all the terms generated by ap-
plication Id{1,2} require further expansion: the rightmost term in the first line of (3.16) is already 
free of problematic 2-tuples and hence can be directly integrated analytically.

We have made use of the general identity (3.14) to evaluate every term generated in the CHY 
representation of the 5-particle amplitude. The explicit result has been given in Appendix A.1.

Beyond n = 5, however, integrands can involve higher-order problematic k-tuples. In gen-
eral, the terms in the n-point amplitude can have problematic tuples with k≤�n/2�. Thus, the 
identities (3.14) require generalization. Conveniently, the obvious generalization—to BCJ-like 
identities with higher-order shuffles—works. We now describe how this works in detail.

3.2. General monodromy reductions: eliminating problematic k-tuples

The complete generalization of the monodromy relations (3.12) can be written in the following 
way4:

4 A derivation of the relation can be found in [39].
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0 =
∑

σ∈({2,...,k}∃ {k+1,...,n−1})
PT (1, σ1, . . . , σn−2, n)

(
s1···k +

∑
{i,j}|σi>σj

sσi σj

)
. (3.18)

Here, {2, . . . , k} ∃ {k+1, . . . , n − 1} denotes the set of all ‘shuffles’ of the sets {2, . . . , k} and 
{k+1, . . . , n − 1}—that is, all permutations that preserve the relative ordering of the sets. It may 
be useful to give a concrete example. When n = 6 and k = 3, (3.18) becomes the BCJ-like 
identity:

0 = PT (1,2,3,4,5,6)s123+PT (1,2,4,3,5,6)(s123+s34)

+PT (1,2,4,5,3,6)(s123+s3(45))+PT (1,4,2,3,5,6)(s123+s(23)4)

+PT (1,4,2,5,3,6)(s123+s(23)4+s35)+PT (1,4,5,2,3,6)(s123+s(23)(45)).

(3.19)

Because we are always interested in using these identities to eliminate one of the terms (that 
involving the identity element of the shuffle), it is natural to rewrite (3.18) slightly as follows:

0 = s1···kPT (1,2, . . . , n)

+
∑

σ∈({2,...,k}˜∃ {k+1,...,n−1})
PT (1, σ1, . . . , σn−2, n)

(
s1···k +

∑
{i,j}|σi>σj

sσi σj

)
, (3.20)

where here, ̃∃ is defined to be the set of shuffles excluding the identity. This leads to the new set 
of monodromy relations, naturally generalizing those defined in (3.14):

Id{1,...,k}≡ −1

PT (1, . . . , n)s1···k
×

∑
σ∈({2,...,k}˜∃ {k+1,...,n−1})

PT (1, σ1, . . . , σn−2, n)
(
s1···k +

∑
{i,j}|σi>σj

sσi σj

)
= 1.

(3.21)

As before, it is easy to see that application of Idτ will eliminate any problematic k-tuple τ . To 
illustrate the use of these generalized monodromy relations, consider the evaluation of a contri-
bution to the 6-point amplitude with a single problematic 3-tuple {1, 2, 3}: through multiplication 
by Id{1,2,3} we find,

= s123+s34

s123
+ s123+s3(45)

s123

+ s123+s(23)4

s123

− s123+s24+s3(45)

s123
+ s123+s(23)(45)

s123

= − 1

s2

(
s123+s34

s s
+ s123+s3(45)

s s
+ s123+s(23)4

s s
+ s123+s(23)(45)

s s

)
.

(3.22)
123 12 56 12 45 23 56 23 45
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(Notice that the fourth term in the expansion above vanishes upon integration.) Similar reduc-
tion procedures exist for every integrand that we have checked—generating all terms necessary 
for amplitudes through 8 particles. For the sake of reference, we provide a complete analytic 
representation of the 6-particle amplitude in Appendix A.2.

4. Conclusions

In this paper, we have proposed a systematic algorithm to eliminate problematic k-tuples by 
integrand-level monodromy relations, which hold only at the support of scattering equations. 
Combining proper rewriting of diagonal entries of the C-matrix, we are able to write CHY inte-
grand to a manifestly modular-invariant form and then using the integration rule given in [15–17]
to obtain an analytic CHY representation of Yang–Mills amplitudes. It is obvious that our method 
can be used in any theory, including gravity theories.

One interesting aspect of this representation of Yang–Mills amplitudes is the following. Upon 
expanding the Pfaffian we get the sum of CHY integrands dressed with proper kinematic fac-
tors sij . Although potentially some CHY integrands could produce higher order poles 1/s2

A, 
the dressed kinematic factors conspire to reduce them to simple poles, as expected on physical 
grounds This is similar to the phenomenon observed in the KLT relations ALSAR , where the 
momentum kernel S removes precisely removes double pole properly. Indeed, the momentum 
kernel [40] is directly related to the generator of BCJ-type identities [41]. It could be useful to 
understand the detailed mechanism in terms of CHY integrands further.

Another intriguing direction is following. With our algorithm, it is straightforward to write 
down analytic expression for essentially any given CHY integrand. Thus, it maybe possible to 
consider a more general investigation of the mapping between the CHY formalism and general 
quantum field theories. Turning trees into loops, one can now also very explicitly consider loop 
amplitudes in this framework.
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Appendix A. Explicit representations of Yang–Mills amplitudes

A.1. Analytic CHY representation of the five-particle amplitude

Directly expanding (the manifestly-Möbius invariant form of) the CHY representation of the 
five-particle amplitude in Yang–Mills gives a total of 26 distinct integrands. Applying the rules 
described in this note and collecting terms into cyclic classes gives the following analytic repre-
sentation for the amplitude,

A5 ≡ α1 ε12ε34 + α2 ε12ε35 + α3 ε13ε24 + β1 ε12 + β2 ε13 + distinct cyclic, (A.1)

where the coefficients are as follows:
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α1 ≡ εk52s4(15) + εk54s23 − εk53s24

s15s34
+ εk54s23 − εk53s24 + εk52s45

s12s34

+ εk54s23

s12s45
+ εk54

s45
+ εk5,(24)

s15
+ εk52

s12
,

(A.2)

α2 ≡ εk4,(25)s2(45) − εk42s13

s12s45
− εk43s25

s12s34
, (A.3)

α3 ≡ εk51

s15
− εk54

s45
, (A.4)

β1 ≡ εk32
[
εk41εk54 − εk45εk51

] + εk31
[
εk45εk52 − εk42εk54

]
s12s45

+ εk32
[
εk41εk54 − εk45εk51

]
s23s45

+
[
εk32εk43 − εk34εk42

]
εk51

s15s34

+ εk43
[
εk32εk51 − εk31εk52

] + εk34
[
εk41εk52 − εk42εk51

]
s12s34

− εk32εk51εk4,(15)

s15s23
,

(A.5)

β2 ≡ εk21
[
εk45εk53 − εk43εk54

]
s12s45

+ εk23
[
εk45εk51 − εk41εk54

]
s23s45

+ εk23εk51εk4,(15)

s15s23
+ εk43εk51εk2,(15)

s15s34
− εk21εk43εk5,(34)

s12s34
.

(A.6)

We have verified this expression matches known results (e.g. [26], and BCFW [25]). Explicit, 
machine-readable expressions can be found in the MATHEMATICA notebook amplitude_
cyclic_seeds.nb included as part of this work’s submission files to the arXiv.

A.2. Analytic CHY representation of the six-particle amplitude

Directly expanding (the manifestly-Möbius invariant form of) the CHY representation of the 
six-particle amplitude in Yang–Mills gives a total of 237 distinct integrands. Applying the rules 
described in this note and collecting terms into cyclic classes gives the following analytic repre-
sentation for the amplitude,

A6 ≡ α1 ε12ε34ε56 + α2 ε12ε35ε46 + α3 ε12ε36ε45 + α4 ε13ε25ε46

+ β1 ε12ε35 + β2 ε14ε25 + β3 ε13ε24 + β4 ε12ε34 + β5 ε12ε45 + β6 ε12ε46 (A.7)

+ β7 ε13ε46 + β8 ε13ε46 + β9 ε12ε36 + γ1 ε12 + γ2 ε13 + γ3 ε14 + distinct cyclic,

where the coefficients are as follows5:

α1 ≡ 1

s123
+ 1

s16
+ s2(35)

s126s12
+ s2(35)

s126s16
+ s5(24)

s156s16
+ s5(24)

s156s56
+ s25

s12s56
+ s45

s123s56

+ s23

s123s12
+ s23s45 − s4(23)s25 − s24s35

s156s16s34
+ s23s45 − s4(23)s25 − s24s35

s156s34s56
+ s23s45

s123s12s56

5 Here we have introduced a notation εki,(j ···k)≡2εi ·(kj + . . .+kl). Explicit expressions can be found in the MATHE-
MATICA notebook amplitude_cyclic_seeds.nb included as part of this work’s submission files to the arXiv.

http://amplitude_cyclic_seeds.nb
http://amplitude_cyclic_seeds.nb
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+ s4(56)s25 − s24s35 + s23s45

s12s34s56
+ s2(35)s45 − s24s35

s126s12s34
+ s2(35)s45 − s24s35

s126s16s34
, (A.8)

α2 ≡ 1

s126
− 1

s123
− 1

s16
+ s2(16)

s126s16
− s23

s123s12
+ s26

s126s12
, (A.9)

α3 ≡ 1

s126
+ 1

s56
+ s34

s126s45
− s2(16)

s126s12
− s2(16)s34

s126s12s45
+ s2(34)

s12s56
+ s4(13)

s123s45
+ s4(13)

s123s56

+ s4(13)s23 − s13s24

s123s12s45
+ s4(13)s23 − s13s24

s123s12s56
,

(A.10)

α4 ≡ 1

s123
, (A.11)

β1 ≡ εk41εk62 − εk42εk6,(13)

s12s56
− εk42εk61 − εk41εk62

s126s12
− εk42εk61

s126s16
− εk45εk6,(13)

s123s45

+ εk42εk6,(13) − εk4,(13)εk6,(25)

s123s56
+ εk43εk61s2(34)

s126s16s34
+ εk43εk61s2(34)

s156s16s34
− εk45εk61

s16s45

+ εk43εk61s2(34)

s156s34s56
− εk43εk61

s126s34
+ εk43εk61

s156s16
+ εk43εk61

s156s56
− εk43εk61

s34s56

+ εk43
[
εk6,(25)s26 − εk62s1(34) − εk61s25

]
s126s12s34

+ εk43
[
εk6,(25)s2(56) − εk62s1(34)

]
s12s34s56

+ εk45
[
εk62s13 − εk61s23 + εk63s26

]
s126s12s45

+ εk45
[
εk62s13 − εk6,(13)s23

]
s123s12s45

− εk45εk61s23

s126s16s45
+

[
εk42εk6,(13) − εk62εk4,(13)

]
s3(12) + εk65

[
εk42s13 − εk4,(13)s23

]
s123s12s56

,

(A.12)

β2 ≡
[
εk32 − εk34

]
εk65

s156s16
+

[
εk32 − εk34

]
εk65

s156s56
+ εk32εk65s4(23)

s156s16s23

+ εk32εk65s4(23)

s156s23s56
− εk32εk6,(15)

s16s23
− εk34εk62s5(34)

s126s16s34
− εk34εk62

s126s16

− εk34εk65s2(34)

s156s16s34
− εk34εk65s2(34)

s156s34s56
− εk34εk6,(34)

s16s34
, (A.13)

β3 ≡ εk54εk6,(45)

s123s45
− εk54εk61

s16s45
+ εk56εk61 − εk51εk65

s156s56

+ εk54εk65 − εk56εk64

s123s56
+ εk61εk5,(16)

s156s16
, (A.14)

β4 ≡
[
εk52εk61 − εk51εk62

](
s56 + s126

)
s126s12s56

+ εk61εk5,(24) − εk51εk6,(24)

s156s56

+ 1 [[
εk52εk61 − εk51εk62

]
s14 + [

εk54εk61 − εk51εk64
]
s23
s156s34s56
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+ [
εk51εk63 − εk53εk61

]
s24 + [

εk52εk61 − εk51εk62
]
s45

+ [
εk52εk61 − εk51εk62

]
s46

]
+ εk52εk61

s126s16
+ εk54εk61

s16s45
+ εk54εk61s23

s126s16s45

+ εk54εk63

s126s45
+

[
εk52εk64 − εk54εk62

]
s13 + [

εk54εk6,(13) − εk64εk5,(13)

]
s23

s123s12s56

+ 1

s12s34s56

[[
εk53εk62 − εk52εk63

]
s14 + [

εk54εk61 + εk54εk63
]
s23

− εk64
[
εk53s2(34) − εk52s13 + εk51s23

] + [
εk52εk61 − εk51εk62

]
s46

+ [
εk54εk63 − εk53εk61 + εk51εk63

]
s24 + [

εk52εk61 − εk51εk62
]
s45

− εk54εk62s13

]
+ εk54(εk6,(13)s23 − εk62s13)

s123s12s45
+ εk54εk63 − εk53εk64

s126s34

+ 1

s126s12s34

[
εk61

[
εk54s23 + εk52s45

] − εk54εk63s2(16) − εk53εk64s2(35)

− εk53εk6,(14)s24 − εk62
[
εk54s13 − εk53s14 + εk51s45

]] + εk54εk6,(13)

s123s45

+ εk54εk63 − εk53εk64

s34s56
+ εk54

[
εk61s23 − εk63s2(16) − εk62s13

]
s126s12s45

− εk61
[
εk52s4(23) − εk54s23 + εk53s24

]
s156s16s34

+ εk54εk6,(13) − εk64εk5,(13)

s123s56

+εk61
[
εk54s23 − εk53s24 + εk52s45

]
s126s16s34

+ εk61εk5,(24)

s156s16
, (A.15)

β5 ≡ 2εk34εk62 + εk32εk6,(14)

s126s16
− εk31εk62 + εk32εk6,(23)

s123s12
+

[
εk34 − εk32

]
εk65

s156s16

+
[
εk34 − εk32

]
εk65

s156s56
− εk32

[
εk65s4(23) − εk64s5(23) + εk6,(23)s56

]
s123s23s45

− εk32
[
εk65s4(23) + εk6,(23)s5(16) − εk64s5(23)

]
s16s23s45

− εk32εk65s4(23)

s123s23s56

− εk32εk65s4(23)

s156s16s23
− εk32εk65s4(23)

s156s23s56
− εk32εk65

s12s56
− εk32εk6,(23)

s123s23

− εk34
[
εk62s5(12) − εk65s2(34) + εk6,(34)s25]

s126s12s34
+ εk34εk65s2(34)

s156s34s56
+ εk34εk65

s123s56

+ εk34
[
εk65s2(34) + εk62(s5(16) + s5(34)) − εk6,(34)s25

]
s126s16s34

+ εk34εk65s2(34)

s156s16s34

+ 1

s126s12s45

[
εk34εk62s5(12) − εk35εk62s4(36) − (εk32εk63 + εk62εk3,(12))s5(16)

+2εk34εk62s5(36) − εk35εk64s23 + εk35εk63s24 − εk31εk62s25

− εk34εk63s25 − εk64εk3,(45)s25 − εk32εk6,(23)s25 + εk32εk64s35

+ εk65(εk34s23 + εk3,(45)s24 − εk32s34)
]
+ εk35εk62 + εk34εk65 − εk35εk64
s126s45 s123s45
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+ εk34εk65 − εk35εk64

s16s45
− εk65

[
εk32s34 − εk34s23 + εk3,(12)s24

]
s123s12s56

+ 1

s126s16s45

[
εk35εk63s24 − εk35εk64s2(35) − εk32εk6,(23)s5(12) − εk35εk62s23

− εk34εk6,(34)s25 − εk35εk62s34 + εk65(εk34s23 + εk3,(45)s24 − εk32s34)

− εk35εk62s35 + εk32εk64s35 − εk62
[
εk3,(45)s5(24) + εk34s5(46)

] + εk34εk62s56

− εk32εk6,(23)s56

]
− εk62

[
εk3,(15) − 2εk34

] − εk32εk6,(14)

s126s12
− εk32εk6,(23)

s16s23

+ 1

s123s12s45

[
εk64

[
εk3,(12)s25 − εk35s23 + εk32s35

] − εk31εk62s56

− εk32εk6,(23)s56 − εk65
[
εk32s34 − εk34s23 + εk3,(12)s24

]] + εk34εk65s2(34)

s12s34s56
,

(A.16)

β6 ≡ εk31εk52 − εk32εk51

s123s12
+ εk31εk52 − εk32εk51

s12s34
− εk32εk51

s123s23
− εk32εk54s16

s123s23s45

−εk32εk54

s23s45
+ εk32εk56s1(56)

s123s23s56
+ εk32εk56s1(56)

s156s23s56
+ εk32εk56s1(56)

s156s34s56
+ εk32εk56

s156s23

+ εk32εk56

s156s34
+ εk35εk5,(26) − εk3,(26)εk5,(34)

s126s34
+ εk36εk52

s12s34
− εk36εk54

s123s45

− εk54εk3,(26)

s126s45
+ εk56

[
εk32s1(56) − εk31s2(56) + εk3,(56)s23

]
s123s12s56

+ εk54
[
εk31s26 − εk32s16 − εk36s23

]
s123s12s45

+ εk54
[
εk36s2(16) − εk32s16 + εk31s26

]
s126s12s45

+ εk56
[
εk32s1(56) + εk3,(56)s2(34) − εk31s2(56)

]
s12s34s56

+ εk56εk3,(56)

s123s56
+ εk56εk3,(56)

s34s56

+ εk5,(34)

[
εk36s2(16) − εk32s16 + εk31s26

] − εk35
[
εk56s2(16) − εk52s16 + εk51s26

]
s126s12s34

,

(A.17)

β7 ≡ εk43εk6,(15)

s34s56
− εk43εk61s2(34)

s156s16s34
− εk43εk61s2(34)

s156s34s56
− εk43εk61

s156s16

−εk43εk61

s156s56
+ εk45εk61

s16s45
− εk45εk6,(45)

s123s45
− εk65εk4,(56)

s123s56
, (A.18)

β8 ≡ εk21εk53

s123s12
− εk21εk54s3(45)

s123s12s45
− εk21εk54s3(45)

s126s12s45
− εk21εk54

s126s12
+ εk21εk56s34

s123s12s56

− εk23εk56

s156s56
− εk23εk5,(16)s4(23)

s156s16s23
+ εk23εk5,(16)

s123s23
− εk23εk5,(16)

s156s16
+ εk23εk5,(16)

s16s23

+ εk24εk56

s123s56
− εk54εk2,(16)s3(45)

s126s16s45
+ εk54εk2,(16)

s123s45
− εk54εk2,(16)

s126s16
+ εk54εk2,(16)

s16s45

+ εk21εk56 + εk23εk54s16 + εk23εk54 − εk23εk56s4(23) − εk23εk56s4(23)
, (A.19)
s12s56 s123s23s45 s23s45 s123s23s56 s156s23s56
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β9 ≡ εk43εk52 − εk42εk53

s126s45
− εk42εk51 + εk41εk52

s12s45
− εk43εk56s2(56)

s12s34s56

+
[
εk43εk52 − εk42εk53

]
s16 + [

εk53εk4,(16) − εk43εk5,(16)

]
s26

s126s12s45

+ εk43εk52

s126s34
+ εk43

[
εk52s16 − εk5,(16)s26

]
s126s12s34

+ εk56
[
εk4,(13)s2(13) − εk42s13

]
s123s12s56

+
[
εk56εk4,(13) − εk46εk5,(13)

]
s2(13) + [

εk46εk52 − εk42εk56
]
s13

s123s12s45
, (A.20)

γ1 ≡ 1

s123s12s56

[[
εk32εk41 − εk31εk42

][
εk56εk64 − εk54εk65

]
+

[
εk32

[
εk51εk65 − εk56εk61

] + εk31
[
εk56εk62 − εk52εk65

]]
εk4,(56)

]
+ 1

s123s12s45

[
εk31εk41εk54εk62 − εk32εk42εk54εk61 − εk32εk43εk54εk61

− εk32εk45εk54εk61 − εk32εk45εk56εk61 + εk31εk43εk54εk62

+ εk31εk45εk54εk62 + εk31εk45εk56εk62 + εk32εk45εk51εk64

− εk31εk45εk52εk64 + εk32εk41εk54εk6,(23) − εk31εk42εk54εk6,(13)

+ εk45
[
εk32εk51 − εk31εk52

]
εk65

]
+ 1

s123s23s45

[
εk32

[
εk41εk54εk6,(23)

− εk42εk54εk61 − εk43εk54εk61 − εk45εk54εk61 − εk45εk56εk61

+ εk45εk51εk64 + εk45εk51εk65
]] + εk32

[
εk56εk61 − εk51εk65

]
εk4,(23)

s156s23s56

+ εk32εk61
[
εk45εk5,(23) − εk54εk4,(23)

]
s16s23s45

+
[
εk32εk43 − εk34εk42

]
εk61εk5,(16)

s156s16s34

+
εk32

[
εk56

[
εk61εk4,(23) + εk41εk6,(14)

] − εk65
[
εk51εk4,(23) + εk41εk5,(14)

]]
s123s23s56

−
[
εk34εk42 − εk32εk43

][
εk56εk61 − εk51εk65

]
s156s34s56

+ εk32εk61εk4,(23)εk5,(16)

s156s16s23

+ 1

s12s34s56

[
εk34

[
εk42

[
εk41

[
εk56εk62 − εk52εk65

] − εk56εk61 + εk51εk65
]]

+ εk43

[
εk32

[
εk56εk61 − εk51εk65

] + εk31
[ − εk56εk62 + εk52εk65

]]]
+ 1

s126s12s34

[[
εk35εk43 − εk34εk45

][
εk52εk61 − εk51εk62

]
+

[
εk43

[
εk31εk62 − εk32εk61

] + εk34
[
εk42εk61 − εk41εk62

]]
εk5,(34)

]
+ 1

s126s12s45

[[
εk45εk53 − εk43εk54

][
εk32εk61 − εk31εk62

]
+

[
εk54

[
εk42εk61 − εk41εk62

] + εk45
[
εk51εk62 − εk52εk61

]]
εk3,(45)

]
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+
εk61

[
εk32

[
εk45εk53 − εk43εk54

] + [
εk42εk54 − εk45εk52

]
εk3,(45)

]
s126s16s45

+
εk61

[[
εk35εk43 − εk34εk45

]
εk52 + [

εk34εk42 − εk32εk43
]
εk5,(34)

]
s126s16s34

, (A.21)

γ2 ≡
εk21

[
εk43

[
εk54εk65 − εk56εk64

] + [
εk56εk63 − εk53εk65

]
εk4,(56)

]
s123s12s56

+
εk21

[[
εk45εk56 − εk46εk54

]
εk63 + [

εk43εk54 − εk45εk53
]
εk6,(45)

]
s123s12s45

+
εk23

[
εk41

[
εk54εk65 − εk56εk64

] + [
εk56εk61 − εk51εk65

]
εk4,(56)

]
s123s23s56

+
εk23

[[
εk45εk56 − εk46εk54

]
εk61 + [

εk41εk54 − εk45εk51
]
εk6,(45)

]
s123s23s45

− εk43εk61εk2,(16)εk5,(34)

s126s16s34
+ εk21εk43

[
εk65εk5,(34) − εk56εk6,(34)

]
s12s34s56

− εk43εk61εk2,(34)εk5,(16)

s156s16s34
+ εk21

[
εk45εk53 − εk43εk54

]
εk6,(12)

s126s12s45

− εk23εk61εk4,(23)εk5,(16)

s156s16s23
+ εk23

[
εk51εk65 − εk56εk61

]
εk4,(23)

s156s23s56

− εk21εk43εk5,(34)εk6,(12)

s126s12s34
+ εk23εk61

[
εk45εk5,(16) − εk54εk4,(16)

]
s16s23s45

+ εk43
[
εk51εk65 − εk56εk61

]
εk2,(34)

s156s34s56
+

[
εk45εk53 − εk43εk54

]
εk61εk2,(16)

s126s16s45
, (A.22)

γ3 ≡
[
εk54εk65 − εk56εk64

]
εk21εk3,(12)

s123s12s56
+

[
εk21εk32 − εk23εk31

]
εk54εk6,(45)

s123s23s45

+
[
εk23εk31 − εk21εk32

][
εk56εk64 − εk54εk65

]
s123s23s56

+ εk34εk61εk2,(34)εk5,(16)

s156s16s34

+ εk34εk61εk2,(16)εk5,(34)

s126s16s34
+ εk21εk34εk5,(34)εk6,(12)

s126s12s34
+ εk21εk54εk3,(12)εk6,(45)

s123s12s45

+ εk21εk34
[
εk56εk6,(34) − εk65εk5,(34)

]
s12s34s56

+ εk21εk54εk3,(45)εk6,(12)

s126s12s45

+
[
εk23εk34 − εk24εk32

][
εk56εk61 − εk51εk65

]
s156s23s56

+ εk54εk61εk2,(16)εk3,(45)

s126s16s45

+
[
εk23εk34 − εk24εk32

]
εk61εk5,(16)

s156s16s23
+

[
εk56εk61 − εk51εk65

]
εk34εk2,(34)

s156s34s56

+ εk54εk61
[
εk23εk3,(16) − εk32εk2,(16)

]
s16s23s45

. (A.23)
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Appendix B. Elaboration of the monodromy relation

In this section, we provide some further details on the identity (3.12). After some simplifica-
tion this identity becomes

0 =
(

s21
(z1 − z3)

(z1 − z2)(z2 − z3)
+

n−1∑
k=3

(
k∑

i=1

s2i

)
(zk − zk+1)

(zk − z2)(z2 − zk+1)

)
. (B.1)

Collecting coefficients of each s2i (e.g. s21) we arrive at

(z1 − z3)

(z1 − z2)(z2 − z3)
+

n−1∑
k=3

(zk − zk+1)

(zk − z2)(z2 − zk+1)
= (z1 − zn)

(z1 − z2)(z2 − zn)
, (B.2)

where we have used the following identity

n−1∑
k=a

(zk − zk+1)

(zk − z2)(z2 − zk+1)
= (za − zn)

(za − z2)(z2 − zn)
. (B.3)

Similarly, the coefficient of s2j , j = 3, ..., (n − 1) is (zj −zn)

(zj −z2)(z2−zn)
. Inserting the identity (B.1)

we then have

0 = s21
(z1 − zn)

(z1 − z2)(z2 − zn)
+

n−1∑
j=3

s2j

(zj − zn)

(zj − z2)(z2 − zn)
. (B.4)

To prove (B.4) we use the scattering equation − s21
(z2−z1)

= ∑n
j=3

s2j

(z2−zj )
as the follows6

n−1∑
j=3

s2j

(
(zj − zn)

(zj − z2)(z2 − zn)
+ (z1 − zn)

(z2 − zj )(z2 − zn)

)
+ s2n

(z1 − zn)

(z2 − zn)(z2 − zn)

=
n−1∑
j=3

s2j

(z1 − z2) + (z2 − zj )

(z2 − zj )(z2 − zn)
+ s2n

(z1 − zn)

(z2 − zn)(z2 − zn)

= 1

(z2 − zn)

n−1∑
j=3

s2j + (z1 − z2)

(z2 − zn)

n−1∑
j=3

s2j

(z2 − zj )
+ s2n

(z1 − zn)

(z2 − zn)(z2 − zn)
= 0 .

The more general monodromy relation (3.18) can also be proved in a similar fashion highlighting 
the deep intimacy between the monodromy relations and the scattering equations.

We also note that in a systematic approach for the problematic k-tuples, we insert identities 
(3.21) for each k-tuple when there are multiple ones. However, to avoid reproduce problematic 
k-tuples, we need to make these identities compatible. For example, in the integrand

1

(z1 − z2)3(z3 − z4)3(z5 − z6)3(z2 − z3)(z4 − z5)(z6 − z1)
, (B.5)

6 In fact, (B.4) can be written as an identity of cross ratio 0 = s21 +∑n−1
j=3 s2j

(zj −zn)(z1−z2)

(zj −z2)(z1−zn)
. Such an identity and its 

generalizations will be systematically studied in the forthcoming ref. [42].
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there are three problematic 2-tuples {1, 2}, {3, 4} and {5, 6}, thus we need to use three identities 
of the type 3.12. As an example a proper combination of three identities is given by

PT (1,2,3,4,5,6)

=
((

s2(13)

s12
+ s2(56)s4(23)

s12s34

)
s5(46)

s56
+ s2(56)s4(16)

s12s34

)
PT (1,3,2,5,4,6)

−
((

s2(13)

s12
+ s2(56)s4(23)

s12s34

)
s5(13)

s56
− s26s4(16)

s12s34

)
PT (1,3,5,2,4,6)

−
(

s2(56)s14

s12s34

s5(26)

s56
− s26s14

s12s34

)
PT (1,3,5,2,6,4)

+
(

s2(56)s41

s12s34

s45

s56

)
PT (1,3,2,6,4,5)

−
(

s2(13)

s12
+ s2(56)s4(23)

s12s34

)
s15

s56
PT (1,5,3,2,4,6)

+
(

s2(56)s14

s12s34

s5(14)

s56

)
PT (1,5,3,2,6,4)

−
(

s26s4(35)

s12s34

)
PT (1,3,5,4,2,6) .

It is seen that all problematic 2-tuples are removed. The result for the integration B.5 is 
∑7

i=1 Ti , 
where

T1 −
((

s2(13)

s12
+ s2(56)s4(23)

s12s34

)
s5(46)

s56
+ s2(56)s4(16)

s12s34

)
×

(
1

s12s34s56
+ 1

s12s123s56

)
,

T2 =
((

s2(13)

s12
+ s2(56)s4(23)

s12s34

)
s5(13)

s56
− s26s4(16)

s12s34

)
×

(
1

s12s34s56

)
,

T3 = −
(

− s2(56)s14

s12s34

s5(26)

s56
+ s26s14

s12s34

)
×

(
1

s12s34s56
+ 1

s34s134s56

)
,

T4 = −
(

s2(56)s14

s12s34

s45

s56

)
×

(
1

s12s34s56
+ 1

s12s123s56

)
,

T5 =
(

s2(13)

s12
+ s2(56)s4(23)

s12s34

)
s15

s56
×

(
1

s12s34s56
+ 1

s34s156s56

)
,

T6 =
(

s2(56)s14

s12s34

s5(14)

s56

)
×

(
1

s12s34s56

)
,

T7 =
(

s26s4(35)

s12s34

)
×

(
1

s12s34s56
+ 1

s12s126s34

)
.
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