61 research outputs found
Gemini and Chandra observations of Abell 586, a relaxed strong-lensing cluster
We analyze the mass content of the massive strong-lensing cluster Abell 586
(). We use optical data (imaging and spectroscopy) obtained with the
Gemini Multi-Object Spectrograph (GMOS) mounted on the 8-m Gemini-North
telescope, together with publicly available X-ray data taken with the
\textit{Chandra} space telescope. Employing different techniques -- velocity
distribution of galaxies, weak gravitational lensing, and X-ray spatially
resolved spectroscopy -- we derive mass and velocity dispersion estimates from
each of them. All estimates agree well with each other, within a 68% confidence
level, indicating a velocity dispersion of 1000 -- 1250 \kms. The projected
mass distributions obtained through weak-lensing and X-ray emission are
strikingly similar, having nearly circular geometry. We suggest that Abell 586
is probably a truly relaxed cluster, whose last major merger occurred more than
Gyr agoComment: ApJ accepted, 20 pages, 11 figures; Figure 1 fixe
Rules, Standards, and the Internal Point of View
Large scale structure and cosmolog
S-PLUS DR1 galaxy clusters and groups catalogue using PzWav
We present a catalogue of 4499 groups and clusters of galaxies from the first
data release of the multi-filter (5 broad, 7 narrow) Southern Photometric Local
Universe Survey (S-PLUS). These groups and clusters are distributed over 273
deg in the Stripe 82 region. They are found using the PzWav algorithm,
which identifies peaks in galaxy density maps that have been smoothed by a
cluster scale difference-of-Gaussians kernel to isolate clusters and groups.
Using a simulation-based mock catalogue, we estimate the purity and
completeness of cluster detections: at S/N>3.3 we define a catalogue that is
80% pure and complete in the redshift range 0.1<z<0.4, for clusters with
M. We also assessed the accuracy of the catalogue
in terms of central positions and redshifts, finding scatter of
kpc and , respectively. Moreover, less than 1% of
the sample suffers from fragmentation or overmerging. The S-PLUS cluster
catalogue recovers ~80% of all known X-ray and Sunyaev-Zel'dovich selected
clusters in this field. This fraction is very close to the estimated
completeness, thus validating the mock data analysis and paving an efficient
way to find new groups and clusters of galaxies using data from the ongoing
S-PLUS project. When complete, S-PLUS will have surveyed 9300 deg of the
sky, representing the widest uninterrupted areas with narrow-through-broad
multi-band photometry for cluster follow-up studies.Comment: 17 pages, 15 figures, paper accepted for publication by MNRA
The miniJPAS survey: Optical detection of galaxy clusters with PZWav
Galaxy clusters are an essential tool to understand and constrain the
cosmological parameters of our Universe. Thanks to its multi-band design, J-PAS
offers a unique group and cluster detection window using precise photometric
redshifts and sufficient depths. We produce galaxy cluster catalogues from the
miniJPAS, which is a pathfinder survey for the wider J-PAS survey, using the
PZWav algorithm. Relying only on photometric information, we provide optical
mass tracers for the identified clusters, including richness, optical
luminosity, and stellar mass. By reanalysing the Chandra mosaic of the AEGIS
field, alongside the overlapping XMM-Newton observations, we produce an X-ray
catalogue. The analysis reveals the possible presence of structures with masses
of 4 M at redshift 0.75, highlighting the depth of the
survey. Comparing results with those from two other cluster catalogues,
provided by AMICO and VT, we find common clusters with cluster centre
offsets of 10060 kpc and redshift differences below 0.001. We provide a
comparison of the cluster catalogues with a catalogue of massive galaxies and
report on the significance of cluster selection. In general, we are able to
recover approximately 75 of the galaxies with 2 M. This study emphasises the potential of the J-PAS survey and
the employed techniques down to the group scales.Comment: 15 pages, 11 figures, 5 tables. Submitted to A&A in December 19, 202
Gravitational Lensing
Gravitational lensing has developed into one of the most powerful tools for
the analysis of the dark universe. This review summarises the theory of
gravitational lensing, its main current applications and representative results
achieved so far. It has two parts. In the first, starting from the equation of
geodesic deviation, the equations of thin and extended gravitational lensing
are derived. In the second, gravitational lensing by stars and planets,
galaxies, galaxy clusters and large-scale structures is discussed and
summarised.Comment: Invited review article to appear in Classical and Quantum Gravity, 85
pages, 15 figure
An extension of the SHARC survey
We report on our search for distant clusters of galaxies based on optical and
X-ray follow up observations of X-ray candidates from the SHARC survey. Based
on the assumption that the absence of bright optical or radio counterparts to
possibly extended X-ray sources could be distant clusters. We have obtained
deep optical images and redshifts for several of these objects and analyzed
archive XMM-Newton or Chandra data where applicable. In our list of candidate
clusters, two are probably galaxy structures at redshifts of z0.51 and
0.28. Seven other structures are possibly galaxy clusters between z0.3
and 1. Three sources are identified with QSOs and are thus likely to be X-ray
point sources, and six more also probably fall in this category. One X-ray
source is spurious or variable. For 17 other sources, the data are too sparse
at this time to put forward any hypothesis on their nature. We also
serendipitously detected a cluster at z=0.53 and another galaxy concentration
which is probably a structure with a redshift in the [0.15-0.6] range. We
discuss these results within the context of future space missions to
demonstrate the necessity of a wide field of view telescope optimized for the
0.5-2 keV range.Comment: Accepted in A&
The miniJPAS survey: clusters and galaxy groups detection with AMICO
Samples of galaxy clusters allow us to better understand the physics at play
in galaxy formation and to constrain cosmological models once their mass,
position (for clustering studies) and redshift are known. In this context,
large optical data sets play a crucial role. We investigate the capabilities of
the Javalambre-Physics of the Accelerating Universe Astrophysical Survey
(J-PAS) in detecting and characterizing galaxy groups and clusters. We analyze
the data of the miniJPAS survey, obtained with the JPAS-Pathfinder camera and
covering deg centered on the AEGIS field to the same depths and with
the same 54 narrow band plus 2 broader band near-UV and near-IR filters
anticipated for the full J-PAS survey. We use the Adaptive Matched Identifier
of Clustered Objects (AMICO) to detect and characterize groups and clusters of
galaxies down to in the redshift range . We detect 80, 30
and 11 systems with signal-to-noise ratio larger than 2.5, 3.0 and 3.5,
respectively, down to . We derive mass-proxy scaling
relations based on Chandra and XMM-Newton X-ray data for the signal amplitude
returned by AMICO, the intrinsic richness and a new proxy that incorporates the
galaxies' stellar masses. The latter proxy is made possible thanks to the J-PAS
filters and shows a smaller scatter with respect to the richness. We fully
characterize the sample and use AMICO to derive a probabilistic membership
association of galaxies to the detected groups that we test against
spectroscopy. We further show how the narrow band filters of J-PAS provide a
gain of up to 100% in signal-to-noise ratio in detection and an uncertainty on
the redshift of clusters of only placing J-PAS in
between broadband photometric and spectroscopic surveys. The performances of
AMICO and J-PAS with respect to mass sensitivity, mass-proxies qualityComment: 15 pages, 12 figures, 3 tables, submitted to A&
Cluster Lenses
Clusters of galaxies are the most recently assembled, massive, bound
structures in the Universe. As predicted by General Relativity, given their
masses, clusters strongly deform space-time in their vicinity. Clusters act as
some of the most powerful gravitational lenses in the Universe. Light rays
traversing through clusters from distant sources are hence deflected, and the
resulting images of these distant objects therefore appear distorted and
magnified. Lensing by clusters occurs in two regimes, each with unique
observational signatures. The strong lensing regime is characterized by effects
readily seen by eye, namely, the production of giant arcs, multiple-images, and
arclets. The weak lensing regime is characterized by small deformations in the
shapes of background galaxies only detectable statistically. Cluster lenses
have been exploited successfully to address several important current questions
in cosmology: (i) the study of the lens(es) - understanding cluster mass
distributions and issues pertaining to cluster formation and evolution, as well
as constraining the nature of dark matter; (ii) the study of the lensed objects
- probing the properties of the background lensed galaxy population - which is
statistically at higher redshifts and of lower intrinsic luminosity thus
enabling the probing of galaxy formation at the earliest times right up to the
Dark Ages; and (iii) the study of the geometry of the Universe - as the
strength of lensing depends on the ratios of angular diameter distances between
the lens, source and observer, lens deflections are sensitive to the value of
cosmological parameters and offer a powerful geometric tool to probe Dark
Energy. In this review, we present the basics of cluster lensing and provide a
current status report of the field.Comment: About 120 pages - Published in Open Access at:
http://www.springerlink.com/content/j183018170485723/ . arXiv admin note:
text overlap with arXiv:astro-ph/0504478 and arXiv:1003.3674 by other author
- …