2,127 research outputs found
Wetting of crossed fibers: multiple steady states and symmetry breaking
We investigate the wetting properties of the simplest element of an array of
random fibers: two rigid fibers crossing with an inclination angle and in
contact with a droplet of a perfectly wetting liquid. We show experimentally
that the liquid adopts different morphologies when the inclination angle is
increased: a column shape, a mixed morphology state where a drop lies at the
end of a column, or a drop centered at the node. An analytical model is
provided that predicts the wetting length as well as the presence of a
non-symmetric state in the mixed morphology regime. The model also highlights a
symmetry breaking at the transition between the column state and the mixed
morphology. The possibility to tune the morphology of the liquid could have
important implications for drying processes
Recommended from our members
The Topic of Cancer: new perspectives on the emotional experience of cancer
NHS maternity care response to human trafficking in the UK: Views of women and clinicians
NHS clinicians have a key role in the identification, referral and care of people trafficked in the UK. However, little is
known about clinicians’ response to trafficking or their training needs in this area. In addition the views and experiences of
trafficked individuals who accessed NHS services or which NHS services they were likely to access were unknown. We aimed to provide evidence to inform the NHS response to human trafficking, specifically the identification and safe referral of
trafficked people and provision of appropriate care to meet their health needs. Data relevant to maternity are presented
Experiences of Improving Access to Psychological Therapy Services for Perinatal Mental Health Difficulties: a Qualitative Study of Women's and Therapists' Views
BACKGROUND: Perinatal mental health difficulties are highly prevalent. In England, the Improving Access to Psychological Therapy (IAPT) programme provides evidence-based psychological treatment, predominantly in the form of brief manualized cognitive behavioural therapy (CBT), to people with mild to moderate depression or anxiety. Yet little is known about the experiences of women referred to IAPT with perinatal mental health difficulties. AIMS: The aim of this qualitative study was to investigate how women view IAPT support for perinatal mental health. We also gained the perspective of IAPT therapists. METHOD: Semi-structured interviews were conducted with twelve women who had been referred to and/or received therapy from IAPT during the perinatal period. Additionally, fourteen IAPT therapists participated in two focus groups. Thematic analysis was used. RESULTS: Key themes centred on barriers to access and the need to tailor support to (expectant) mothers. Women and therapists suggested that experiences could be improved by supporting healthcare professionals to provide women with more help with referrals, better tailoring support to the perinatal context, improving perinatal-specific training, supervision and resources, and offering a more individualized treatment environment. CONCLUSIONS: Overall, women reported positive experiences of support offered by IAPT for perinatal mental health difficulties. However, services should seek to facilitate access to support and to enable therapists to better tailor treatment
Spontaneous symmetry breaking in the colored Hubbard model
The Hubbard model is reformulated in terms of different ``colored'' fermion
species for the electrons or holes at different lattice sites.
Antiferromagnetic ordering or d-wave superconductivity can then be described in
terms of translationally invariant expectation values for colored composite
scalar fields. A suitable mean field approximation for the two dimensional
colored Hubbard model shows indeed phases with antiferromagnetic ordering or
d-wave superconductivity at low temperature. At low enough temperature the
transition to the antiferromagnetic phase is of first order. The present
formulation also allows an easy extension to more complicated microscopic
interactions.Comment: 19 pages, 5 figure
Human gene copy number spectra analysis in congenital heart malformations
The clinical significance of copy number variants (CNVs) in congenital heart disease (CHD) continues to be a challenge. Although CNVs including genes can confer disease risk, relationships between gene dosage and phenotype are still being defined. Our goal was to perform a quantitative analysis of CNVs involving 100 well-defined CHD risk genes identified through previously published human association studies in subjects with anatomically defined cardiac malformations. A novel analytical approach permitting CNV gene frequency “spectra” to be computed over prespecified regions to determine phenotype-gene dosage relationships was employed. CNVs in subjects with CHD (n = 945), subphenotyped into 40 groups and verified in accordance with the European Paediatric Cardiac Code, were compared with two control groups, a disease-free cohort (n = 2,026) and a population with coronary artery disease (n = 880). Gains (≥200 kb) and losses (≥100 kb) were determined over 100 CHD risk genes and compared using a Barnard exact test. Six subphenotypes showed significant enrichment (P ≤ 0.05), including aortic stenosis (valvar), atrioventricular canal (partial), atrioventricular septal defect with tetralogy of Fallot, subaortic stenosis, tetralogy of Fallot, and truncus arteriosus. Furthermore, CNV gene frequency spectra were enriched (P ≤ 0.05) for losses at: FKBP6, ELN, GTF2IRD1, GATA4, CRKL, TBX1, ATRX, GPC3, BCOR, ZIC3, FLNA and MID1; and gains at: PRKAB2, FMO5, CHD1L, BCL9, ACP6, GJA5, HRAS, GATA6 and RUNX1. Of CHD subjects, 14% had causal chromosomal abnormalities, and 4.3% had likely causal (significantly enriched), large, rare CNVs. CNV frequency spectra combined with precision phenotyping may lead to increased molecular understanding of etiologic pathways
Muon and Cosmogenic Neutron Detection in Borexino
Borexino, a liquid scintillator detector at LNGS, is designed for the
detection of neutrinos and antineutrinos from the Sun, supernovae, nuclear
reactors, and the Earth. The feeble nature of these signals requires a strong
suppression of backgrounds below a few MeV. Very low intrinsic radiogenic
contamination of all detector components needs to be accompanied by the
efficient identification of muons and of muon-induced backgrounds. Muons
produce unstable nuclei by spallation processes along their trajectory through
the detector whose decays can mimic the expected signals; for isotopes with
half-lives longer than a few seconds, the dead time induced by a muon-related
veto becomes unacceptably long, unless its application can be restricted to a
sub-volume along the muon track. Consequently, not only the identification of
muons with very high efficiency but also a precise reconstruction of their
tracks is of primary importance for the physics program of the experiment. The
Borexino inner detector is surrounded by an outer water-Cherenkov detector that
plays a fundamental role in accomplishing this task. The detector design
principles and their implementation are described. The strategies adopted to
identify muons are reviewed and their efficiency is evaluated. The overall muon
veto efficiency is found to be 99.992% or better. Ad-hoc track reconstruction
algorithms developed are presented. Their performance is tested against muon
events of known direction such as those from the CNGS neutrino beam, test
tracks available from a dedicated External Muon Tracker and cosmic muons whose
angular distribution reflects the local overburden profile. The achieved
angular resolution is 3-5 deg and the lateral resolution is 35-50 cm, depending
on the impact parameter of the crossing muon. The methods implemented to
efficiently tag cosmogenic neutrons are also presented.Comment: 42 pages. 32 figures on 37 files. Uses JINST.cls. 1 auxiliary file
(defines.tex) with TEX macros. submitted to Journal of Instrumentatio
The Main Results of the Borexino Experiment
The main physical results on the registration of solar neutrinos and the
search for rare processes obtained by the Borexino collaboration to date are
presented.Comment: 8 pages, 8 figgures, To be published as Proceedings of the Third
Annual Large Hadron Collider Physics Conference, St. Petersburg, Russia, 201
Recommended from our members
New limits on heavy sterile neutrino mixing in -decay obtained with the Borexino detector
If heavy neutrinos with mass 2 are produced in the
Sun via the decay in a side
branch of pp-chain, they would undergo the observable decay into an electron, a
positron and a light neutrino . In the
present work Borexino data are used to set a bound on the existence of such
decays. We constrain the mixing of a heavy neutrino with mass 1.5 MeV 14 MeV to be
respectively. These are tighter limits on the mixing parameters than obtained
in previous experiments at nuclear reactors and accelerators.Comment: 7 pages, 6 figure
- …
