135 research outputs found

    CRISPR/Cas9-induced (CTG⋅CAG)n repeat instability in the myotonic dystrophy type 1 locus: implications for therapeutic genome editing

    Get PDF
    Myotonic dystrophy type 1 (DM1) is caused by (CTG⋅CAG)n-repeat expansion within the DMPK gene and thought to be mediated by a toxic RNA gain of function. Current attempts to develop therapy for this disease mainly aim at destroying or blocking abnormal properties of mutant DMPK (CUG)n RNA. Here, we explored a DNA-directed strategy and demonstrate that single clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9-cleavage in either its 5â€Č or 3â€Č unique flank promotes uncontrollable deletion of large segments from the expanded trinucleotide repeat, rather than formation of short indels usually seen after double-strand break repair. Complete and precise excision of the repeat tract from normal and large expanded DMPK alleles in myoblasts from unaffected individuals, DM1 patients, and a DM1 mouse model could be achieved at high frequency by dual CRISPR/Cas9-cleavage at either side of the (CTG⋅CAG)n sequence. Importantly, removal of the repeat appeared to have no detrimental effects on the expression of genes in the DM1 locus. Moreover, myogenic capacity, nucleocytoplasmic distribution, and abnormal RNP-binding behavior of transcripts from the edited DMPK gene were normalized. Dual sgRNA-guided excision of the (CTG⋅CAG)n tract by CRISPR/Cas9 technology is applicable for developing isogenic cell lines for research and may provide new therapeutic opportunities for patients with DM1

    Investigating the Psychosocial Determinants of Physical Activity in Older Adults: A Qualitative Approach

    Get PDF
    Objective: Despite the benefits of physical activity (PA), only one-third of older adults meet the recommended levels. The present study focused on psychosocial determinants of PA following retirement. Social cognitive theory (SCT) was used to better understand pre- and post-retirement adults’ thoughts about PA, the reasons why some individuals are more active than others, and how PA is incorporated into daily life after retirement. Design: Seven focus groups of older adults (N = 37, M = 64, SD = 5.20; males = 20) representing a range of PA levels and retirement length participated in one of seven focus groups. Results: Aligned with SCT, self-efficacy beliefs along with perceptions about barriers and benefits of PA were among the major determinants of PA. Findings highlighted the importance of social support, positive outcome expectations and self-regulatory strategies as motivators. The lack of structure in retirement was a hindrance to incorporating PA into daily routine but, when incorporated, PA provided a sense of purpose in the lives of retired individuals. Conclusion: It is important to understand the meaning of retirement as a life transition and how it affects beliefs about PA to inform SCT-based health promotion interventions targeting individuals in retirement age

    Characterization of a heat resistant beta-glucosidase as a new reporter in cells and mice.

    Get PDF
    BACKGROUND: Reporter genes are widely used in biology and only a limited number are available. We present a new reporter gene for the localization of mammalian cells and transgenic tissues based on detection of the bglA (SYNbglA) gene of Caldocellum saccharolyticum that encodes a thermophilic beta-glucosidase. RESULTS: SYNbglA was generated by introducing codon substitutions to remove CpG motifs as these are associated with gene silencing in mammalian cells. SYNbglA expression can be localized in situ or detected quantitatively in colorimetric assays and can be co-localized with E. coli beta-galactosidase. Further, we have generated a Cre-reporter mouse in which SYNbglA is expressed following recombination to demonstrate the general utility of SYNbglA for in vivo analyses. SYNbglA can be detected in tissue wholemounts and in frozen and wax embedded sections. CONCLUSIONS: SYNbglA will have general applicability to developmental and molecular studies in vitro and in vivo.RIGHTS : This article is licensed under the BioMed Central licence at http://www.biomedcentral.com/about/license which is similar to the 'Creative Commons Attribution Licence'. In brief you may : copy, distribute, and display the work; make derivative works; or make commercial use of the work - under the following conditions: the original author must be given credit; for any reuse or distribution, it must be made clear to others what the license terms of this work are

    Palliative care research promotion in policy and practice:A knowledge exchange process

    Get PDF
    In palliative care, as in many areas of medicine, there is a considerable amount of research conducted that makes sound recommendations but does not result consistently in improved care. For instance, though palliative care has been shown to benefit all people with a life-threatening illness, its main reach continues to be for those with cancer. Drawing on relational models of research use, we set out to engage policy-makers, educators, clinicians, commissioners and service providers in a knowledge exchange process to identify implications of research for Scottish palliative care priorities. First, we mapped the existing palliative care research evidence in Scotland. We then organised evidence review meetings and a wider stakeholder event where research producers and users came together to coproduce implications of the evidence for policy, education and practice. We used questionnaires and key stakeholder feedback meetings to explore impacts of this process on research uptake and use immediately after the events and over time. In this paper, we reflect on this knowledge exchange process and the broader context in which it was set. We found that participation fostered relationships and led to a rich and enthusiastic exploration of research evidence from multiple perspectives. Potential impacts relating to earlier identification for palliative care, education and need-based commissioning ensued. We make suggestions to guide replication

    Variant repeats within the DMPK CTG expansion protect function in myotonic dystrophy type 1

    Get PDF
    Objective: We tested the hypothesis that variant repeat interruptions (RIs) within the DMPK CTG repeat tract lead to milder symptoms compared with pure repeats (PRs) in myotonic dystrophy type 1 (DM1). Methods: We evaluated motor, neurocognitive, and behavioral outcomes in a group of 6 participants with DM1 with RI compared with a case-matched sample of 12 participants with DM1 with PR and a case-matched sample of 12 unaffected healthy comparison participants (UA). Results: In every measure, the RI participants were intermediate between UA and PR participants. For muscle strength, the RI group was significantly less impaired than the PR group. For measures of Full Scale IQ, depression, and sleepiness, all 3 groups were significantly different from each other with UA > RI > PR in order of impairment. The RI group was different from unaffected, but not significantly different from PR (UA > RI = PR) in apathy and working memory. Finally, in finger tapping and processing speed, RI did not differ from UA comparisons, but PR had significantly lower scores than the UA comparisons (UA = RI > PR). Conclusions: Our results support the notion that patients affected by DM1 with RI demonstrate a milder phenotype with the same pattern of deficits as those with PR indicating a similar disease process

    Lower extremity muscle pathology in myotonic dystrophy type 1 assessed by quantitative MRI

    Get PDF
    Objective: To determine the value of quantitative MRI in providing imaging biomarkers for disease in 20 different upper and lower leg muscles of patients with myotonic dystrophy type 1 (DM1). Methods: We acquired images covering these muscles in 33 genetically and clinically well-characterized patients with DM1 and 10 unaffected controls. MRIs were recorded with a Dixon method to determine muscle fat fraction, muscle volume, and contractile muscle volume, and a multi-echo spin-echo sequence was used to determine T2 water relaxation time (T2water), reflecting putative edema. Results: Muscles in patients with DM1 had higher fat fractions than muscles of controls (15.6 ± 11.1% vs 3.7 ± 1.5%). In addition, patients had smaller muscle volumes (902 ± 232 vs 1,097 ± 251 cm3), smaller contractile muscle volumes (779 ± 247 vs 1,054 ± 246 cm3), and increased T2water (33.4 ± 1.0 vs 31.9 ± 0.6 milliseconds), indicating atrophy and edema, respectively. Lower leg muscles were affected most frequently, especially the gastrocnemius medialis and soleus. Distribution of fat content per muscle indicated gradual fat infiltration in DM1. Between-patient variation in fat fraction was explained by age (≈45%), and another ≈14% was explained by estimated progenitor CTG repeat length (r2 = 0.485) and somatic instability (r2 = 0.590). Fat fraction correlated with the 6-minute walk test (r = −0.553) and muscular impairment rating scale (r = 0.537) and revealed subclinical muscle involvement. Conclusion: This cross-sectional quantitative MRI study of 20 different lower extremity muscles in patients with DM1 revealed abnormal values for muscle fat fraction, volume, and T2water, which therefore may serve as objective biomarkers to assess disease state of skeletal muscles in these patients

    Towards development of a statistical framework to evaluate myotonic dystrophy type 1 mRNA biomarkers in the context of a clinical trial

    Get PDF
    Myotonic dystrophy type 1 (DM1) is a rare genetic disorder, characterised by muscular dystrophy, myotonia, and other symptoms. DM1 is caused by the expansion of a CTG repeat in the 3'-untranslated region of DMPK. Longer CTG expansions are associated with greater symptom severity and earlier age at onset. The primary mechanism of pathogenesis is thought to be mediated by a gain of function of the CUG-containing RNA, that leads to transdysregulation of RNA metabolism of many other genes. Specifically, the alternative splicing (AS) and alternative polyadenylation (APA) of many genes is known to be disrupted. In the context of clinical trials of emerging DM1 treatments, it is important to be able to objectively quantify treatment efficacy at the level of molecular biomarkers. We show how previously described candidate mRNA biomarkers can be used to model an effective reduction in CTG length, using modern high-dimensional statistics (machine learning), and a blood and muscle mRNA microarray dataset. We show how this model could be used to detect treatment effects in the context of a clinical trial

    Genetic determinants of disease severity in the myotonic dystrophy type 1 OPTIMISTIC cohort

    Get PDF
    To evaluate the role of genetic variation at the locus on symptomatic diversity in 250 adult, ambulant patients with myotonic dystrophy type 1 (DM1) recruited to the Observational Prolonged Trial in Myotonic Dystrophy Type 1 to Improve Quality of Life-Standards, a Target Identification Collaboration (OPTIMISTIC) clinical trial.We used small pool PCR to correct age at sampling biases and estimate the progenitor allele CTG repeat length and somatic mutational dynamics, and AciI digests and repeat primed PCR to test for the presence of variant repeats.We confirmed disease severity is driven by progenitor allele length, is further modified by age, and, in some cases, sex, and that patients in whom the CTG repeat expands more rapidly in the soma develop symptoms earlier than predicted. We revealed a key role for variant repeats in reducing disease severity and quantified their role in delaying age at onset by approximately 13.2 years (95% confidence interval 5.7-20.7, 2-tailed test = -3.7, = 0.0019).Careful characterization of the CTG repeat to define progenitor allele length and presence of variant repeats has increased utility in understanding clinical variability in a trial cohort and provides a genetic route for defining disease-specific outcome measures, and the basis of treatment response and stratification in DM1 trials

    Precise age of Bangiomorpha pubescens dates the origin of eukaryotic photosynthesis

    Get PDF
    Although the geological record indicates that eukaryotes evolved by 1.9–1.4 Ga, their early evolution is poorly resolved taxonomically and chronologically. The fossil red alga Bangiomorpha pubescens is the only recognized crown-group eukaryote older than ca. 0.8 Ga and marks the earliest known expression of extant forms of multicellularity and eukaryotic photosynthesis. Because it postdates the divergence between the red and green algae and the prior endosymbiotic event that gave rise to the chloroplast, B. pubescens is uniquely important for calibrating eukaryotic evolution. However, molecular clock estimates for the divergence between the red and green algae are highly variable, and some analyses estimate this split to be younger than the widely inferred but poorly constrained first appearance age of 1.2 Ga for B. pubescens. As a result, many molecular clock studies reject this fossil ex post facto. Here we present new Re-Os isotopic ages from sedimentary rocks that stratigraphically bracket the occurrence of B. pubescens in the Bylot Supergroup of Baffin Island and revise its first appearance to 1.047 +0.013/–0.017 Ga. This date is 150 m.y. younger than commonly held interpretations and permits more precise estimates of early eukaryotic evolution. Using cross-calibrated molecular clock analyses with the new fossil age, we calculate that photosynthesis within the Eukarya emerged ca. 1.25 Ga. This date for primary plastid endosymbiosis serves as a benchmark for interpreting the fossil record of early eukaryotes and evaluating their role in the Proterozoic biosphere

    Associations Between Variant Repeat Interruptions and Clinical Outcomes in Myotonic Dystrophy Type 1

    Get PDF
    Objective: To assess the association between variant repeat (VR) interruptions in patients with myotonic dystrophy type 1 (DM1) and clinical symptoms and outcome measures after cognitive behavioral therapy (CBT) intervention. Methods: Adult patients with DM1 were recruited within the OPTIMISTIC trial (NCT02118779). Disease-related history, current clinical symptoms and comorbidities, functional assessments, and disease- and health-related questionnaires were obtained at baseline and after 5 and 10 months. After genetic analysis, we assessed the association between the presence of VR interruptions and clinical symptoms' long-term outcomes and compared the effects of CBT in patients with and without VR interruptions. Core trial outcome measures analyzed were: 6-minute walking test, DM1-Activ-C, Checklist Individual Strength Fatigue Score, Myotonic Dystrophy Health Index, McGill-Pain questionnaire, and Beck Depression inventory—fast screen. Blood samples for DNA testing were obtained at the baseline visit for determining CTG length and detection of VR interruptions. Results: VR interruptions were detectable in 21/250 patients (8.4%)—12 were assigned to the standard-of-care group (control group) and 9 to the CBT group. Patients with VR interruptions were significantly older when the first medical problem occurred and had a significantly shorter disease duration at baseline. We found a tendency toward a milder disease severity in patients with VR interruptions, especially in ventilation status, mobility, and cardiac symptoms. Changes in clinical outcome measures after CBT were not associated with the presence of VR interruptions. Conclusions: The presence of VR interruptions is associated with a later onset of the disease and a milder phenotype. However, based on the OPTIMISTIC trial data, the presence of VR interruptions was not associated with significant changes on outcome measures after CBT intervention. Trial Registration: Information ClinicalTrials.gov NCT02118779
    • 

    corecore