176 research outputs found

    Dynamic Stability Enhancement of Power Systems Using Neural-Network Controlled Static-Compensator

    Get PDF
    This paper aims at enhancement of dynamic stability of power systems using artificial neural network (ANN) controlled static VAR compensator (SVC). SVC is proven the fact that it improves the dynamic stability of power systems apart from reactive power compensation; it has multiple roles in the operation of power systems. The auxiliary control signals to SVC play a very important role in mitigating the rotor electro-mechanical low frequency oscillations. Artificial neural network based controller is designed using the generator speed deviation, as a modulated signal to SVC, to generate the desired damping, is proposed in this paper. The ANN is trained using conventional controlled data and hence replaces the conventional controller. The ANN controlled SVC is used to improve the dynamic performance of power system by reducing the steady-state error and for its fast settling. The simulations are carried out for multi-machine power system (MMPS) at different operating conditions

    Kikuchi-Fujimoto disease presenting as pyrexia of unknown origin

    Get PDF
    Background: Kikuchi-Fujimoto disease, a benign self-limited lymphadenopathy is an uncommon cause of pyrexia of unknown origin (PUO). Methods: We retrospectively studied the case-records of 13 patients presenting with PUO who were diagnosed to have Kikuchi-Fujimoto disease on peripheral lymph node excision biopsy and report the salient clinical manifestations and histopathological findings in them. All of them received symptomatic treatment. Results: Their median age was 28 [interquartile range (IQR) 18.5-38.0] years. Women (11/13, 84.6%) were more frequently affected. All of them were human immunodeficiency virus (HIV) seronegative. Prior to presenting to us, two were being treated for lymph node tuberculosis with DOTS. Cervical lymph nodes were predominantly involved, the distribution being: right cervical (n=10, 76.9%); left cervical (n=4); and bilateral cervical (n=2). Axillary and generalized lymphadenopathy were rare being seen in 2 and 1 patient respectively. The median (IQR) erythrocyte sedimentation rate (n=11) was 53 (35-89) mm at the end of first hour. Salient histopathological features were paracortical patchy zones of eosinophilic fibrinoid necrosis with karyorrhectic debris, large numbers of histiocytes, including histiocytes with peripherally placed “crescentic” nuclei. Spontaneous regression of fever and lymphadenopathy was observed over a median (IQR) period of 8 (6.75-10.25) months in all of them. Conclusions: Kikuchi-Fujimoto disease is a rare but important cause of PUO presenting with peripheral lymphadenopathy. Women are most often affected and cervical lymph nodes are the most frequently involved site. Clinical suspicion and thoughtful collaboration between clinicians and pathologists are essential for accurate diagnosis, and to minimize unnecessary investigations and inappropriate aggressive treatment

    The Platelet-activating Factor Receptor Protects Epidermal Cells from Tumor Necrosis Factor (TNF) α and TNF-related Apoptosis-inducing Ligand-induced Apoptosis through an NF-κB-dependent Process

    Get PDF
    A number of chemical mediators can induce human keratinocytes and epidermal-derived carcinomas to undergo apoptosis, or programmed cell death. Recent evidence suggests pro-inflammatory cytokines, such as interleukin-1β or transforming growth factor α, protects carcinomas from numerous pro-apoptotic stimuli. Platelet-activating factor (1-alkyl-2-acetyl-3-glycerophosphocholine; PAF) is a lipid mediator with pro-inflammatory effects on numerous cell types. Although PAF can be metabolized to other bioactive lipids, the majority of PAF effects occur through activation of a G protein-coupled receptor. Using a model system created by retroviral transduction of the PAF receptor (PAF-R) into the PAF-R-negative human epidermal cell line KB and the PAF-R-expressing keratinocyte cell line HaCaT, we now demonstrate that activation of the epidermal PAF-R results in protection from apoptosis induced by tumor necrosis factor (TNF) α or TNF-related apoptosis-inducing ligand. The PAF-mediated protection was inhibited by PAF-R antagonists, and protection did not occur in PAF-R-negative KB cells. Additionally, we show protection from TNFα- or TRAIL-induced apoptosis by PAF-R activation is dependent on the transcription factor nuclear factor (NF)-κB, because PAF-R activation-induced NF-κB and epidermal cells transduced with a super-repressor form of inhibitor κB were not protected by the PAF-R. These studies provide a mechanism whereby the epidermal PAF-R, and possibly other G protein-coupled receptors, can exert anti-apoptotic effects through an NF-κB-dependent process

    THE INDIANA CENTER FOR BREAST CANCER RESEARCH: PROGRESS REPORT

    Get PDF
    poster abstractThe mission of IUPUI breast cancer center is to address prevention, early detection, and treatment of breast cancer through translational projects, supportive cores, and synergistic programs. This poster details our efforts improve resources for breast cancer research and efforts to develop multi-PI investigator proposals. The Signature Center Initiative has developed two web resources: the Breast Cancer Prognostics Database (BCDB) to study prognostic implications of genes of interest in publically available breast cancer databases and PROGmiR, a microRNA database. The BCDB can be used to study overall, recurrence free and metastasis free survival in large patient series. PROGmiR allows investigators to study the prognostic importance of microRNAs. PROGmiR has recently been published and has been accessed by investigators from several countries. The signature center has also devoted considerable efforts in developing tumor tissue resource. Tissue Bank includes a total sample of N = 500 cases with 30% non-Caucasian cases from Wishard Memorial Hospital. Currently 237 cases have been assembled into a Tissue Microarray with clinical and follow up data. The breast cancer center has funded three pilot projects. Drs. Clark Wells, S. Badve, and G. Sandusky are collaborating on the project: “Histologic Analysis of the Protein Levels of Amot130, AmotL1 and YAP in Normal, Hyperplastic and Invasive Breast Cancer Tissues”. This project is investigating localized protein expression in paraffin-embedded tissues to associate expression levels with disease subtype and patient outcome. Dr. David Gilley and his group are collaborating on the project: “Luminal mammary progenitors are a unique site of telomere dysfunction”. This project is investigating the relationship between telomere dysfunction and breast cancer tumorigenesis. In the third project, Dr. Theresa Guise will be investigating the mechanisms of cancer-associated cachexia. Several multi-PI proposals are under preparation and one proposal with Drs. Nakshatri and Kathy Miller as PIs is currently under review

    Improved Performance and Stability of Organic Solar Cells by the Incorporation of a Block Copolymer Interfacial Layer

    Get PDF
    In a proof-of-concept study, this work demonstrates that incorporating a specifically designed block copolymer as an interfacial layer between a charge transport layer and the photoactive layer in organic solar cells can enhance the interface between these layers leading to both performance and stability improvements of the device. This is achieved by incorporating a P3HT50-b-PSSx block copolymer as an interfacial layer between the hole transporting and photoactive layers, which results in the improvement of the interfacial roughness, energy level alignment, and stability between these layers. Specifically, the incorporation of a 10 nm P3HT50-b-PSS16 and a 13 nm P3HT50-b-PSS23 interfacial layer results in a 9% and a 12% increase in device efficiency respectively compared to the reference devices. In addition to having a higher initial efficiency, the devices with the block copolymer continue to have a higher normalized efficiency than the control devices after 2200 h of storage, demonstrating that the block copolymer not only improves device efficiency, but crucially, prevents degradation by stabilizing the interface between the hole transporting layer and the photoactive layer. This study proves that appropriately designed and optimized block copolymers can simultaneously stabilize and improve the efficiency of organic solar cells

    The Indiana Center for Breast Cancer Research: Progress towards a SPORE Proposal

    Get PDF
    poster abstractAbstract The Indiana Center for Breast Cancer Research (ICBCR) was funded under the IUPUI Signature Center Initiative in 2010. Its mission is to address the full range of prevention, early detection, and treatment of breast cancer through translational projects, supportive cores, and synergistic programs. This poster details our efforts to date towards applying for a National Cancer Institute Specialized Program of Research Excellence (SPORE) in January 2013. The proposed IU Breast Cancer SPORE will include 4-5 individual research projects, 3 cores, developmental research and career development programs. The SPORE Biostatistics and Bioinformatics core has developed the Breast Cancer Prognostics Database (BCDB), an online tool to study prognostic implications of genes of interest in publically available breast cancer databases. The BCDB can be used to study overall, recurrence free and metastasis free survival in large patient series. Supporting the SPORE Biospecimen/Pathology core, the IU Breast Cancer Tissue Bank includes a total sample of N = 500 cases with 30% non-Caucasian cases from Wishard Memorial Hospital. Currently there are N = 333 cases with tissue microarray data and complete clinical data with an additional 200 cases pending tissue confirmation. Dr. Clark D. Wells together with S. Badve and G. Sandusky are collaborating on the project: “Histologic Analysis of the Protein Levels of Amot130, AmotL1 and YAP in Normal, Hyperplastic and Invasive Breast Cancer Tissues”, a candidate SPORE individual research project. This project is investigating localized protein expression in paraffin-embedded tissues to associate expression levels with disease subtype and patient outcome. Dr. David P. Gilley together with N. Kannan, N. Huda, L. Tu, R. Droumeva, R. Brinkman, J. Emerman, S. Abe, and C. Eaves, are collaborating on the project: “Luminal mammary progenitors are a unique site of telomere dysfunction”, a candidate SPORE developmental research project. This project is investigating the relationship between telomere dysfunction and breast cancer tumorigenesis. These SPORE projects and cores were discussed at the IUSCC Breast Cancer Program retreat held on 1/13/12. Two additional planning meetings were held on 1/5 and 2/23. A timeline was generated to include final project selection in April, internal review in June, external review in August-September, and draft completion by 12/1, to meet the 1/20/13 NIH receipt deadline

    Managing Local Order in Conjugated Polymer Blends via Polarity Contrast

    Get PDF
    The optoelectronic landscape of conjugated polymers is intimately related to their molecular arrangement and packing, with minute changes in local order, such as chain conformation and torsional backbone order/disorder, frequently having a substantial effect on macroscopic properties. While many of these local features can be manipulated via chemical design, the synthesis of a series of compounds is often required to elucidate correlations between chemical structure and macromolecular ordering. Here, we show that blending semiconducting polymers with insulating commodity plastics enables controlled manipulation of the semiconductor backbone planarity. The key is to create a polarity difference between the semiconductor backbone and its side chains, while matching the polarity of the side chains and the additive. We demonstrate the applicability of this approach through judicious comparison of regioregular poly(3-hexylthiophene) (P3HT) with two of its more polar derivatives, namely the diblock copolymer poly(3-hexylthiophene)-block-poly(ethylene oxide) (P3HT-b-PEO) and the graft polymer poly[3-but(ethylene oxide)thiophene] (P3BEOT), as well as their blends with poly(ethylene oxide) (PEO). Proximity between polar side chains and a similarly polar additive reduces steric hindrance between individual chain segments by essentially "expelling" the side chains away from the semiconducting backbones. This process, shown to be facilitated via exposure to polar environments such as humid air/water vapor, facilitates backbone realignment toward specific chain arrangements and, in particular, planar backbone configurations
    • …
    corecore