61 research outputs found

    Gemini and Chandra observations of Abell 586, a relaxed strong-lensing cluster

    Full text link
    We analyze the mass content of the massive strong-lensing cluster Abell 586 (z=0.17z = 0.17). We use optical data (imaging and spectroscopy) obtained with the Gemini Multi-Object Spectrograph (GMOS) mounted on the 8-m Gemini-North telescope, together with publicly available X-ray data taken with the \textit{Chandra} space telescope. Employing different techniques -- velocity distribution of galaxies, weak gravitational lensing, and X-ray spatially resolved spectroscopy -- we derive mass and velocity dispersion estimates from each of them. All estimates agree well with each other, within a 68% confidence level, indicating a velocity dispersion of 1000 -- 1250 \kms. The projected mass distributions obtained through weak-lensing and X-ray emission are strikingly similar, having nearly circular geometry. We suggest that Abell 586 is probably a truly relaxed cluster, whose last major merger occurred more than 4\sim 4 Gyr agoComment: ApJ accepted, 20 pages, 11 figures; Figure 1 fixe

    S-PLUS DR1 galaxy clusters and groups catalogue using PzWav

    Full text link
    We present a catalogue of 4499 groups and clusters of galaxies from the first data release of the multi-filter (5 broad, 7 narrow) Southern Photometric Local Universe Survey (S-PLUS). These groups and clusters are distributed over 273 deg2^2 in the Stripe 82 region. They are found using the PzWav algorithm, which identifies peaks in galaxy density maps that have been smoothed by a cluster scale difference-of-Gaussians kernel to isolate clusters and groups. Using a simulation-based mock catalogue, we estimate the purity and completeness of cluster detections: at S/N>3.3 we define a catalogue that is 80% pure and complete in the redshift range 0.1<z<0.4, for clusters with M200>1014M_{200} > 10^{14} M_\odot. We also assessed the accuracy of the catalogue in terms of central positions and redshifts, finding scatter of σR=12\sigma_R=12 kpc and σz=8.8×103\sigma_z=8.8 \times 10^{-3}, respectively. Moreover, less than 1% of the sample suffers from fragmentation or overmerging. The S-PLUS cluster catalogue recovers ~80% of all known X-ray and Sunyaev-Zel'dovich selected clusters in this field. This fraction is very close to the estimated completeness, thus validating the mock data analysis and paving an efficient way to find new groups and clusters of galaxies using data from the ongoing S-PLUS project. When complete, S-PLUS will have surveyed 9300 deg2^{2} of the sky, representing the widest uninterrupted areas with narrow-through-broad multi-band photometry for cluster follow-up studies.Comment: 17 pages, 15 figures, paper accepted for publication by MNRA

    The miniJPAS survey: Optical detection of galaxy clusters with PZWav

    Full text link
    Galaxy clusters are an essential tool to understand and constrain the cosmological parameters of our Universe. Thanks to its multi-band design, J-PAS offers a unique group and cluster detection window using precise photometric redshifts and sufficient depths. We produce galaxy cluster catalogues from the miniJPAS, which is a pathfinder survey for the wider J-PAS survey, using the PZWav algorithm. Relying only on photometric information, we provide optical mass tracers for the identified clusters, including richness, optical luminosity, and stellar mass. By reanalysing the Chandra mosaic of the AEGIS field, alongside the overlapping XMM-Newton observations, we produce an X-ray catalogue. The analysis reveals the possible presence of structures with masses of 4×1013\times 10^{13} M_\odot at redshift 0.75, highlighting the depth of the survey. Comparing results with those from two other cluster catalogues, provided by AMICO and VT, we find 4343 common clusters with cluster centre offsets of 100±\pm60 kpc and redshift differences below 0.001. We provide a comparison of the cluster catalogues with a catalogue of massive galaxies and report on the significance of cluster selection. In general, we are able to recover approximately 75%\% of the galaxies with M>M^{\star} >2×1011\times 10^{11} M_\odot. This study emphasises the potential of the J-PAS survey and the employed techniques down to the group scales.Comment: 15 pages, 11 figures, 5 tables. Submitted to A&A in December 19, 202

    Gravitational Lensing

    Full text link
    Gravitational lensing has developed into one of the most powerful tools for the analysis of the dark universe. This review summarises the theory of gravitational lensing, its main current applications and representative results achieved so far. It has two parts. In the first, starting from the equation of geodesic deviation, the equations of thin and extended gravitational lensing are derived. In the second, gravitational lensing by stars and planets, galaxies, galaxy clusters and large-scale structures is discussed and summarised.Comment: Invited review article to appear in Classical and Quantum Gravity, 85 pages, 15 figure

    An extension of the SHARC survey

    Full text link
    We report on our search for distant clusters of galaxies based on optical and X-ray follow up observations of X-ray candidates from the SHARC survey. Based on the assumption that the absence of bright optical or radio counterparts to possibly extended X-ray sources could be distant clusters. We have obtained deep optical images and redshifts for several of these objects and analyzed archive XMM-Newton or Chandra data where applicable. In our list of candidate clusters, two are probably galaxy structures at redshifts of z\sim0.51 and 0.28. Seven other structures are possibly galaxy clusters between z\sim0.3 and 1. Three sources are identified with QSOs and are thus likely to be X-ray point sources, and six more also probably fall in this category. One X-ray source is spurious or variable. For 17 other sources, the data are too sparse at this time to put forward any hypothesis on their nature. We also serendipitously detected a cluster at z=0.53 and another galaxy concentration which is probably a structure with a redshift in the [0.15-0.6] range. We discuss these results within the context of future space missions to demonstrate the necessity of a wide field of view telescope optimized for the 0.5-2 keV range.Comment: Accepted in A&

    The miniJPAS survey: clusters and galaxy groups detection with AMICO

    Get PDF
    Samples of galaxy clusters allow us to better understand the physics at play in galaxy formation and to constrain cosmological models once their mass, position (for clustering studies) and redshift are known. In this context, large optical data sets play a crucial role. We investigate the capabilities of the Javalambre-Physics of the Accelerating Universe Astrophysical Survey (J-PAS) in detecting and characterizing galaxy groups and clusters. We analyze the data of the miniJPAS survey, obtained with the JPAS-Pathfinder camera and covering 11 deg2^2 centered on the AEGIS field to the same depths and with the same 54 narrow band plus 2 broader band near-UV and near-IR filters anticipated for the full J-PAS survey. We use the Adaptive Matched Identifier of Clustered Objects (AMICO) to detect and characterize groups and clusters of galaxies down to S/N=2.5S/N=2.5 in the redshift range 0.05<z<0.80.05<z<0.8. We detect 80, 30 and 11 systems with signal-to-noise ratio larger than 2.5, 3.0 and 3.5, respectively, down to 1013M/h\sim 10^{13}\,M_{\odot}/h. We derive mass-proxy scaling relations based on Chandra and XMM-Newton X-ray data for the signal amplitude returned by AMICO, the intrinsic richness and a new proxy that incorporates the galaxies' stellar masses. The latter proxy is made possible thanks to the J-PAS filters and shows a smaller scatter with respect to the richness. We fully characterize the sample and use AMICO to derive a probabilistic membership association of galaxies to the detected groups that we test against spectroscopy. We further show how the narrow band filters of J-PAS provide a gain of up to 100% in signal-to-noise ratio in detection and an uncertainty on the redshift of clusters of only σz=0.0037(1+z)\sigma_z=0.0037(1+z) placing J-PAS in between broadband photometric and spectroscopic surveys. The performances of AMICO and J-PAS with respect to mass sensitivity, mass-proxies qualityComment: 15 pages, 12 figures, 3 tables, submitted to A&

    Cluster Lenses

    Get PDF
    Clusters of galaxies are the most recently assembled, massive, bound structures in the Universe. As predicted by General Relativity, given their masses, clusters strongly deform space-time in their vicinity. Clusters act as some of the most powerful gravitational lenses in the Universe. Light rays traversing through clusters from distant sources are hence deflected, and the resulting images of these distant objects therefore appear distorted and magnified. Lensing by clusters occurs in two regimes, each with unique observational signatures. The strong lensing regime is characterized by effects readily seen by eye, namely, the production of giant arcs, multiple-images, and arclets. The weak lensing regime is characterized by small deformations in the shapes of background galaxies only detectable statistically. Cluster lenses have been exploited successfully to address several important current questions in cosmology: (i) the study of the lens(es) - understanding cluster mass distributions and issues pertaining to cluster formation and evolution, as well as constraining the nature of dark matter; (ii) the study of the lensed objects - probing the properties of the background lensed galaxy population - which is statistically at higher redshifts and of lower intrinsic luminosity thus enabling the probing of galaxy formation at the earliest times right up to the Dark Ages; and (iii) the study of the geometry of the Universe - as the strength of lensing depends on the ratios of angular diameter distances between the lens, source and observer, lens deflections are sensitive to the value of cosmological parameters and offer a powerful geometric tool to probe Dark Energy. In this review, we present the basics of cluster lensing and provide a current status report of the field.Comment: About 120 pages - Published in Open Access at: http://www.springerlink.com/content/j183018170485723/ . arXiv admin note: text overlap with arXiv:astro-ph/0504478 and arXiv:1003.3674 by other author
    corecore