1,251 research outputs found

    The HERMES Solar Atlas and the spectroscopic analysis of the seismic solar analogue KIC3241581

    Get PDF
    Solar-analog stars provide an excellent opportunity to study the Sun's evolution, i.e. the changes with time in stellar structure, activity, or rotation for solar-like stars. The unparalleled photometric data from the NASA space telescope Kepler allows us to study and characterise solar-like stars through asteroseismology. We aim to spectroscopically investigate the fundamental parameter and chromospheric activity of solar analogues and twins, based on observations obtained with the HERMES spectrograph and combine them with asteroseismology. Therefore, we need to build a solar atlas for the spectrograph, to provide accurate calibrations of the spectroscopically determined abundances of solar and late type stars observed with this instrument and thus perform differential spectral comparisons. We acquire high-resolution and high signal-to-noise spectroscopy to construct three solar reference spectra by observing the reflected light of Vesta and Victoria asteroids and Europa (100<S/N<450) with the \Hermes spectrograph. We then observe the Kepler solar analog KIC3241581 (S/N~170). We constructed three solar spectrum atlases from 385 to 900 nm obtained with the Hermes spectrograph from observations of two bright asteroids and Europa. A comparison between our solar spectra atlas to the Kurucz and HARPS solar spectrum shows an excellent agreement. KIC3241581 was found to be a long-periodic binary system. The fundamental parameter for the stellar primary component are Teff=5689+/-11K, logg=4.385+/-0.005, [Fe/H]=+0.22+/-0.01, being in agreement with the published global seismic values confirming its status of solar analogue. KIC 3241581 is a metal rich solar analogue with a solar-like activity level in a binary system of unknown period. The chromospheric activity level is compatible to the solar magnetic activity.Comment: 12 pages, 8 figures, accepted for publication in A&

    Magnetic variability in the young solar analog KIC 10644253: Observations from the Kepler satellite and the HERMES spectrograph

    Get PDF
    The continuous photometric observations collected by the Kepler satellite over 4 years provide a whelm of data with an unequalled quantity and quality for the study of stellar evolution of more than 200000 stars. Moreover, the length of the dataset provide a unique source of information to detect magnetic activity and associated temporal variability in the acoustic oscillations. In this regards, the Kepler mission was awaited with great expectation. The search for the signature of magnetic activity variability in solar-like pulsations still remained unfruitful more than 2 years after the end of the nominal mission. Here, however, we report the discovery of temporal variability in the low-degree acoustic frequencies of the young (1 Gyr-old) solar analog KIC 10644253 with a modulation of about 1.5 years with significant temporal variations along the duration of the Kepler observations. The variations are in agreement with the derived photometric activity. The frequency shifts extracted for KIC 10644253 are shown to result from the same physical mechanisms involved in the inner sub-surface layers as in the Sun. In parallel, a detailed spectroscopic analysis of KIC 10644253 is performed based on complementary ground-based, high-resolution observations collected by the HERMES instrument mounted on the MERCATOR telescope. Its lithium abundance and chromospheric activity S-index confirm that KIC 10644253 is a young and more active star than the Sun.Comment: Accepted for publication in A&A, 12 pages, 8 figure

    Limits on surface gravities of Kepler planet-candidate host stars from non-detection of solar-like oscillations

    Get PDF
    We present a novel method for estimating lower-limit surface gravities log g of Kepler targets whose data do not allow the detection of solar-like oscillations. The method is tested using an ensemble of solar-type stars observed in the context of the Kepler Asteroseismic Science Consortium. We then proceed to estimate lower-limit log g for a cohort of Kepler solar-type planet-candidate host stars with no detected oscillations. Limits on fundamental stellar properties, as provided by this work, are likely to be useful in the characterization of the corresponding candidate planetary systems. Furthermore, an important byproduct of the current work is the confirmation that amplitudes of solar-like oscillations are suppressed in stars with increased levels of surface magnetic activity.Comment: Accepted for publication in ApJ; 35 pages, 10 figures, 5 table

    Calibrating Convective properties of Solar-like Stars in the Kepler Field of View

    Full text link
    Stellar models generally use simple parametrizations to treat convection. The most widely used parametrization is the so-called "Mixing Length Theory" where the convective eddy sizes are described using a single number, \alpha, the mixing-length parameter. This is a free parameter, and the general practice is to calibrate \alpha using the known properties of the Sun and apply that to all stars. Using data from NASA's Kepler mission we show that using the solar-calibrated \alpha is not always appropriate, and that in many cases it would lead to estimates of initial helium abundances that are lower than the primordial helium abundance. Kepler data allow us to calibrate \alpha for many other stars and we show that for the sample of stars we have studied, the mixing-length parameter is generally lower than the solar value. We studied the correlation between \alpha and stellar properties, and we find that \alpha increases with metallicity. We therefore conclude that results obtained by fitting stellar models or by using population-synthesis models constructed with solar values of \alpha are likely to have large systematic errors. Our results also confirm theoretical expectations that the mixing-length parameter should vary with stellar properties.Comment: 16 pages, 4 figures, accepted for publication in ApJ

    Micrometeoroid and Lunar Secondary Ejecta Flux Measurements: Comparison of Three Acoustic Systems

    Get PDF
    This report examines the inherent capability of three large-area acoustic sensor systems and their applicability for micrometeoroids (MM) and lunar secondary ejecta (SE) detection and characterization for future lunar exploration activities. Discussion is limited to instruments that can be fabricated and deployed with low resource requirements. Previously deployed impact detection probes typically have instrumented capture areas less than 0.2 square meters. Since the particle flux decreases rapidly with increased particle size, such small-area sensors rarely encounter particles in the size range above 50 microns, and even their sampling the population above 10 microns is typically limited. Characterizing the sparse dust population in the size range above 50 microns requires a very large-area capture instrument. However it is also important that such an instrument simultaneously measures the population of the smaller particles, so as to provide a complete instantaneous snapshot of the population. For lunar or planetary surface studies, the system constraints are significant. The instrument must be as large as possible to sample the population of the largest MM. This is needed to reliably assess the particle impact risks and to develop cost-effective shielding designs for habitats, astronauts, and critical instrument. The instrument should also have very high sensitivity to measure the flux of small and slow SE particles. is the SE environment is currently poorly characterized, and possess a contamination risk to machinery and personnel involved in exploration. Deployment also requires that the instrument add very little additional mass to the spacecraft. Three acoustic systems are being explored for this application

    Kepler White Paper: Asteroseismology of Solar-Like Oscillators in a 2-Wheel Mission

    Full text link
    We comment on the potential for continuing asteroseismology of solar-type and red-giant stars in a 2-wheel Kepler Mission. Our main conclusion is that by targeting stars in the ecliptic it should be possible to perform high-quality asteroseismology, as long as favorable scenarios for 2-wheel pointing performance are met. Targeting the ecliptic would potentially facilitate unique science that was not possible in the nominal Mission, notably from the study of clusters that are significantly brighter than those in the Kepler field. Our conclusions are based on predictions of 2-wheel observations made by a space photometry simulator, with information provided by the Kepler Project used as input to describe the degraded pointing scenarios. We find that elevated levels of frequency-dependent noise, consistent with the above scenarios, would have a significant negative impact on our ability to continue asteroseismic studies of solar-like oscillators in the Kepler field. However, the situation may be much more optimistic for observations in the ecliptic, provided that pointing resets of the spacecraft during regular desaturations of the two functioning reaction wheels are accurate at the < 1 arcsec level. This would make it possible to apply a post-hoc analysis that would recover most of the lost photometric precision. Without this post-hoc correction---and the accurate re-pointing it requires---the performance would probably be as poor as in the Kepler-field case. Critical to our conclusions for both fields is the assumed level of pointing noise (in the short-term jitter and the longer-term drift). We suggest that further tests will be needed to clarify our results once more detail and data on the expected pointing performance becomes available, and we offer our assistance in this work.Comment: NASA Kepler Mission White Paper; 10 pages, 2 figure

    Solar-like oscillations in KIC11395018 and KIC11234888 from 8 months of Kepler data

    Full text link
    We analyze the photometric short-cadence data obtained with the Kepler Mission during the first eight months of observations of two solar-type stars of spectral types G and F: KIC 11395018 and KIC 11234888 respectively, the latter having a lower signal-to-noise ratio compared to the former. We estimate global parameters of the acoustic (p) modes such as the average large and small frequency separations, the frequency of the maximum of the p-mode envelope and the average linewidth of the acoustic modes. We were able to identify and to measure 22 p-mode frequencies for the first star and 16 for the second one even though the signal-to-noise ratios of these stars are rather low. We also derive some information about the stellar rotation periods from the analyses of the low-frequency parts of the power spectral densities. A model-independent estimation of the mean density, mass and radius are obtained using the scaling laws. We emphasize the importance of continued observations for the stars with low signal-to-noise ratio for an improved characterization of the oscillation modes. Our results offer a preview of what will be possible for many stars with the long data sets obtained during the remainder of the mission.Comment: 39 pages, 9 figures. Accepted for publication in Ap
    corecore