419 research outputs found

    Dual effects of phytoestrogens result in u-shaped dose-response curves.

    Get PDF
    Endocrine disruptors can affect the endocrine system without directly interacting with receptors, for example, by interfering with the synthesis or metabolism of steroid hormones. The aromatase that converts testosterone to 17beta-estradiol is a possible target. In this paper we describe an assay that simultaneously detects aromatase inhibition and estrogenicity. The principle is similar to that of other MCF-7 estrogenicity assays, but with a fixed amount of testosterone added. The endogenous aromatase activity in MCF-7 cells converts some of the testosterone to 17beta-estradiol, which is assayed by quantifying differences in the expression level of the estrogen-induced pS2 mRNA. Potential aromatase inhibitors can be identified by a dose-dependent reduction in the pS2 mRNA expression level after exposure to testosterone and the test compound. Using this assay, we have investigated several compounds, including synthetic chemicals and phytoestrogens, for aromatase inhibition. The phytoestrogens, except genistein, were aromatase inhibitors at low concentrations (< 1 micro M) but estrogenic at higher concentrations (greater than or equal to 1 micro M), resulting in U-shaped dose-response curves. None of the tested synthetic chemicals were aromatase inhibitors. The low-dose aromatase inhibition distinguished phytoestrogens from other estrogenic compounds and may partly explain reports about antiestrogenic properties of phytoestrogens. Aromatase inhibition may play an important role in the protective effects of phytoestrogens against breast cancer

    Compared to conventional, ecological intensive management promotes beneficial proteolytic soil microbial communities for agro-ecosystem functioning under climate change-induced rain regimes

    Get PDF
    Projected climate change and rainfall variability will affect soil microbial communities, biogeochemical cycling and agriculture. Nitrogen (N) is the most limiting nutrient in agroecosystems and its cycling and availability is highly dependent on microbial driven processes. In agroecosystems, hydrolysis of organic nitrogen (N) is an important step in controlling soil N availability. We analyzed the effect of management (ecological intensive vs. conventional intensive) on N-cycling processes and involved microbial communities under climate change-induced rain regimes. Terrestrial model ecosystems originating from agroecosystems across Europe were subjected to four different rain regimes for 263 days. Using structural equation modelling we identified direct impacts of rain regimes on N-cycling processes, whereas N-related microbial communities were more resistant. In addition to rain regimes, management indirectly affected N-cycling processes via modifications of N-related microbial community composition. Ecological intensive management promoted a beneficial N-related microbial community composition involved in N-cycling processes under climate change-induced rain regimes. Exploratory analyses identified phosphorus-associated litter properties as possible drivers for the observed management effects on N-related microbial community composition. This work provides novel insights into mechanisms controlling agro-ecosystem functioning under climate change

    RNA polymerase II stalling promotes nucleosome occlusion and pTEFb recruitment to drive immortalization by Epstein-Barr virus

    Get PDF
    Epstein-Barr virus (EBV) immortalizes resting B-cells and is a key etiologic agent in the development of numerous cancers. The essential EBV-encoded protein EBNA 2 activates the viral C promoter (Cp) producing a message of ~120 kb that is differentially spliced to encode all EBNAs required for immortalization. We have previously shown that EBNA 2-activated transcription is dependent on the activity of the RNA polymerase II (pol II) C-terminal domain (CTD) kinase pTEFb (CDK9/cyclin T1). We now demonstrate that Cp, in contrast to two shorter EBNA 2-activated viral genes (LMP 1 and 2A), displays high levels of promoter-proximally stalled pol II despite being constitutively active. Consistent with pol II stalling, we detect considerable pausing complex (NELF/DSIF) association with Cp. Significantly, we observe substantial Cp-specific pTEFb recruitment that stimulates high-level pol II CTD serine 2 phosphorylation at distal regions (up to +75 kb), promoting elongation. We reveal that Cp-specific pol II accumulation is directed by DNA sequences unfavourable for nucleosome assembly that increase TBP access and pol II recruitment. Stalled pol II then maintains Cp nucleosome depletion. Our data indicate that pTEFb is recruited to Cp by the bromodomain protein Brd4, with polymerase stalling facilitating stable association of pTEFb. The Brd4 inhibitor JQ1 and the pTEFb inhibitors DRB and Flavopiridol significantly reduce Cp, but not LMP1 transcript production indicating that Brd4 and pTEFb are required for Cp transcription. Taken together our data indicate that pol II stalling at Cp promotes transcription of essential immortalizing genes during EBV infection by (i) preventing promoter-proximal nucleosome assembly and ii) necessitating the recruitment of pTEFb thereby maintaining serine 2 CTD phosphorylation at distal regions

    Public perceptions of demand side management and a smarter energy future

    Get PDF
    Demand side management (DSM) is a key aspect of many future energy system scenarios1,2. DSM refers to a range of technologies and interventions designed to create greater efficiency and flexibility on the demand side of the energy system3. Examples include the provision of more information to users to support efficient behaviour and new ‘smart’ technologies that can be automatically controlled. Key stated outcomes of implementing DSM are benefits for consumers, such as cost savings3, 4 and greater control over energy use. Here, we use results from an online survey to examine public perceptions and acceptability of a range of current DSM possibilities in a representative sample of the British population (N = 2441). We show that, whilst cost is likely to be a significant reason for many people to uptake DSM measures, those concerned about energy costs are actually less likely to accept DSM. Notably, individuals concerned about climate change are more likely to be accepting. A significant proportion of people, particularly those concerned about affordability, indicated unwillingness or concerns about sharing energy data, a necessity for many forms of DSM. We conclude substantial public engagement and further policy development is required for widespread DSM implementation

    Distinct Mechanisms for Induction and Tolerance Regulate the Immediate Early Genes Encoding Interleukin 1β and Tumor Necrosis Factor α

    Get PDF
    Interleukin-1β and Tumor Necrosis Factor α play related, but distinct, roles in immunity and disease. Our study revealed major mechanistic distinctions in the Toll-like receptor (TLR) signaling-dependent induction for the rapidly expressed genes (IL1B and TNF) coding for these two cytokines. Prior to induction, TNF exhibited pre-bound TATA Binding Protein (TBP) and paused RNA Polymerase II (Pol II), hallmarks of poised immediate-early (IE) genes. In contrast, unstimulated IL1B displayed very low levels of both TBP and paused Pol II, requiring the lineage-specific Spi-1/PU.1 (Spi1) transcription factor as an anchor for induction-dependent interaction with two TLR-activated transcription factors, C/EBPβ and NF-κB. Activation and DNA binding of these two pre-expressed factors resulted in de novo recruitment of TBP and Pol II to IL1B in concert with a permissive state for elongation mediated by the recruitment of elongation factor P-TEFb. This Spi1-dependent mechanism for IL1B transcription, which is unique for a rapidly-induced/poised IE gene, was more dependent upon P-TEFb than was the case for the TNF gene. Furthermore, the dependence on phosphoinositide 3-kinase for P-TEFb recruitment to IL1B paralleled a greater sensitivity to the metabolic state of the cell and a lower sensitivity to the phenomenon of endotoxin tolerance than was evident for TNF. Such differences in induction mechanisms argue against the prevailing paradigm that all IE genes possess paused Pol II and may further delineate the specific roles played by each of these rapidly expressed immune modulators. © 2013 Adamik et al

    ‘It used to be brutal, now it’s an art’:changing negotiations of violence and masculinity in British karate

    Get PDF
    In most western (and indeed eastern) cultures, fighting is seen as an ultimate symbol of masculinity – an embodied display of dominance, control and violence (Bourdieu, 2001). As a space legitimising and praising performances of mimetic violence (Dunning, 1999), combat sports provide an arena where the virtues of dominance and power at the heart of conceptions of orthodox masculinity (Anderson, 2010 ) or hegemonic masculinity (Connell, 2005) can be symbolically presented by men through bodily displays of strength, physical aggression, and the taking and overcoming of pain (Bourdieu, 2001; Messner, 1990; Wacquant, 2004). Yet, over the last twenty years the focus of karate in Britain has been perceived to shift from aggressive acts of 'hitting hard' to developing and displaying controlled, acrobatic and technically precise movements. Drawn from a nine-month ethnography and 7 semi-structured interviews, this chapter explores how British male karate practitioners re/negotiate ideas of masculinity and embodiments of a masculine identity in the context of karate’s changing emphasis on, and practices of, 'violence'. This paper suggests that a 'civilising' shift (Elias and Dunning, 1986) in the competition rules increases in women’s participation in karate with men, and subsequent negotiations of mimetic violence, complicate the use of violence as a symbol of praised masculine identity within British karate . A praised masculine identity is crafted by carefully blending traits conventional deemed feminine such as technical precision, elegance and agility alongside displays of strength and dominance. Such performances challenge conceptions of an orthodox sporting masculinity and notions of hierarchical gender distinction

    Who needs what from a national health research system: Lessons from reforms to the English Department of Health's R&D system

    Get PDF
    This article has been made available through the Brunel Open Access Publishing Fund.Health research systems consist of diverse groups who have some role in health research, but the boundaries around such a system are not clear-cut. To explore what various stakeholders need we reviewed the literature including that on the history of English health R&D reforms, and we also applied some relevant conceptual frameworks. We first describe the needs and capabilities of the main groups of stakeholders in health research systems, and explain key features of policymaking systems within which these stakeholders operate in the UK. The five groups are policymakers (and health care managers), health professionals, patients and the general public, industry, and researchers. As individuals and as organisations they have a range of needs from the health research system, but should also develop specific capabilities in order to contribute effectively to the system and benefit from it. Second, we discuss key phases of reform in the development of the English health research system over four decades - especially that of the English Department of Health's R&D system - and identify how far legitimate demands of key stakeholder interests were addressed. Third, in drawing lessons we highlight points emerging from contemporary reports, but also attempt to identify issues through application of relevant conceptual frameworks. The main lessons are: the importance of comprehensively addressing the diverse needs of various interacting institutions and stakeholders; the desirability of developing facilitating mechanisms at interfaces between the health research system and its various stakeholders; and the importance of additional money in being able to expand the scope of the health research system whilst maintaining support for basic science. We conclude that the latest health R&D strategy in England builds on recent progress and tackles acknowledged weaknesses. The strategy goes a considerable way to identifying and more effectively meeting the needs of key groups such as medical academics, patients and industry, and has been remarkably successful in increasing the funding for health research. There are still areas that might benefit from further recognition and resourcing, but the lessons identified, and progress made by the reforms are relevant for the design and coordination of national health research systems beyond England.This article is available through the Brunel Open Access Publishing Fund

    Chlorfenapyr: a new insecticide with novel mode of action can control pyrethroid resistant malaria vectors

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Malaria vectors have acquired widespread resistance to many of the currently used insecticides, including synthetic pyrethroids. Hence, there is an urgent need to develop alternative insecticides for effective management of insecticide resistance in malaria vectors. In the present study, chlorfenapyr was evaluated against <it>Anopheles culicifacies </it>and <it>Anopheles stephensi </it>for its possible use in vector control.</p> <p>Methods</p> <p>Efficacy of chlorfenapyr against <it>An. culicifacies </it>and <it>An. stephensi </it>was assessed using adult bioassay tests. In the laboratory, determination of diagnostic dose, assessment of residual activity on different substrates, cross-resistance pattern with different insecticides and potentiation studies using piperonyl butoxide were undertaken by following standard procedures. Potential cross-resistance patterns were assessed on field populations of <it>An. culicifacies</it>.</p> <p>Results</p> <p>A dose of 5.0% chlorfenapyr was determined as the diagnostic concentration for assessing susceptibility applying the WHO tube test method in anopheline mosquitoes with 2 h exposure and 48 h holding period. The DDT-resistant/malathion-deltamethrin-susceptible strain of <it>An. culicifacies </it>species C showed higher LD50 and LD99 (0.67 and 2.39% respectively) values than the DDT-malathion-deltamethrin susceptible <it>An. culicifacies </it>species A (0.41 and 2.0% respectively) and <it>An. stephensi </it>strains (0.43 and 2.13% respectively) and there was no statistically significant difference in mortalities among the three mosquito species tested (p > 0.05). Residual activity of chlorfenapyr a.i. of 400 mg/m<sup>2 </sup>on five fabricated substrates, namely wood, mud, mud+lime, cement and cement + distemper was found to be effective up to 24 weeks against <it>An. culicifacies </it>and up to 34 weeks against <it>An. stephensi</it>. No cross-resistance to DDT, malathion, bendiocarb and deltamethrin was observed with chlorfenapyr in laboratory-reared strains of <it>An. stephensi </it>and field-caught <it>An. culicifacies. </it>Potentiation studies demonstrated the antagonistic effect of PBO.</p> <p>Conclusion</p> <p>Laboratory studies with susceptible and resistant strains of <it>An. culicifacies </it>and <it>An. stephensi</it>, coupled with limited field studies with multiple insecticide-resistant <it>An. culicifacies </it>have shown that chlorfenapyr can be a suitable insecticide for malaria vector control, in multiple-insecticide-resistant mosquitoes especially in areas with pyrethroid resistant mosquitoes.</p
    corecore