4,164 research outputs found
Variable protection against experimental broiler necrotic enteritis after immunisation with the C-terminal fragment of Clostridium perfringens alpha-toxin and a non-toxic NetB variant
Necrotic enteritis toxin B (NetB) is a pore-forming toxin produced by Clostridium perfringens and has been shown to play a key role in avian necrotic enteritis (NE), a disease causing significant costs to the poultry production industry worldwide. The aim of this work was to determine whether immunisation with a non-toxic variant of NetB (NetB W262A) and the C-terminal fragment of C. perfringens alpha-toxin (CPA247–370) would provide protection against experimental NE. Immunised animals with either antigen or a combination of antigens developed serum antibody levels against NetB and CPA. When CPA247–370 and NetB W262A were used in combination as immunogens, an increased protection was observed after oral challenge by individual dosing, but not after in-feed challenge
Importance of nonuniform Brillouin zone sampling for ab initio Bethe-Salpeter equation calculations of exciton binding energies in crystalline solids
Excitons are prevalent in semiconductors and insulators, and their binding energies are critical for optoelectronic applications. The state-of-the-art method for first-principles calculations of excitons in extended systems is the ab initio GW-Bethe-Salpeter equation (BSE) approach, which can require a fine sampling of reciprocal space to accurately resolve solid-state exciton properties. Here we show, for a range of semiconductors and insulators, that the commonly employed approach of uniformly sampling the Brillouin zone can lead to underconverged exciton binding energies, as impractical grid sizes are required to achieve adequate convergence. We further show that nonuniform sampling of the Brillouin zone, focused on the region of reciprocal space where the exciton wave function resides, enables efficient rapid numerical convergence of exciton binding energies at a given level of theory. We propose a well-defined convergence procedure, which can be carried out at relatively low computational cost and which in some cases leads to a correction of previous best theoretical estimates by almost a factor of 2, qualitatively changing the predicted exciton physics. These results call for the adoption of nonuniform sampling methods for ab initio GW-BSE calculations and for revisiting previously computed values for exciton binding energies of many systems
Disentangling magnetic hardening and molecular spin chain contributions to exchange bias in ferromagnet/molecule bilayers
We performed SQUID and FMR magnetometry experiments to clarify the
relationship between two reported magnetic exchange effects arising from
interfacial spin-polarized charge transfer within ferromagnetic metal
(FM)/molecule bilayers: the magnetic hardening effect, and
spinterface-stabilized molecular spin chains. To disentangle these effects,
both of which can affect the FM magnetization reversal, we tuned the metal
phthalocyanine molecule central site's magnetic moment to selectively enhance
or suppress the formation of spin chains within the molecular film. We find
that both effects are distinct, and additive. In the process, we 1) extended
the list of FM/molecule candidate pairs that are known to generate magnetic
exchange effects, 2) experimentally confirmed the predicted increase in
anisotropy upon molecular adsorption; and 3) showed that spin chains within the
molecular film can enhance magnetic exchange. This magnetic ordering within the
organic layer implies a structural ordering. Thus, by distengangling the
magnetic hardening and exchange bias contributions, our results confirm, as an
echo to progress regarding inorganic spintronic tunnelling, that the milestone
of spintronic tunnelling across structurally ordered organic barriers has been
reached through previous magnetotransport experiments. This paves the way for
solid-state devices studies that exploit the quantum physical properties of
spin chains, notably through external stimuli.Comment: Non
On routing scalability in flat SDN architectures
The rigidity of traditional network architectures, with tightly coupled control and data planes, impair their ability to adapt to the dynamic requirements of future application domains, such as the Tactile Internet or Holographic-Type Communications. Software-Defined Networking (SDN) architectures, which provide programmability to configure the network, have the potential to provide the required dynamism. However, given its centralized essence, SDN suffers from scalability issues. Therefore, efforts have been made to propose alternative decentralized solutions, such as the flat distributed SDN architecture. Despite its potential, the real applicability and scalability of decentralized SDN solutions are still open research questions. This paper presents a comparative analysis of the effects of different routing approaches on the scalability of flat distributed SDN architectures. Using the Open Network Operating System (ONOS) as our evaluation architecture, we have studied the tradeoff between routing overhead in the control data plane and inter-controller communications for different degrees of decentralization. We have found that routing applications, which only require control-data plane communication for setting the path, benefit more from decentralization than the ones which utilize inter-controller communications and ensure Quality of Service (QoS). Our findings highlight the need for efficient routing mechanisms to deal with inter-controller overhead while lowering the amount of control-data plane communication
Infection dynamics following experimental challenge of pigs orally dosed with different stages of two archetypal genotypes of Toxoplasma gondii.
Toxoplasma gondii is a food-borne zoonotic parasite widespread in a variety of hosts, including humans. With a majority of infections in Europe estimated to be meat-borne, pork, as one of the most consumed meats worldwide, represents a potential risk for consumers. Therefore, we aimed to investigate the progress of T. gondii infection and tissue tropism in experimentally infected pigs, using different T. gondii isolates and infectious stages, i.e. tissue cysts or oocysts. Twenty-four pigs were allocated to treatment in four groups of six, with each group inoculated orally with an estimated low dose of either 400 oocysts or 10 tissue cysts of two European T. gondii isolates, a type II and a type III isolate. The majority of pigs seroconverted two weeks post-inoculation. Pigs infected with the type III isolate had significantly higher levels of anti-T. gondii antibodies compared to those infected with the type II isolate. Histopathological exams revealed reactive hyperplasia of the lymphatic tissue of all pigs. Additionally, a selected set of nine tissues was collected during necropsy at 50 dpi from each of the remaining 22 pigs for T. gondii DNA detection by quantitative real-time PCR. A positive result was obtained in 29.8 % (59/139) of tested tissues. The brain was identified as the most frequently positive tissue in 63.6 % (14/22) of the animals. In contrast, liver samples tested negative in all animals. The highest mean parasite load, calculated by interpolating the average Cq values on the standard curve made of ten-fold serial dilutions of the genomic DNA, corresponding to 100 to 104 tachyzoites/µL, was observed in shoulder musculature with an estimated concentration of 84.4 [0.0-442.5] parasites per gram of tissue. The study highlights the variability in clinical signs and tissue distribution of T. gondii in pigs based on the combination of parasite stages and strains, with type III isolates, particularly oocysts, causing a stronger antibody response and higher tissue parasite burden. These findings suggest the need for further investigation of type III isolates to better understand their potential risks to humans
Dissecting the performance of VR video streaming through the VR-EXP experimentation platform
To cope with the massive bandwidth demands of Virtual Reality (VR) video streaming, both the scientific community and the industry have been proposing optimization techniques such as viewport-aware streaming and tile-based adaptive bitrate heuristics. As most of the VR video traffic is expected to be delivered through mobile networks, a major problem arises: both the network performance and VR video optimization techniques have the potential to influence the video playout performance and the Quality of Experience (QoE). However, the interplay between them is neither trivial nor has it been properly investigated. To bridge this gap, in this article, we introduce VR-EXP, an open-source platform for carrying out VR video streaming performance evaluation. Furthermore, we consolidate a set of relevant VR video streaming techniques and evaluate them under variable network conditions, contributing to an in-depth understanding of what to expect when different combinations are employed. To the best of our knowledge, this is the first work to propose a systematic approach, accompanied by a software toolkit, which allows one to compare different optimization techniques under the same circumstances. Extensive evaluations carried out using realistic datasets demonstrate that VR-EXP is instrumental in providing valuable insights regarding the interplay between network performance and VR video streaming optimization techniques
The Effects of Cocaine on Different Redox Forms of Cysteine and Homocysteine, and on Labile, Reduced Sulfur in the Rat Plasma Following Active versus Passive Drug Injections
Received: 28 November 2012 / Revised: 19 April 2013 / Accepted: 6 May 2013 / Published online: 16 May 2013
The Author(s) 2013. This article is published with open access at Springerlink.comThe aim of the present studies was to evaluate
cocaine-induced changes in the concentrations of different
redox forms of cysteine (Cys) and homocysteine (Hcy),
and products of anaerobic Cys metabolism, i.e., labile,
reduced sulfur (LS) in the rat plasma. The above-mentioned
parameters were determined after i.p. acute and
subchronic cocaine treatment as well as following i.v.
cocaine self-administration using the yoked procedure.
Additionally, Cys, Hcy, and LS levels were measured
during the 10-day extinction training in rats that underwent
i.v. cocaine administration. Acute i.p. cocaine treatment
increased the total and protein-bound Hcy contents,
decreased LS, and did not change the concentrations of Cys
fractions in the rat plasma. In turn, subchronic i.p. cocaine administration significantly increased free Hcy and lowered
the total and protein-bound Cys concentrations while
LS level was unchanged. Cocaine self-administration
enhanced the total and protein-bound Hcy levels, decreased
LS content, and did not affect the Cys fractions. On the
other hand, yoked cocaine infusions did not alter the concentration
of Hcy fractions while decreased the total and
protein-bound Cys and LS content. This extinction training
resulted in the lack of changes in the examined parameters
in rats with a history of cocaine self-administration while in
the yoked cocaine group an increase in the plasma free Cys
fraction and LS was seen. Our results demonstrate for the
first time that cocaine does evoke significant changes in
homeostasis of thiol amino acids Cys and Hcy, and in some
products of anaerobic Cys metabolism, which are dependent
on the way of cocaine administration
Analysing 454 amplicon resequencing experiments using the modular and database oriented Variant Identification Pipeline
<p>Abstract</p> <p>Background</p> <p>Next-generation amplicon sequencing enables high-throughput genetic diagnostics, sequencing multiple genes in several patients together in one sequencing run. Currently, no open-source out-of-the-box software solution exists that reliably reports detected genetic variations and that can be used to improve future sequencing effectiveness by analyzing the PCR reactions.</p> <p>Results</p> <p>We developed an integrated database oriented software pipeline for analysis of 454/Roche GS-FLX amplicon resequencing experiments using Perl and a relational database. The pipeline enables variation detection, variation detection validation, and advanced data analysis, which provides information that can be used to optimize PCR efficiency using traditional means. The modular approach enables customization of the pipeline where needed and allows researchers to adopt their analysis pipeline to their experiments. Clear documentation and training data is available to test and validate the pipeline prior to using it on real sequencing data.</p> <p>Conclusions</p> <p>We designed an open-source database oriented pipeline that enables advanced analysis of 454/Roche GS-FLX amplicon resequencing experiments using SQL-statements. This modular database approach allows easy coupling with other pipeline modules such as variant interpretation or a LIMS system. There is also a set of standard reporting scripts available.</p
- …