283 research outputs found

    Efficacy of at home monitoring of foot temperature for risk reduction of diabetes-related foot ulcer: A meta-analysis

    Get PDF
    Aims: To perform an updated systematic review of randomised controlled trials examining the efficacy of at-home foot temperature monitoring in reducing the risk of a diabetes-related foot ulcer (DFU). Methods: Systematic review performed according to Preferred Reporting Items for Systematic reviews and Meta-Analyses guidelines. Risk-of-bias was assessed using version 2 of the Cochrane risk-of-bias tool. Meta-analyses were performed using random effect models. Leave-one-out sensitivity analyses and a sub-analysis excluding trials considered at high risk-of-bias assessed the consistency of the findings. The certainty of the evidence was assessed with GRADE. Results: Five randomised controlled trials involving 772 participants meeting the International Working Group on the Diabetic Foot (IWGDF) risk category 2 or 3 were included. All trials reported instructing participants to measure skin temperature at-home at six or more sites on each foot using a hand-held infra-red thermometer at least daily and reduce ambulatory activity in response to hotspots (temperature differences >2.2°C on two consecutive days between similar locations in both feet). One, one, and three trials were considered at low, moderate and high risk-of-bias, respectively. Participants allocated to at-home foot temperature monitoring had a reduced risk of developing a DFU (relative risk 0.51, 95% CI 0.31–0.84) compared to controls. Sensitivity and sub-analyses suggested that the significance of this finding was consistent. The GRADE assessment suggested a low degree of certainty in the finding. Conclusions: At-home daily foot temperature monitoring and reduction of ambulatory activity in response to hotspots reduce the risk of a DFU in moderate or high risk people with a low level of certainty

    Learning to deliver LGBT+ aged care: exploring and documenting best practices in professional and vocational education through the World Café method

    Get PDF
    Substantial evidence on the adverse impact of ageing on lesbian, gay, bisexual and transgender (LGBT+) populations through the lack of inclusive care services has highlighted the need for education and training of the health and social care workforce to enhance their skills, knowledge and capabilities in this area. We describe a cross-national collaboration across four European Union countries called BEING ME. This collaboration examined the current pedagogic environment within professional, vocational and community-based education to identify what is most valuable for addressing these needs. The World Café method enabled a process of structured learning and knowledge exchange between stakeholders resulting in: (a) identification of best practices in pedagogies, (b) generation of tailored co-produced educational resources, and (c) recommendations on how to improve the knowledge and capabilities of future care professionals in the area of LGBT+ affirmative practices. Combined with themes from the post-Café evaluation, our findings suggest that underpinning professional and vocational education with a person-in-environment perspective facilitates going some way to acknowledging the historical context of older LGBT+ people's lives. Addressing the unique needs of sub-populations within LGBT+ communities and setting these in the context of holistic and person-centred care may better enable the meeting of their unique diverse needs for ageing. Recommendations are made for learning and teaching strategies to support improved LGBT+ aged care

    Constraining the epoch of reionization with the variance statistic: simulations of the LOFAR case

    Get PDF
    Several experiments are underway to detect the cosmic redshifted 21-cm signal from neutral hydrogen from the Epoch of Reionization (EoR). Due to their very low signal-to-noise ratio, these observations aim for a statistical detection of the signal by measuring its power spectrum. We investigate the extraction of the variance of the signal as a first step towards detecting and constraining the global history of the EoR. Signal variance is the integral of the signal's power spectrum, and it is expected to be measured with a high significance. We demonstrate this through results from a simulation and parameter estimation pipeline developed for the Low Frequency Array (LOFAR)-EoR experiment. We show that LOFAR should be able to detect the EoR in 600 hours of integration using the variance statistic. Additionally, the redshift (zrz_r) and duration (Δz\Delta z) of reionization can be constrained assuming a parametrization. We use an EoR simulation of zr=7.68z_r = 7.68 and Δz=0.43\Delta z = 0.43 to test the pipeline. We are able to detect the simulated signal with a significance of 4 standard deviations and extract the EoR parameters as zr=7.72−0.18+0.37z_r = 7.72^{+0.37}_{-0.18} and Δz=0.53−0.23+0.12\Delta z = 0.53^{+0.12}_{-0.23} in 600 hours, assuming that systematic errors can be adequately controlled. We further show that the significance of detection and constraints on EoR parameters can be improved by measuring the cross-variance of the signal by cross-correlating consecutive redshift bins.Comment: 13 pages, 14 figures, Accepted for publication in MNRA

    The proper name as starting point for basic reading skills

    Get PDF
    Does alphabetic-phonetic writing start with the proper name and how does the name affect reading and writing skills? Sixty 4- to 5Âœ-year-old children from middle SES families with Dutch as their first language wrote their proper name and named letters. For each child we created unique sets of words with and without the child’s first letter of the name to test spelling skills and phonemic sensitivity. Name writing correlated with children’s knowledge of the first letter of the name and phonemic sensitivity for the sound of the first letter of the name. Hierarchical regression analysis makes plausible that both knowledge of the first letter’s name and phonemic sensitivity for this letter explain why name writing results in phonetic spelling with the name letter. Practical implications of the findings are discussed

    Linear polarization structures in LOFAR observations of the interstellar medium in the 3C 196 field

    Get PDF
    This study aims to characterize linear polarization structures in LOFAR observations of the interstellar medium (ISM) in the 3C196 field, one of the primary fields of the LOFAR-Epoch of Reionization key science project. We have used the high band antennas (HBA) of LOFAR to image this region and Rotation Measure (RM) synthesis to unravel the distribution of polarized structures in Faraday depth. The brightness temperature of the detected Galactic emission is 5−15 K in polarized intensity and covers the range from -3 to +8 rad m−2 in Faraday depth. The most interesting morphological feature is a strikingly straight filament at a Faraday depth of +0.5 rad m−2 running from north to south, right through the centre of the field and parallel to the Galactic plane. There is also an interesting system of linear depolarization canals conspicuous in an image showing the peaks of Faraday spectra. We used the Westerbork Synthesis Radio Telescope (WSRT) at 350 MHz to image the same region. For the first time, we see some common morphology in the RM cubes made at 150 and 350~{; ; \rm MHz}; ; . There is no indication of diffuse emission in total intensity in the interferometric data, in line with results at higher frequencies and previous LOFAR observations. Based on our results, we determined physical parameters of the ISM and proposed a simple model that may explain the observed distribution of the intervening magneto- ionic medium. The mean line-of-sight magnetic field component, B∄, is determined to be 0.3±0.1 ÎŒG and its spatial variation across the 3C196 field is 0.1 ÎŒG. The filamentary structure is probably an ionized filament in the ISM, located somewhere within the Local Bubble. This filamentary structure shows an excess in thermal electron density (neB∄>6.2 cm−3ÎŒG) compared to its surroundings

    A thermophysical analysis of the (1862) Apollo Yarkovsky and YORP effects

    Get PDF
    Context. The Yarkovsky effect, which causes orbital drift, and the YORP effect, which causes changes in rotation rate and pole orientation, play important roles in the dynamical and physical evolution of asteroids. Near-Earth asteroid (1862) Apollo has strong detections of both orbital semimajor axis drift and rotational acceleration. Aims. To produce a unified model that can accurately match both observed effects using a single set of thermophysical properties derived from ground-based observations, and to determine Apollo’s long term evolution. Methods. We use light-curve shape inversion techniques and the Advanced Thermophysical Model (ATPM) on published light-curve, thermal-infrared, and radar observations to constrain Apollo’s thermophysical properties. The derived properties are used to make detailed predictions of Apollo’s Yarkovsky and YORP effects, which are then compared with published measurements of orbital drift and rotational acceleration. The ATPM explicitly incorporates 1D heat conduction, shadowing, multiple scattering of sunlight, global self-heating, and rough surface thermal-infrared beaming in the model predictions. Results. We find that ATPM can accurately reproduce the light-curve, thermal-infrared, and radar observations of Apollo, and simultaneously match the observed orbital drift and rotational acceleration using: a shape model with axis ratios of 1.94:1.65:1.00, an effective diameter of 1.55 ± 0.07 km, a geometric albedo of 0.20 ± 0.02, a thermal inertia of 140 +140-100 J m-2 K-1 s-1/2, a highly rough surface, and a bulk density of 2850 +480-680 kg m-3. Using these properties we predict that Apollo’s obliquity is increasing towards the 180 degree YORP asymptotic state at a rate of 1.5 +0.3-0.5 degrees per 105 yr. Conclusions. The derived thermal inertia suggests that Apollo has loose regolith material resting on its surface, which is consistent with Apollo undergoing a recent resurfacing event based on its observed Q-type spectrum. The inferred bulk density is consistent with those determined for other S-type asteroids, and suggests that Apollo has a fractured interior. The YORP effect is acting on a much faster timescale than the Yarkovsky effect and will dominate Apollo’s long term evolution. The ATPM can readily be applied to other asteroids with similar observational data sets
    • 

    corecore