984 research outputs found
Angular momentum projection of cranked Hartree-Fock states: Application to terminating bands in A~44 nuclei
We present the first systematic calculations based on the angular-momentum
projection of cranked Slater determinants. We propose the Iy --> I scheme, by
which one projects the angular momentum I from the 1D cranked state constrained
to the average spin projection of =I. Calculations performed for the
rotational band in 46Ti show that the AMP Iy --> I scheme offers a natural
mechanism for correcting the cranking moment of inertia at low-spins and
shifting the terminating state up by ~2 MeV, in accordance with data. We also
apply this scheme to high-spin states near the band termination in A~44 nuclei,
and compare results thereof with experimental data, shell-model calculations,
and results of the approximate analytical symmetry-restoration method proposed
previously.Comment: 9 RevTeX pages, 8 EPS figures, submitted to Physical Review
High-spin states and band terminations in v 49
High-spin states in 49 V have been studied through the 28 Si(28 Si, α3p) reaction using the EUROBALL γ-ray detector array. The 49 V level scheme has been extended up to 13.1 MeV including 21 new states. Both negative and positive parity states have been interpreted in the framework of theShell Model. The 27/2− and the 31/2+ band termination states have been observed in agreement with theoretical predictions.Fil: Rodrigues Ferreira Maltez, Dario Pablo. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Comisión Nacional de Energía Atómica. Gerencia del Área de Investigación y Aplicaciones No Nucleares. Gerencia Física (Centro Atómico Constituyentes). Proyecto Tandar; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Física; ArgentinaFil: Hojman, Daniel Leonardo. Comisión Nacional de Energía Atómica. Gerencia del Área de Investigación y Aplicaciones No Nucleares. Gerencia Física (Centro Atómico Constituyentes). Proyecto Tandar; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Lenzi, Silvia M.. Istituto Nazionale Di Fisica Nucleare.; Italia. Università di Padova; ItaliaFil: Cardona, Maria Angelica. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Comisión Nacional de Energía Atómica. Gerencia del Área de Investigación y Aplicaciones No Nucleares. Gerencia Física (Centro Atómico Constituyentes). Proyecto Tandar; Argentina. Universidad Nacional de San Martín. Escuela de Ciencia y Tecnología; ArgentinaFil: Fernea, Enrico. Università di Padova; Italia. Istituto Nazionale Di Fisica Nucleare.; ItaliaFil: Axiotis, M.. Istituto Nazionale Di Fisica Nucleare.; ItaliaFil: Beck, C.. Université de Strasbourg; Francia. Centre National de la Recherche Scientifique; FranciaFil: Bednarczyk, P.. Polish Academy of Sciences; ArgentinaFil: Bizzetti, P. G.. Università di Padova; Italia. Istituto Nazionale Di Fisica Nucleare.; ItaliaFil: Bizzetti Sona, A. M.. Università di Padova; Italia. Istituto Nazionale Di Fisica Nucleare.; ItaliaFil: Della Vedova, F.. Università di Padova; Italia. Istituto Nazionale Di Fisica Nucleare.; ItaliaFil: Grebosz, J.. Polish Academy of Sciences; ArgentinaFil: Haas, F.. Université de Strasbourg; Francia. Centre National de la Recherche Scientifique; FranciaFil: Kmiecik, M.. Polish Academy of Sciences; ArgentinaFil: Maj, A.. Polish Academy of Sciences; ArgentinaFil: Męczyński, W.. Polish Academy of Sciences; ArgentinaFil: Napoli, D. R.. Istituto Nazionale Di Fisica Nucleare.; ItaliaFil: Nespolo, M.. Università di Padova; Italia. Istituto Nazionale Di Fisica Nucleare.; ItaliaFil: Papka, P.. Université de Strasbourg; Francia. Centre National de la Recherche Scientifique; FranciaFil: Sánchez i Zafra, A.. Université de Strasbourg; Francia. Centre National de la Recherche Scientifique; FranciaFil: Styczen, J.. Polish Academy of Sciences; ArgentinaFil: Thummerer, S.. Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung; AlemaniaFil: Ziębliński, M.. Polish Academy of Sciences; Argentin
Binary reaction decays from 24Mg+12C
Charged particle and gamma decays in 24Mg* are investigated for excitation
energies where quasimolecular resonances appear in 12C+12C collisions. Various
theoretical predictions for the occurence of superdeformed and hyperdeformed
bands associated with resonance structures with low spin are discussed within
the measured 24Mg* excitation energy region. The inverse kinematics reaction
24Mg+12C is studied at E_lab(24Mg) = 130 MeV, an energy which enables the
population of 24Mg states decaying into 12C+12C resonant break-up states.
Exclusive data were collected with the Binary Reaction Spectrometer in
coincidence with EUROBALL IV installed at the VIVITRON Tandem facility at
Strasbourg. Specific structures with large deformation were selectively
populated in binary reactions and their associated gamma decays studied.
Coincident events associated with inelastic and alpha-transfer channels have
been selected by choosing the excitation energy or the entry point via the
two-body Q-values. The analysis of the binary reaction channels is presented
with a particular emphasis on 24Mg-gamma, 20Ne-gamma and 16O-gamma
coincidences. New information (spin and branching ratios) is deduced on
high-energy states in 24Mg and 16O, respectively.Comment: 27 pages, 8 figures, 1 tabl
First identification of excited states in the T = 1/2 nucleus Pd
The first experimental information about excited states in the N = Z + 1 nucleus 93Pd is presented. The experiment was performed using a 205 MeV 58Ni beam from the Vivitron accelerator at IReS, Strasbourg, impinging on a bismuth-backed 40Ca target. Gamma-rays, neutrons and charged particles emitted in the reactions were detected using the Ge detector array Euroball, the Neutron Wall liquid-scintillator array and the Euclides Si charged-particle detector system. The experimental level scheme is compared with the results of new shell model calculations which predict a coupling scheme with aligned neutron-proton pairs to greatly influence the level structure of nuclei at low excitation energies
Band termination in the N=Z Odd-Odd Nucleus 46V
High spin states in the odd-odd N=Z nucleus 46V have been identified. At low
spin, the T=1 isobaric analogue states of 46Ti are established up to I = 6+.
Other high spin states, including the band terminating state, are tentatively
assigned to the same T=1 band. The T=0 band built on the low-lying 3+ isomer is
observed up to the 1f7/2-shell termination at I=15. Both signatures of a
negative parity T=0 band are observed up to the terminating states at I = 16-
and I = 17-, respectively. The structure of this band is interpreted as a
particle-hole excitation from the 1d3/2 shell. Spherical shell model
calculations are found to be in excellent agreement with the experimental
results.Comment: 5 pages, 4 figure
Clusters in Light Nuclei
A great deal of research work has been undertaken in the alpha-clustering
study since the pioneering discovery, half a century ago, of 12C+12C molecular
resonances. Our knowledge of the field of the physics of nuclear molecules has
increased considerably and nuclear clustering remains one of the most fruitful
domains of nuclear physics, facing some of the greatest challenges and
opportunities in the years ahead. In this work, the occurence of "exotic"
shapes in light N=Z alpha-like nuclei is investigated. Various approaches of
superdeformed and hyperdeformed bands associated with quasimolecular resonant
structures are presented. Results on clustering aspects are also discussed for
light neutron-rich Oxygen isotopes.Comment: 12 pages, 5 figures. Invited Talk presented by C. Beck at the
Zakopane Conference on Nuclear Physics "Extremes of the Nuclear Landscape"
XLV in the series of Zakopane Schools of Physics - International Symposium -
Zakopane, Poland, August 30 - September 5, 2010.To be publihed in Acta
Physica Polonica B42 no 3, March 201
GDR Feeding of the Highly-Deformed Band in 42Ca
The gamma-ray spectra from the decay of the GDR in the compound nucleus
reaction 18O+28Si at bombarding energy of 105 MeV have been measured in an
experiment using the EUROBALL IV and HECTOR arrays. The obtained experimental
GDR strength function is highly fragmented, with a low energy (10 MeV)
component, indicating a presence of a large deformation and Coriolis effects.
In addition, the preferential feeding of the highly-deformed band in 42Ca by
this GDR low energy component is observed.Comment: 6 pages, 2 figures, Proceedings of the Zakopane2004 Symposium, to be
published in Acta Phys. Pol. B36 (2005
Band offsets at the GaInP/GaAs heterojunction
We have measured current–voltage curves and the temperature dependence of the zero bias conductance for a p -type Be-doped GaInP/GaAs heterojunction grown by the molecular beam epitaxy method. We have determined the valence band offset ΔEν from both measurements and find it to be 310 meV within 5% of accuracy. Similarly, we find for an n -type Si-doped sample that the conduction band offset ΔEC is 95 meV. First-principles calculations have been carried out for the atomic and electronic structures of the interfaces. For the thermodynamically favored interfaces, the valence band offset is found not to be sensitive to atomic relaxations at the interface. The calculated values are in good agreement with the experiments.Peer reviewe
Strong Deformation Effects in Hot Rotating 46Ti
Exotic-deformation effects in 46Ti nucleus were investigated by analysing the
high-energy gamma-ray and the alpha-particle energy spectra. One of the
experiments was performed using the charged-particle multi-detector array ICARE
together with a large volume (4"x4") BGO detector. The study focused on
simultaneous measurement of light charged particles and gamma-rays in
coincidence with the evaporation residues. The experimental data show a
signature of very large deformations of the compound nucleus in the Jacobi
transition region at the highest spins. These results are compared to data from
previous experiments performed with the HECTOR array coupled to the EUROBALL
array, where it was found that the GDR strength function is highly fragmented,
strongly indicating a presence of nuclei with very large deformation.Comment: 10 pages, 6 figures, Proceedings of the Zakopane Conference on
Nuclear Physics, to be published in Acta Phys. Pol. B (2007
Charged particle decay of hot and rotating Mo nuclei in fusion-evaporation reactions
A study of fusion-evaporation and (partly) fusion-fission channels for the
Mo compound nucleus, produced at different excitation energies in the
reaction Ti + Ca at 300, 450 and 600 MeV beam energies, is
presented. Fusion-evaporation and fusion-fission cross sections have been
extracted and compared with the existing systematics. Experimental data
concerning light charged particles have been compared with the prediction of
the statistical model in its implementation in the Gemini++ code, well suited
even for high spin systems, in order to tune the main model parameters in a
mass region not abundantly covered by exclusive experimental data.
Multiplicities for light charged particles emitted in fusion evaporation events
are also presented. Some discrepancies with respect to the prediction of the
statistical model have been found for forward emitted -particles; they
may be due both to pre-equilibrium emission and to reaction channels (such as
Deep Inelastic Collisions, QuasiFission/QuasiFusion) different from the
compound nucleus formation.Comment: 14 pages, 14 figure
- …
