46 research outputs found
A case report of surgical treatment of amiodarone-induced thyrotoxicosis in a patient with multiple organ failure
Amiodarone is a drug used in the treatment of life-threatening arrhythmias, which can lead to the development of amiodarone-induced thyrotoxicosis. In most cases this pathology can be treated by conservative methods; surgical treatment is resorted to in cases of thyrotoxicosis refractory to medical treatment. This case report describes surgical treatment of a patient with amiodarone-induced thyrotoxicosis, progressive heart failure, neurological pathology, bilateral pneumonia, functioning tracheostomy, systemic infectious process, multiple organ dysfunction syndrome, who was treated in the intensive care unit. Due to the lack of response to therapy with antithyroid drugs (thiamazole, lithium preparations and pulse therapy with prednisolone) and a progressive deterioration of the condition in a short period of time, according to vital indicators, the patient underwent thyroidectomy. In the postoperative period, there was a decrease in the occurrence of chronic heart failure symptoms. Medical control of cardiac arrhythmias was achieved. Surgical stage proceeded without complications in the period of 30-days. The patient was discharged for outpatient rehabilitation treatment
Surgical Treatment of Decompensated Cicatricial Stricture of the Esophagus, Grade III-IV Dysphagia, and Compression Syndrome Caused by Nontoxic Multinodular Goiter: A Case Report
Objective: Long-standing gastroesophageal reflux disease is the most common cause of a cicatricial stricture of the esophagus. The treatment of this pathology involves a wide range of methods including conservative and surgical options. Surgeons can encounter technical difficulties in case of concomitant neck and chest pathology.Clinical case: We report a case of a decompensated cicatricial stricture of the esophagus with concomitant paraesophageal hiatal hernia, refractory gastroesophageal reflux disease, and nontoxic multinodular goiter (166.9 cm3). Selecting the optimal management for such patients is often a challenge. Staged treatment significantly improves postoperative quality of life, but the increased length of hospital stay can negatively impact patient compliance
Опыт использования системы вакуумной терапии ран при лечении высокого наружного тонкокишечного свища
The article presents the experience of successful patient treatment with a high external small bowel fistula using a combined approach: surgery and vacuum therapy.В статье приведен опыт успешного лечения пациента с высоким наружным тонкокишечным свищом с помощью комбинированного подхода, сочетающего хирургическое вмешательство и вакуумную терапию
Direct discovery of the inner exoplanet in the HD206893 system. Evidence for deuterium burning in a planetary-mass companion
Long term precise radial velocity (RV) monitoring of the nearby star
HD206893, as well as anomalies in the system proper motion, have suggested the
presence of an additional, inner companion in the system. Here we describe the
results of a multi-epoch search for the companion responsible for this RV drift
and proper motion anomaly using the VLTI/GRAVITY instrument. Utilizing
information from ongoing precision RV measurements with the HARPS spectrograph,
as well as Gaia host star astrometry, we report a high significance detection
of the companion HD206893c over three epochs, with clear evidence for Keplerian
orbital motion. Our astrometry with 50-100 arcsec precision afforded
by GRAVITY allows us to derive a dynamical mass of 12.7 M and an orbital separation of 3.53 au for HD206893c. Our
fits to the orbits of both companions in the system utilize both Gaia
astrometry and RVs to also provide a precise dynamical estimate of the
previously uncertain mass of the B component, and therefore derive an age of
Myr. We find that theoretical atmospheric/evolutionary models
incorporating deuterium burning for HD206893c, parameterized by cloudy
atmospheres provide a good simultaneous fit to the luminosity of both HD206893B
and c. In addition to utilizing long-term RV information, this effort is an
early example of a direct imaging discovery of a bona fide exoplanet that was
guided in part with Gaia astrometry. Utilizing Gaia astrometry is expected to
be one of the primary techniques going forward to identify and characterize
additional directly imaged planets. Lastly, this discovery is another example
of the power of optical interferometry to directly detect and characterize
extrasolar planets where they form at ice-line orbital separations of 2-4\,au.Comment: Accepted to A&
Recommended from our members
Photochemically produced SO2 in the atmosphere of WASP-39b
S.-M.T. is supported by the European Research Council advanced grant EXOCONDENSE (no. 740963; principal investigator: R. T. Pierrehumbert). E.K.H.L. is supported by the SNSF Ambizione Fellowship grant (no. 193448). X.Z. is supported by NASA Exoplanet Research grant 80NSSC22K0236. O.V. acknowledges funding from the ANR project ‘EXACT’ (ANR-21-CE49-0008-01), from the Centre National d’Études Spatiales (CNES) and from the CNRS/INSU Programme National de Planétologie (PNP). L.D. acknowledges support from the European Union H2020-MSCA-ITN-2109 under grant no. 860470 (CHAMELEON) and the KU Leuven IDN/19/028 grant Escher. This work benefited from the 2022 Exoplanet Summer Program at the Other Worlds Laboratory (OWL) at the University of California, Santa Cruz, a programme financed by the Heising-Simons Foundation. T.D. is an LSSTC Catalyst Fellow. J.K. is an Imperial College Research Fellow. B.V.R. is a 51 Pegasi b Fellow. L.W. is an NHFP Sagan Fellow. A.D.F. is an NSF Graduate Research Fellow.Photochemistry is a fundamental process of planetary atmospheres that regulates the atmospheric composition and stability1. However, no unambiguous photochemical products have been detected in exoplanet atmospheres so far. Recent observations from the JWST Transiting Exoplanet Community Early Release Science Program2,3 found a spectral absorption feature at 4.05 μm arising from sulfur dioxide (SO2) in the atmosphere of WASP-39b. WASP-39b is a 1.27-Jupiter-radii, Saturn-mass (0.28 MJ) gas giant exoplanet orbiting a Sun-like star with an equilibrium temperature of around 1,100 K (ref. 4). The most plausible way of generating SO2 in such an atmosphere is through photochemical processes5,6. Here we show that the SO2 distribution computed by a suite of photochemical models robustly explains the 4.05-μm spectral feature identified by JWST transmission observations7 with NIRSpec PRISM (2.7σ)8 and G395H (4.5σ)9. SO2 is produced by successive oxidation of sulfur radicals freed when hydrogen sulfide (H2S) is destroyed. The sensitivity of the SO2 feature to the enrichment of the atmosphere by heavy elements (metallicity) suggests that it can be used as a tracer of atmospheric properties, with WASP-39b exhibiting an inferred metallicity of about 10× solar. We further point out that SO2 also shows observable features at ultraviolet and thermal infrared wavelengths not available from the existing observations.Publisher PDFPeer reviewe
Photochemically produced SO2 in the atmosphere of WASP-39b
Photochemistry is a fundamental process of planetary atmospheres that regulates the atmospheric composition and stability1. However, no unambiguous photochemical products have been detected in exoplanet atmospheres so far. Recent observations from the JWST Transiting Exoplanet Community Early Release Science Program2,3 found a spectral absorption feature at 4.05 μm arising from sulfur dioxide (SO2) in the atmosphere of WASP-39b. WASP-39b is a 1.27-Jupiter-radii, Saturn-mass (0.28 MJ) gas giant exoplanet orbiting a Sun-like star with an equilibrium temperature of around 1,100 K (ref. 4). The most plausible way of generating SO2 in such an atmosphere is through photochemical processes5,6. Here we show that the SO2 distribution computed by a suite of photochemical models robustly explains the 4.05-μm spectral feature identified by JWST transmission observations7 with NIRSpec PRISM (2.7σ)8 and G395H (4.5σ)9. SO2 is produced by successive oxidation of sulfur radicals freed when hydrogen sulfide (H2S) is destroyed. The sensitivity of the SO2 feature to the enrichment of the atmosphere by heavy elements (metallicity) suggests that it can be used as a tracer of atmospheric properties, with WASP-39b exhibiting an inferred metallicity of about 10× solar. We further point out that SO2 also shows observable features at ultraviolet and thermal infrared wavelengths not available from the existing observations
Photochemically-produced SO in the atmosphere of WASP-39b
Photochemistry is a fundamental process of planetary atmospheres that
regulates the atmospheric composition and stability. However, no unambiguous
photochemical products have been detected in exoplanet atmospheres to date.
Recent observations from the JWST Transiting Exoplanet Early Release Science
Program found a spectral absorption feature at 4.05 m arising from SO
in the atmosphere of WASP-39b. WASP-39b is a 1.27-Jupiter-radii, Saturn-mass
(0.28 M) gas giant exoplanet orbiting a Sun-like star with an equilibrium
temperature of 1100 K. The most plausible way of generating SO in
such an atmosphere is through photochemical processes. Here we show that the
SO distribution computed by a suite of photochemical models robustly
explains the 4.05 m spectral feature identified by JWST transmission
observations with NIRSpec PRISM (2.7) and G395H (4.5). SO
is produced by successive oxidation of sulphur radicals freed when hydrogen
sulphide (HS) is destroyed. The sensitivity of the SO feature to the
enrichment of the atmosphere by heavy elements (metallicity) suggests that it
can be used as a tracer of atmospheric properties, with WASP-39b exhibiting an
inferred metallicity of 10 solar. We further point out that
SO also shows observable features at ultraviolet and thermal infrared
wavelengths not available from the existing observations.Comment: 39 pages, 14 figures, accepted to be published in Natur
Recommended from our members
A benchmark JWST near-infrared spectrum for the exoplanet WASP-39 b
Observing exoplanets through transmission spectroscopy supplies detailed information about their atmospheric composition, physics and chemistry. Before the James Webb Space Telescope (JWST), these observations were limited to a narrow wavelength range across the near-ultraviolet to near-infrared, alongside broadband photometry at longer wavelengths. To understand more complex properties of exoplanet atmospheres, improved wavelength coverage and resolution are necessary to robustly quantify the influence of a broader range of absorbing molecular species. Here we present a combined analysis of JWST transmission spectroscopy across four different instrumental modes spanning 0.5–5.2 μm using Early Release Science observations of the Saturn-mass exoplanet WASP-39 b. Our uniform analysis constrains the orbital and stellar parameters within subpercentage precision, including matching the precision obtained by the most precise asteroseismology measurements of stellar density to date, and it further confirms the presence of Na, K, H2O, CO, CO2 and SO2 as atmospheric absorbers. Through this process, we have improved the agreement between the transmission spectra of all modes, except for the NIRSpec PRISM, which is affected by partial saturation of the detector. This work provides strong evidence that uniform light curve analysis is an important aspect to ensuring reliability when comparing the high-precision transmission spectra provided by JWST